新型成像组合物及其用途的制作方法

文档序号:18938551发布日期:2019-10-23 00:57阅读:414来源:国知局
新型成像组合物及其用途的制作方法
发明领域本发明涉及异羟肟酸类化合物,所述化合物当与合适的金属中心结合时用作成像剂,特别是用于肿瘤成像。本发明还涉及包含该化合物的组合物以及使用该化合物成像患者的方法。
背景技术
:锆89(89zr)是用于医学成像应用的正电子发射放射性核素。特别地,它用于癌症检测和成像的正电子发射断层扫描(pet)。它比其他用于医学成像的放射性核素(如18f)具有更长的半衰期(t1/2=79.3小时)。例如,18f具有110分钟的t1/2,这意味着18f的使用需要靠近回旋加速器设备,并且使用快速且高产量的合成技术用于制备加入其中的试剂。89zr不受这些相同的问题困扰,这使得89zr在医学成像应用中特别有吸引力。去铁胺(dfo)是一种细菌铁载体,自二十世纪六十年代后期以来一直用于治疗铁超载。dfo中的三个异羟肟酸基团与fe3+离子形成配位键,基本上使dfo成为螯合fe3+离子的六齿配位体。由于89zr的配位几何,dfo也被用作pet成像应用中的89zr的螯合剂(holland,j.p,等人(2012)自然10:1586)。其他基于dfo的放射性同位素螯合剂也被制备用于pet成像应用。这些包括n-琥珀酰基-脱铁三胺-四氟苯酚酯(n-suc-dfo-tfp酯)、对异硫氰酸苄基-脱铁亚胺(dfo-bz-ncs,也称为dfo-ph-ncs)和去铁胺-马来酰亚胺(dfo-马来酰亚胺)。所有这些螯合剂可以与抗体或抗体片段结合,以提供将成像剂靶向待成像肿瘤的方法。然而,这些螯合剂存在许多缺点。n-suc-dfo-tfp酯的合成涉及添加fe3+,以防止四氟苯酚酯与去铁胺(dfo)其中之一的异羟肟基发生反应。合成完成(其中包括将n-suc-dfo-tfp酯偶联至抗体的步骤),则需要除去fe3+。这是在使用100倍摩尔过量的edta,ph为4.2-4.5的条件下而达到的。这些条件对ph敏感的抗体可能是有害的。对于dfo-bz-ncs,如果将该化合物在无摇晃或适当混合的情况下过快加入抗体溶液中,则dfo-bz-ncs会导致抗体聚集体的形成。此外,在长时间储存时,放射性标记的且与抗体结合的螯合剂的稳定性是一个问题,需要避免含有氯离子的缓冲液,因为它们导致放射性核素与复合物的脱离。dfo-马来酰亚胺通过与硫醇基团的迈克尔加成而与抗体结合。这有两个主要问题。第一个是与硫醇的迈克尔加成会导致异构体的混合物。这是一个缺点,因为异构体可能与生物系统以不同的方式相互作用。第二个问题是硫醇基团的迈克尔加成是可逆的。这增加了dfo-马来酰亚胺-放射性离子复合物将与抗体解离的风险,导致复合物分布在整个身体中。这不仅降低了成像选择性,而且随着复合物中放射性核素辐射的辐射与其他器官相互作用,也增加了毒副作用的可能性。因此,需要开发不具有这些缺点的与放射性同位素一起使用的新试剂。对本说明书中的任何现有技术的提及不是承认或暗示这种现有技术构成了任何司法管辖区的普通通用知识的一部分,或者该现有技术可以合理地被理解为是和/或与本领域技术人员的其他现有技术相关的。发明概述本发明人已经发现,下面列出的式(i)化合物(本文也称为“dfo-方酰胺”或“dfosq”)及其与生物分子的缀合物(当与诸如89zr的放射性核素形成复合物时),是一种有效的pet成像剂:其中l是离去基团。在一个实施方案中,l是or。r可以选自c1至c10烷基,c1至c10杂烷基,c2至c10烯烃,c2至c10炔烃和芳基,其各自任选被取代。r可以是c1至c10烷基(例如c1至c6烷基,例如甲基,乙基,丙基或丁基)。r可以是甲基或乙基。r可以是乙基。因此,一方面,本发明涉及如上定义的式(i)化合物或其药学上可接受的盐。另一方面,本发明涉及式(i)化合物的放射性核素复合物:或其药学上可接受的盐,其中l是离去基团。l可以是or。r可以选自c1至c10烷基,c1至c10杂烷基,c2至c10烯烃,c2至c10炔烃和芳基,其各自任选被取代。r可以是烷基(例如c1至c6烷基,例如甲基,乙基,丙基或丁基)。r可以是甲基或乙基。r可以是乙基。放射性核素可以是锆,镓或铟的放射性同位素。锆的放射性同位素可以是89zr。镓的放射性同位素可以是68ga。铟的放射性同位素可以是111in。放射性核素可以是锆的放射性同位素(例如89zr)。另一方面,本发明还涉及以下构成的缀合物:-式(i)化合物:或其药学上可接受的盐,其中l是离去基团(如本文所定义))和-靶分子。靶分子可以是多肽(例如转移蛋白或抗体)。靶分子可以是肽(例如靶向肽)。多肽可以是抗体。抗体可以选自赫赛汀(曲妥珠单抗),利妥昔单抗和西妥昔单抗。另一方面,本发明涉及以下构成的放射性核素标记的缀合物:-式(i)化合物:或其药学上可接受的盐,其中l是离去基团(如本文所定义),-靶分子,和-与其形成复合物的放射性核素。靶分子可以是多肽(例如转移蛋白或抗体)。靶分子可以是肽(例如靶向肽)。多肽可以是抗体。抗体可以选自赫赛汀(曲妥珠单抗),利妥昔单抗和西妥昔单抗。放射性核素可以是锆,镓或铟的放射性同位素。锆的放射性同位素可以是89zr。镓的放射性同位素可以是68ga。铟的放射性同位素可以是111in。放射性核素可以是锆的同位素(例如89zr)。当与dfo-ph-ncs或dfo-ph-ncs和靶分子的缀合物相比时,放射性核素标记的复合物和放射性核素标记的缀合物具有改良的亲和力。另一方面,本发明涉及一种对患者进行成像的方法,所述方法包括:-向患者施用如上所定义的放射性核素标记的缀合物,和-对患者进行成像。另一方面,本发明涉及一种对细胞或体外活组织检查样品进行成像的方法,所述方法包括:-向细胞或体外活检样品施用如上所定义的放射性核素标记的缀合物,和-对细胞或体外活检样品进行成像。从以下通过示例并参考附图给出的描述,本发明的其它方面以及前述段落中描述的方面的进一步实施例将变得显而易见。附图简要说明图1.使用89zr(dfo-方酸酯-曲妥珠单抗)的her2阳性肿瘤(bt474乳腺癌模型)的微pet成像。图2.使用89zr(dfo-马来酰亚胺-曲妥珠单抗)的her2阳性肿瘤(ls174t结肠直肠肿瘤模型)的微pet成像。图3.使用89zrcl的her2阳性肿瘤(ls174t结肠直肠肿瘤模型)的微pet成像。图4.对照样品的放射性-itlc色谱图(即无dfosq)。图5.89zrdfosq复合物的放射性-itlc色谱图(加入89zr后60分钟)。图6.对照样品的双尺寸排阻hplcuv-vis色谱图(在280和254nm的两个不同吸收波长)和放射色谱图。图7.89zrdfosq复合物的两个大小排阻hplcuv-vis色谱图和放射色谱图(加入89zr后78小时)。图8.89zr标记的dfosq-crgdfk的放射性-itlc色谱图(加入89zr后60分钟)。图9.dfosq-转铁蛋白(dfosq-tf)的lcms谱。图10.89zr标记的dfosq-tf(加入89zr后20分钟)的放射性-itlc色谱图。图11.89zr标记的dfosq-tf(加入89zr后20分钟)的双尺寸排阻hplcuv-vis色谱图和放射色谱图。图12.dfosq-赫赛汀(dfosq-herc)的lcms谱。图13.89zr标记的dfosq-herc(加入89zr后25分钟)的放射性-itlc色谱图。图14.纯化的89zr标记的dfosq-herc的放射性-itlc色谱图。图15.冷(即未标记)dfosq-herc的双尺寸排阻hplcuv-vis色谱图和放射色谱图。图16.89zr标记的dfosq-herc的双尺寸排阻hplcuv-vis色谱图和放射色谱图(纯化后24小时)。图17.给予89zrdfosq-赫赛汀后小鼠1的pet图像。图18.给予89zrdfosq-赫赛汀后小鼠2的pet图像。图19.dfosq-曲妥珠单抗的去卷积esi-ms(未标记的曲妥单抗=148,232)。图20.30分钟后,89zr-dfophncs-曲妥单抗反应混合物的itlc分析(起点在55mm,溶剂前沿在150mm;标记的曲妥珠单抗保留在起点,距离>70mm(rf>0.1)的活性代表非螯合的89zr)。图21.在pd-10纯化后,89zr-dfosq-曲妥珠单抗的se-hplc分析(顶部:280nm处的吸光度;底部:辐射信号(mv);89zr-dfosq-曲妥单抗在约12分钟内洗脱,在20-25分钟内洗脱龙胆酸)。图22.使用89zr-dfosq-曲妥珠单抗的携带bt474肿瘤的nod/scid小鼠的pet成像。图23.dfosq-曲妥珠单抗(未标记的曲妥珠单抗=148,232)的去卷积esi-ms。图24.1小时后,89zr-dfosq-曲妥珠单抗反应混合物的itlc分析(起点在70mm,溶剂前面在160mm;标记的曲妥珠单抗保留在起点,距离>80mm(rf>0.1)的活性代表非螯合的89zr)。图25.纯化的89zr-dfosq-曲妥珠单抗的se-hplc分析的辐射痕迹(radiationtrace)(产物保留时间~12.5分钟)。图26.1.5小时后,89zr-dfosq-曲妥单抗反应混合物的itlc分析(起点在70mm,溶剂前沿在145mm;标记的曲妥珠单抗保持在起点,距离>80mm(r.f.>0.1)的活性代表非螯合的89zr)。图27.纯化的89zr-dfosq-曲妥珠单抗的se-hplc分析的辐射痕迹(产物保留时间~12.5分钟)。图28.使用89zr-dfosq-曲妥珠单抗作为显像剂的skov3荷瘤小鼠的pet成像。图29.使用89zr-dfosq-曲妥珠单抗作为显像剂的ls174t荷瘤小鼠的pet成像。图30.fdophncs的1hnmr分析(d6-dmso,400mhz)。图31.纯化的dfophncs的分析hplc曲线(214nm处的吸光度)(1.5分钟时的信号=dmso,8.95分钟=dfophncs)。图32.纯化的dfophncs的esi-ms分析。图33.dfophncs-曲妥珠单抗的去卷积esi-ms(未标记的曲妥珠单抗=148,234;具有一个dfophncs附件的曲妥珠单抗=148,987)。图34.(a)1小时后,89zr-dfophncs-曲妥单抗反应混合物的itlc分析,显示~30%的标记效率(起点在60mm,溶剂前沿在150mm;标记的曲妥珠单抗保留在起点,距离>70mm的活性(rf>0.1)表示非螯合的89zr)。(b)在1.5小时后,对89zr-dfophncs-曲妥单抗反应混合物进行itlc分析,显示~50%的标记效率(起点在55mm,溶剂前沿在135mm;标记的曲妥珠单抗保持在起点,间隔>65mm的活性(rf>0.1)表示非螯合的89zr)。(c)2小时后,89zr-dfophncs-曲妥单抗反应混合物的itlc分析,显示~65%的标记效率(起点在60mm,溶剂前沿在145mm;标记的曲妥珠单抗保留在起点,距离>70mm的活性(rf>0.1)表示非螯合的89zr)。图35.在pd-10纯化后,89zr-dfophncs-曲妥珠单抗的itlc分析(起点在55mm,溶剂前沿在150mm;标记的曲妥珠单抗保留在起点,距离>70mm(rf>0.1)的活性表示非螯合的89zr)。图36.在pd-10纯化后,89zr-dfophncs-曲妥珠单抗的sec-hplc分析(顶部:280nm处的吸光度;底部:辐射信号(mv);89zr-dfophncs-曲妥珠单抗在~12分钟开始洗脱,在20-25分钟内洗脱龙胆酸)。图37.使用89zr-dfophncs-曲妥单抗作为显像剂的skov3肿瘤携带小鼠的pet成像。图38.在skov3荷瘤小鼠中89zr-dfo-sq/赫赛汀与89zr-dfo-ph-ncs/赫赛汀摄取的pet成像结果。图39.89zr-dfophncs-crgdfk反应混合物的hplc分析;顶部:280/254nm处的吸光度;底部:辐射。图40.89zr-dfosq-crgdfk反应混合物的hplc分析;顶部:254的吸光度;中间:280nm处的吸光度;底部:辐射。图41.dfophncs-crgdfk/dfosq-crgdfk/89zr反应混合物的hplc分析;顶部:280/254nm处的吸光度;底部:辐射。图42.dfosqtaur的1hnmr(400mhz,d2o)光谱。图43.dfosqtaur的esi-ms谱图。[m+h]+(calc)m/z=764.35。图44.dfophso3h的1hnmr(400mhz,d2o)光谱。图45.dfophso3h的esi-ms光谱。[m+h]+(calc)m/z=776.33。图46.dfophso3h/dfosqtaur/zr反应混合物的esi-ms光谱。具体实施方式本发明人已经发现,式(i)化合物的合成(特别是该化合物与生物分子的共轭物的合成)更为简单并且更可为ph敏感分子(例如抗体)的存在而作修正,因为不需要使用fe3+离子来保护异羟肟酸基团。这使得抗体共轭和用89zr直接作放射性标记。此外,式(i)化合物对含氯化物的缓冲液不敏感,不会在与生物分子共轭时导致聚集体的形成,并且不能可逆地结合生物分子。此外,意想不到地,式(i)化合物与靶分子的放射性标记缀合物相对于用作pet成像剂的许多已知的放射性核素螯合剂(特别是其它dfo基螯合剂)表现出改善的肿瘤靶向和组织选择性。有许多潜在的因素可能有助于这种改善的肿瘤靶向和组织选择性,包括放射性同位素螯合的强度,代谢稳定性和代谢物的排泄速率。本发明化合物的这些优点没有一个在现有技术中公开,也不能预期,并且它们对本发明化合物整体改进性能的贡献的相对权重是未知的。本文公开的化合物的“药学上可接受的盐”是本领域通常认为适合用于与人类或动物的组织接触而没有过度毒性或致癌性,优选没有刺激性,过敏反应,或其他问题或并发症的酸或碱盐。这些盐包括碱性残基如胺的矿物和有机酸盐,以及酸性残基如羧酸的碱或有机盐。合适的药学上可接受的盐包括但不限于酸的盐,例如盐酸,磷酸,氢溴酸,苹果酸,乙醇酸,富马酸,硫酸,氨基磺酸,对氨基苯甲酸,甲酸,甲苯磺酸,甲磺酸,苯磺酸,乙烷二磺酸,2-羟乙基磺酸,硝酸,苯甲酸,2-乙酰氧基苯甲酸,柠檬酸,酒石酸,乳酸,硬脂酸,水杨酸,谷氨酸,抗坏血酸,双羟萘酸,琥珀酸,富马酸,马来酸,丙酸,羟基咪唑,氢碘酸,苯乙酸,链烷酸(如乙酸,hooc-(ch2)n-cooh,其中n为0至6的任何整数,即0,1,2,3,4,5或6)等。类似地,药学上可接受的阳离子包括但不限于钠,钾,钙,铝,锂和铵。本领域技术人员将认识到本文提供的化合物的其它药学上可接受的盐。通常,药学上可接受的酸或碱盐可以通过任何常规的化学方法由含有碱性或酸性部分的母体化合物合成。简言之,这些盐可以通过使这些化合物的游离酸或碱形式与化学计量的适当的碱或酸在水或有机溶剂(例如醚,乙酸乙酯,乙醇,异丙醇或乙腈),或两者的混合物中反应来制备。显而易见,式(i)化合物可以但不必以水合物,溶剂化物或非共价络合物(与放射性核素以外的金属)存在。此外,各种晶型和多晶型物也在本发明的范围内,以及本文提供的化合物的前药也是本发明的范围。“前药”是一种化合物,其可能不完全满足本文提供的化合物的结构要求,但在给予受试者或患者之后在体内进行修饰以产生本文所提供的放射性标记缀合物。例如,前药可以是放射性标记缀合物的酰化衍生物。前药包括其中羟基或胺基键合到任何基团的化合物,当给予哺乳动物受试者时,分别切割形成游离羟基或胺基。前药的实例包括但不限于放射性标记缀合物内的胺官能团的乙酸盐,甲酸盐,磷酸盐和苯甲酸盐衍生物。可以通过以这样的方式修饰化合物中存在的官能团来制备前药,使得修饰在体内被切割以产生母体化合物。本文所用的“取代基”是指共价键合到目的分子内的原子的分子部分。如本文所用,术语“取代的”是指指定原子上的任何一个或多个氢被所指示的取代基的选择取代,条件是不超过指定的原子的正常价态,并且取代导致稳定的化合物,即可以分离,表征和测试生物活性的化合物。当取代基是氧代,即=o时,原子上的两个氢被取代。作为芳香族碳原子的取代基的氧代基导致-ch-到-c(=o)-的转化和芳香性的损失。例如被氧代取代的吡啶基是吡啶酮。合适取代基的实例是烷基,杂烷基,卤素(例如氟,氯,溴或碘原子),oh,=o,sh,so2,nh2,nh烷基,=nh,n3和no2基团。术语“任选取代的”是指其中一个,两个,三个或更多个氢原子彼此独立地被烷基,卤素(例如氟,氯,溴或碘原子),oh,=o,sh,=s,so2,nh2,nh烷基,=nh,n3或no2基团替换。如本文所使用的,确定长度范围界限的措辞,例如“从1到5”是指1至5的任何整数,即换句话说,由明确提及的两个整数定义的任何范围意味着包括并公开定义所述界限的任何整数以及包含在所述范围内的任何整数。术语“离去基团”是指当与靶分子反应时能够从方酸酯(squarate)部分置换的任何部分。离去基团将被置换,并且在靶分子的基团(例如赖氨酸侧链的氨基)和方酸酯之间形成键。在一个实施方案中,离去基团(“l”)为or。在一个实施方案中,r选自c1至c10烷基,c1至c10杂烷基,c2至c10烯烃和c2至c10炔烃,以及芳基,其各自任选被取代。在一个实施方案中,r是c1至c10烷基(例如c1至c6烷基,例如甲基,乙基,丙基或丁基)。在一个实施方案中,r是甲基或乙基。在一个实施方案中,r是乙基。在另一个实施方案中,l是卤素(例如氟,氯,溴或碘),或l是叠氮基。术语“烷基”是指含有1至10个碳原子的饱和直链或支链烃基,例如正辛基,特别是1至6,即1,2,3,4,5或6个碳原子。烷基的具体实例是甲基,乙基,丙基,异丙基,正丁基,异丁基,仲丁基,叔丁基,正戊基,异戊基,正己基和2,2-二甲基丁基。术语“杂烷基”是指含有一个或多个选自氧,氮和硫的杂原子的如上定义的烷基。杂烷基的具体实例是甲氧基,三氟甲氧基,乙氧基,正丙氧基,异丙氧基,丁氧基,叔丁氧基,甲氧基甲基,乙氧基甲基,-ch2ch2oh,-ch2oh,甲氧基乙基,1-甲氧基乙基,1-乙氧基乙基,2-甲氧基乙基或2-乙氧基乙基,甲基氨基,乙基氨基,丙基氨基,异丙基氨基,二甲基氨基,二乙基氨基,异丙基-乙基氨基,甲基氨基甲基,乙基氨基甲基,二异丙基氨基乙基,甲硫基,乙硫基,异丙硫基,甲磺酰基,三氟甲磺酰基,烯醇醚,二甲基氨基甲基,二甲基氨基乙基,乙酰基,丙酰基,丁酰氧基,乙酰氧基,甲氧基羰基,乙氧基-羰基,丙酰氧基,乙酰氨基,丙酰氨基,羧甲基,羧乙基或羧丙基,n-乙基-n-甲基氨基甲酰基和n-甲基氨基甲酰基。杂烷基的其它实例是腈,异腈,氰酸酯,硫氰酸酯,异氰酸酯,异硫氰酸酯和烷基腈基团。术语“烯基”是指至少部分不饱和的直链或支链烃基,其含有2至10个碳原子,特别是2至6个,即2个,3个,4个,5个或6个碳原子。烯基的具体实例是乙烯基(烯丙基),丙烯基(烯丙基),异丙烯基,丁烯基,乙炔基,丙炔基,丁烯基,乙炔基,炔丙基,异-戊烯基和己-2-烯基。优选地,烯基具有一个或两个双键。术语“炔基”是指含有2-10个碳原子,特别是2-6个碳原子的至少部分不饱和的直链或支链烃基,即2,3,4,5或6个碳原子。炔基的具体实例是乙炔基,丙炔基,丁炔基,乙炔基和炔丙基。优选地,炔基具有一个或两个(特别优选一个)三键。术语“芳基”是指含有一个或多个含有6至14个环碳原子,优选6至10(特别是6个)环碳原子的环的芳族基团。实例是苯基,萘基和联苯基。适用于本发明的取代芳基的实例包括对甲苯磺酰基(ts),苯磺酰基(bs)和间硝基苯磺酰基(ns)。本发明优选的化合物是其中r为c1至c10烷基(特别是其中r为乙基)的化合物。在一个实施方案中,离去基团选自och2ch3,对甲苯磺酸酯或盐(o-p-toluenesulfonate,ot),o-甲磺酸酯或盐(o-methanesulfonate,om),o-三氟甲磺酸酯或盐(o-trifluoromethanesulfonate,otf),o-苯磺酸酯或盐(o-benzenesulfonate,ob),o-m-硝基苯磺酸酯或盐(o-m-nitrobenzenesulfonate,on),氰酸酯或盐(cyanate,cn),叠氮化物(n3)和卤素(例如氟,氯,溴或碘)。如本文所用,术语“放射性核素复合物”是指如上所定义的与放射性核素形成配位络合物的式(i)化合物。通常,这是由于在式(i)化合物的给电子基团(如异羟肟基)和放射性核素之间形成配位键的结果。在本发明的化合物中,假定在dfo的异羟肟酸基与放射性核素之间形成配位键。然而,不希望受理论束缚,本发明人还认为,方酸酯部分(除了dfo的异羟肟酸基团之外)中的氧代基也可以作为供体原子,提供一个或两个另外的位置,其中化合物式(i)可以与放射性核素结合。这导致八坐标复合物,其从具有八坐标几何形状(例如89zr)的放射性核素的稳定性角度是非常有利的,并且可以解释关于本发明的复合物观察到的稳定性。特别地,这可以解释为什么放射性核素不容易从目标组织中浸出(进入其他组织,例如骨),因此当与其它基于dfo的成像剂相比时,其成像质量得到改善。本发明化合物相对于目前使用的螯合剂的这些优点在附图和实施例中说明。如图1,18和22所示,89zr(dfosq-曲妥珠单抗)非常有选择地靶向her2阳性肿瘤bt474(乳腺癌)并保留在其位点处浓缩。这与图2和图3所示的结果形成对照,其显示了放射性核素(当分别以89zr(dfo-马来酰亚胺-曲妥珠单抗)和89zrcl施用)在整个小鼠体内的显着分布。如上所述,提高特异性的一个可能的贡献因素是方酸酯基试剂具有强的螯合电位,从而防止其在整个身体中的分布并在其它组织例如骨(锆对其具有非常高的亲和力),肝脏和肾脏中的积累。在竞争研究中证明了与89zr(dfo-phncs)相比对锆的高亲和力(参见实施例和图39至41)。吸光度和辐射光谱显示当89zr暴露于本发明的缀合物(dfosq-crgdfk)与dfophncs-crgdfk的混合物时,89zr几乎仅与本发明的缀合物形成复合物。特异性的另一个贡献因素可以是本发明的放射性核素标记的化合物的代谢稳定性。含有放射性核素但不含曲妥珠单抗部分(“非靶向代谢物”)的代谢物将不具有靶向能力,导致放射性核素在整个体内的分布。本发明化合物的代谢稳定性是无法预料的,不易解释。本发明人还假设,即使形成本发明的放射性核素标记的缀合物的代谢物,它们可能具有高的排泄速率,导致放射性核素在非靶位点的积累较少。这也是一个意想不到的性能。本发明的缀合物的这种特异性和稳定性也在图28和29中说明,其显示了89zr(dfosq-曲妥珠单抗)在其它her2阳性肿瘤(ls174t,其为一种结肠直肠肿瘤模型,和skov3,其为一种卵巢癌模型)中的成像能力。在skov3肿瘤模型(图28)中用89zr(dfosq-曲妥珠单抗)获得的结果也与在相同肿瘤模型中,但使用89zr(dfo-phncs-曲妥珠单抗)作为显像剂(参见图37)获得的那些在质量上形成对比,后者显示放射性核素在整个治疗小鼠中的显着分布。本发明的放射性标记的缀合物相比于其它缀合物如89zr(dfo-phncs-曲妥珠单抗)的优异活性也通过使用89zr(dfo-方酸酯-曲妥珠单抗)的skov3肿瘤成像获得的标准摄取值(suv)(参见实施例中的表3)与使用89zr(dfo-phncs-曲妥珠单抗)的skov3肿瘤成像获得的suv(参见实施例中的表7)的比较来证明。suv基本上是组织放射性浓度(在时间点t),除以注射活性除以动物的体重。因此,suv标准化了不同数量的注射放射性和动物的大小。一般来说,当肿瘤中放射成像剂摄取与非目标组织(如骨骼和肝脏)对该试剂摄取的比例较高时,获得最佳图像(并且对非靶器官的放射性毒性较小)。比例越高,放射成像剂的图像和选择性越好。图38中的曲线图显示本发明的放射性标记缀合物(89zr(dfosq-曲妥珠单抗)和89zr(dfo-phncs-曲妥单抗)的肿瘤suvmax以及肿瘤:背景,肿瘤:肝脏和肿瘤:骨的suv比例。从图38可以看出,89zr(dfosq-曲妥珠单抗)的suv比值在所有实验中高于89zr(dfo-phncs-曲妥珠单抗)的suv比值,因为在靶位点上的放射性高于在其他组织(肝和骨)中的,这表明本发明的放射性标记缀合物比89zr(dfo-phncs-曲妥单抗)更具选择性和稳定性。高肿瘤:背景比是有利的。值得注意的是,本发明的放射性标记缀合物的摄取也取决于肿瘤的her2表达水平。这里提供的数据表明,具有较高her2表达水平的肿瘤(如bt474)比具有较低her2表达水平的肿瘤(例如ls174t)具有更大的共轭吸收(并因此产生更强的pet图像)导致“更暗淡”图像。作为her2表达水平变化的结果的图像强度的这种差异强烈地表明,它是影响所获得的pet图像的强度的肿瘤上的her2表达水平,而不是不同代谢物的存在。如本文所用,术语“放射性核素”(通常也称为放射性同位素或放射活性同位素)是具有不稳定核的原子。它会放射性衰变,导致发射核辐射(如γ射线和/或亚原子粒子,如α或β粒子)。在一个实施方案中,放射性核素也可用于放射免疫治疗应用(例如β粒子发射体)。优选地,放射性核素具有八坐标几何形状。适用于本发明的放射性核素的实例包括锆(例如89zr),镓(例如67ga和68ga),镥(例如176lu和177lu),钬(例如166ho),钪(例如44sc和47sc)的放射性同位素,钛(例如45ti),铟(例如111in和115in),钇(例如86y和90y),铽(149tb,152tb,155tb和161tb),锝(例如99mtc),钐(例如153sm)和铌(例如95nb和90nb)。用于本发明的放射性核素可以选自镓(具体地,67ga和68ga),铟(特别是111in)和锆(特别是89zr)。用于本发明的放射性核素可以选自68ga,111in和89zr。例如,已经显示68ga与dfo结合(参见ueda等(2015)分子成像生物学,第17卷,第102-110页),铟与锆具有类似的配位化学性质(因此预期以类似的方式结合式(i)化合物)。本领域技术人员将理解,本发明的化合物还可以与用于成像应用,如mri的非放射性金属形成复合物。这种金属的一个例子是钆(例如152gd)。如上所述,本发明还涉及式(i)化合物或其药学上可接受的盐与靶分子的缀合物。如本文所用,术语“靶分子”是指具有靶向特定组织或肿瘤的能力的生物分子或生物分子的片段。靶分子可以是多肽,例如蛋白质(例如转运蛋白如转铁蛋白),白蛋白(例如血清白蛋白)或抗体(例如曲妥珠单抗,也称为赫赛汀,兰尼珠单抗,贝伐珠单抗,弗雷莫单抗(fresolimumab),西妥昔单抗,帕尼单抗,利妥昔单抗,依妥珠单抗,和奥美珠单抗)。抗体可以选自赫赛汀,利妥昔单抗和西妥昔单抗。靶分子可以是肽(例如,用于靶向涉及肿瘤血管发生的细胞的靶向肽,例如环状rgd序列或另一种靶向肽,例如奥曲特,铃蟾肽和glu-n(co)n-lyspsma)。靶分子具有与方酸酯部分反应以在靶分子和式(i)化合物之间形成共价键的官能团(例如赖氨酸残基的胺基)。这导致缀合物的形成。缀合物还可以包括与其形成复合物的放射性核素。这产生以下部分组成的放射性核素标记的缀合物:式(i)化合物或其药学上可接受的盐,靶分子和与其形成复合物的放射性核素。在一个实施方案中,放射性核素是锆的放射性同位素(例如89zr)。式(i)化合物和放射性核素复合物可以通过本领域技术人员已知的任何合适的方法合成。下面方案1中给出合成方法的实例。方案1放射性核素配合物可以通过本领域技术人员已知的任何合适的方法与感兴趣的靶分子结合(以产生放射性标记缀合物)。一个合适的方法的例子如下:1.以硼酸盐缓冲液(ph9)制备靶分子,使得反应混合物的最终缓冲液浓度为0.5m。2.在milliq水配制的4%dmso中制备dfosq溶液(首先应加入dmso,以确保dfosq完全溶解)。3.根据需要,将dfosq溶液加入到靶分子中,反应混合物在室温下放置过夜(较短的反应时间将导致每个靶分子的平均螯合剂较低)。4.可以使用具有适当分子量限制(至少1kda)的旋转过滤器纯化缀合物。初始过滤后,应用旋转过滤器将缀合物,用milliq配制的4%dmso洗涤至少两次以除去所有过量的dfosq。5.然后使用旋转过滤器的缓冲液交换步骤以存储缀合物(推荐用于dfosq-赫赛汀的0.9%nacl溶液)。对于本领域技术人员来说,缀合物可以在不存在放射性核素的情况下制备。在该实施方案中,一旦制备了缀合物,就将放射性核素加入到缀合物中。本发明还涉及包含以下构成的放射性核素标记的缀合物的药物组合物:-式(i)化合物:或其药学上可接受的盐,其中l是离去基团(如本文所定义),-靶分子,和-与其形成复合物的放射性核素,和一种或多种药学上可接受的载体物质,赋形剂和/或佐剂。药物组合物可包括例如水,缓冲液(例如中性缓冲盐水,磷酸盐缓冲盐水,柠檬酸盐和乙酸盐),乙醇,油,碳水化合物(例如葡萄糖,果糖,甘露糖,蔗糖和甘露糖醇),蛋白质,多肽或氨基酸如甘氨酸,抗氧化剂(例如亚硫酸氢钠),张力调节剂(例如氯化钾和氯化钙),螯合剂如edta或谷胱甘肽,维生素和/或防腐剂中的一种或多种。药物组合物优选配制用于肠胃外给药。本文所用的术语“肠胃外”包括皮下,皮内,血管内(例如静脉内),肌肉内,脊髓,颅内,鞘内,眼内,眼周,眶内,肌内和腹膜内注射以及任何类似的注射或输注技术。静脉内给药优选。肠胃外制剂的合适组分和制备这些制剂的方法在各种文献中有详细描述,包括“雷明顿药学科学(remington’spharmaceuticalsciences)”。本发明的组合物将以常规方式肠胃外给予患者。然后,dfo-方酰胺缀合物复合物可以在1小时至24小时的任何时间内分布到整个身体到靶位点。一旦实现了所需的分布,患者将被成像。因此,本发明还涉及对患者进行成像的方法,该方法包括:-向患者施用如本文定义的放射性核素标记的缀合物;和-对所述患者进行成像。本发明还涉及一种对细胞或体外活检样品进行成像的方法,所述方法包括:-对细胞或体外活检样品施用如本文定义的放射性核素标记的缀合物;和-对细胞或体外活检样品进行成像。优选地,靶分子用于将缀合物靶向体内所需位点,或靶向细胞或活检样品中的所需位点。优选地,所需位点是肿瘤。应当理解,任何特定患者的具体剂量水平以及药物将到达目标部位的时间长短将取决于多种因素,包括所用特定化合物的活性,年龄,体重,一般健康状况,性别,饮食,给药时间,给药途径和排泄速度,以及正在接受治疗的特定病症的严重程度。术语“有效量”是指在向患者施用放射性核素标记的缀合物之后导致可检测量的辐射的量。本领域技术人员将知道向患者施用多少放射性核素标记的缀合物以实现最佳成像能力而不会从毒性角度引起问题。本发明的放射性核素标记的缀合物特别用于帮助临床医生确定癌症的位置(包括肿瘤中是否均匀存在靶标,如受体),癌症将如何应对(有利于治疗选择和确定最佳剂量),以及最终达到目标地点的治疗量。本发明的放射性核素标记的缀合物也可用于研究特定靶分子的药代动力学和生物分布(例如在新的生物治疗剂如单克隆抗体的药物开发期间)。患者可以包括但不限于灵长类动物,特别是人类,驯养的伴侣动物如狗,猫,马和家畜如牛,猪和绵羊,具有如本文所述的剂量。如上所述,本发明的放射性核素标记的缀合物特别可用于成像肿瘤(其由细胞的不受控制或进行性增殖形成)。一些这种不受控制的增殖细胞是良性的,但是其它的被称为“恶性”,并且可能导致生物体的死亡。恶性肿瘤或“癌症”不同于良性生长,除了表现出侵袭性细胞增殖外,它们可能侵入周围组织并转移。此外,恶性肿瘤的特征在于它们显示出更大的分化损失(更大的“去分化”),并且其组织相对于彼此及其周围组织的损失更大。这个属性也被称为“失配”。可由本发明治疗的肿瘤还包括固相肿瘤/恶性肿瘤,即癌,局部晚期肿瘤和人软组织肉瘤。癌症包括来自上皮细胞的恶性肿瘤,其浸润(侵入)周围组织并引起转移性癌症,包括淋巴转移。腺癌是源于腺体组织的癌,或形成可识别的腺体结构。另一种广泛类型的癌症包括肉瘤,其是细胞嵌入纤维状或均质物质如胚胎结缔组织的肿瘤。根据本发明可以适于成像的癌症或肿瘤细胞的类型包括例如乳腺癌,结肠癌,肺癌和前列腺癌,胃肠癌,包括食管癌,胃癌,结肠直肠癌,与结肠直肠肿瘤相关的息肉,胰腺癌和胆囊癌,肾上腺皮质癌,产生acth的肿瘤,膀胱癌,脑癌,包括内在脑肿瘤,神经母细胞瘤,星形细胞性脑肿瘤,神经胶质瘤和中枢神经系统的转移性肿瘤细胞侵袭,尤文氏肉瘤包括口腔癌和喉癌的颈癌,包括肾细胞癌,肝癌,包括小细胞和非小细胞肺癌的肺癌,恶性腹膜积液,恶性胸腔积液,包括恶性黑色素瘤在内的皮肤癌,人肿瘤进展的肾癌皮肤角化细胞,鳞状细胞癌,基底细胞癌和血管外皮细胞瘤,间皮瘤,卡波西氏肉瘤,包括骨肉瘤和肉瘤如骨肉瘤和骨肉瘤的骨癌,女性生殖道癌,包括子宫癌,子宫内膜癌,卵巢癌,卵巢(生殖细胞)癌和卵巢卵泡中的实体瘤,阴道癌,癌症外阴和子宫颈癌,乳腺癌(小细胞和导管),阴茎癌,视网膜母细胞瘤,睾丸癌,甲状腺癌,滋养细胞肿瘤和威尔姆斯氏肿瘤。将本发明的放射性核素标记的缀合物与具有抗癌活性的药物一起施用也是有利的。在这方面合适的药物的实例包括氟尿嘧啶,咪喹莫特,阿那曲唑,比卡鲁前列素,贝他培他滨,贝沙罗坦,比卡鲁胺,硼替佐米,白消安,卡马西汀,卡培他滨,卡莫司汀,顺铂,达布拉芬,盐酸柔红霉素,多西紫杉醇,多柔比星,依洛西汀,依托泊苷,依西美坦,氟维司群,甲氨蝶呤,吉非替尼,吉西他滨,异环磷酰胺,伊立替康,依沙比林,罗非那敏,来曲唑,洛莫司汀,醋酸甲地孕酮,替莫唑胺,长春瑞滨,尼洛替尼,他莫昔芬,奥沙利铂,紫杉醇,雷洛昔芬,培美曲塞,索拉非尼,沙利度胺,托泊替康,维甲胺和长春新碱。本发明的放射性核素标记的缀合物也可以用于确定特定肿瘤是否具有一种或多种类型的受体,因此是否可以从特定治疗中受益。例如,通过在放射性标记的缀合物中使用赫赛汀作为靶分子,可以测试患者肿瘤上her2受体的存在。如果肿瘤是her2阴性的(即不具有her2受体),则成像剂不会“粘附”到肿瘤,表明赫赛汀可能不是患者有用治疗方法。应当理解,在本说明书中公开和定义的发明延伸到从文本或附图中提到或明显的两个或更多个个体特征的所有替代组合。所有这些不同的组合构成了本发明的各种替代方面。实施例所有试剂和溶剂都是从标准商业来源获得的,除非另有说明,否则按原样使用。用varianft-nmr400或varianft-nmr500(瓦里安,加利福尼亚,美国)记录1h和13c光谱。在400或500mhz获得1h-nmr光谱,并且在101或125mhz获得13c-nmr光谱。除非另有说明,否则在25℃记录所有nmr光谱。报告的化学位移(以百万分之几)以残留溶剂信号为参考。在安捷伦6510esi-toflc/ms质谱仪(安捷伦,加利福尼亚,美国)上记录非蛋白质样品的esi-ms。在安捷伦1100系列上进行分析反相hplc。使用与安捷伦1200lc系统(安捷伦,帕洛阿尔托,加利福尼亚州)相连的安捷伦6220esi-toflc/ms质谱仪分析蛋白质样品。通过双喷雾电喷雾电离(esi)来获得所有数据并进行参比质量校正。采用安捷伦质量捕获收集(agilentmasshunteracquisition)软件版本b.02.01(b2116.30)进行采集。电离模式:电喷雾离子化;干燥气流量:7l/min;雾化器:35psi;干燥气体温度:325℃;毛细管电压(vcap):4000v;碎片:300v;撇渣器:65v;octrfv:250v;扫描范围:300-3200m/z内部参考离子:正离子模式=m/z=121.050873&922.009798。使用安捷伦多层孔c182.1x75mm,5μm色谱柱进行蛋白质脱盐和色谱分离,使用5%(v/v)乙腈移除废物(0-5min)。在脱盐样品后,将流动物返回到esi源中,随后用(5%(v/v)至100%(v/v))乙腈/0.1%甲酸梯度,以0.25ml/min洗脱,经8分钟。使用质量捕获(masshunter)版本b.06.00和生物确认(bioconfirm)软件进行分析,使用最大熵蛋白去卷积算法;质量步骤1da;基准系数3.00;峰值宽度设定为不确定度。在岛津scl-10avp/lc-10atvp系统上进行尺寸排阻hplc,其上装有岛津spd-10avpuv检测器,然后是放射线检测器(带有前置放大器的ortec型号276光电倍增器基座,ortec925-scintace配合前置放大器,bias供应和sca,毫微米1m11/2光电倍增管)。使用biosuite125hrsec5μm7.8x300mm柱,流速为0.6ml/min,含5%异丙醇的杜尔贝科pbs作为洗脱液。使用raytestrita-startlc扫描仪分析radio-itlc。dfo-方酰胺(dfosq)的合成在50℃下将甲磺酸去铁胺b(0.20g,0.31mmol)和dipea(0.05ml,0.3mmol)的混合物在etoh(6ml)中搅拌。1小时后,加入在etoh(9ml)中的3,4-二乙氧基-3-环丁烯-1,2-二酮(0.1ml,0.7mmol)。在50℃下再搅拌30分钟后,减压除去溶剂,残余物用etoh(3×10ml)研磨。将产物真空干燥,得到dfosq,为白色粉末(0.17g,83%)。1hnmr(d6-dmso,500mhz)δ9.61(s,6h),8.77(t,j=5.8hz,1h),8.58(t,j=5.7hz,1h),7.77(d,j=4.7hz,5h),4.64(p,j=6.9hz,5h),3.45(t,j=7.0hz,3h),3.38(s,5h),3.26(dd,j=13.0,6.6hz,1h),3.00(dd,j=12.7,6.4hz,10h),2.56(d,j=6.5hz,1h),2.26(t,j=7.2hz,1h),1.96(s,7h),1.50(d,j=6.6hz,3h),1.42–1.31(m,3h),1.24(ddd,j=20.2,14.7,8.0hz,2h);13cnmr(d6-dmso,101mhz)δ189.39,189.30,182.05,181.84,176.93,176.47,172.58,172.17,171.97,171.30,170.13,70.18,68.77,68.73,47.09,47.01,46.79,43.68,43.39,39.52,38.42,30.10,29.90,29.60,28.82,27.56,26.04,25.82,23.50,22.92,20.35,15.64;hrmsesi[m+h+]:685.3768,calculatedfor(c31h53n6o11)+:685.3767,[m+na+]:707.3589,计算得(c31h52nan6o11)+:707.3586.放射性标记将na2co3水溶液(2m,4.5μl)加入到89zr的1m草酸(10mbq,10μl)溶液中,直到ph增加至10。然后加入hepes缓冲液(0.5m,ph7,50μl)并将溶液静置5分钟。证实ph为中性,然后加入dfosq的dmso(1μl,0.18μmol)溶液。1小时后,通过放射性itlc(硅胶注入的玻璃纤维板,20mmph5柠檬酸缓冲液,产物rf=0)和sehplc(biosuite125,5μmhrsec7.8×300mm柱,20mmph7具有5%i-proh的杜尔贝科pbs作为洗脱液,0.6ml/min,产物保留时间21.80分钟)确认反应结束。放射性-itlc对照(即没有dfosq)的色谱图显示在图4中。这表明当dfosq不存在时,含锆溶液随着溶剂前端(如预期的那样)移动。89zrdfosq复合物(加入89zr后60分钟)的色谱图如图5所示。这表明由于其与dfosq形成复合物,现在锆保留在基线(即“起点”)上。尺寸排阻hplc对照的uv-vis色谱图(280和254nm的两个不同吸收波长)和辐射色谱图(使用geiger计数器作为检测器获得)显示在图6中。89zrdfosq复合物的uv-vis色谱图和放射色谱图(加入89zr后78小时)显示在图7中。89zrdfosq-crgdfk的合成与分析将dfosq(5mg,7μmol)的dmso(35μl)溶液加入到ph9硼酸盐缓冲液(0.5m,965μl)配制的crgdfk(3mg,5μmol)中。将反应混合物在室温下静置5天,然后通过半制备型hplc(protecolc18柱)纯化为dfosq-crgdfk,其为白色固体(0.002g,32%)。hrmsesi[m+h+]:604.3196,计算得(c27h42n9o7)+:604.3202,[m+2h+]:302.6637,计算得(c27h43n9o7)2+:302.6638.对于放射性标记,将na2co3水溶液(2m,4.5μl)加入到89zr的1m草酸(10mbq,10μl)溶液中,直到ph升至10。然后加入hepes缓冲液(0.5m,ph7,50μl)并将溶液静置5分钟。证实ph为中性,然后加入dfosq-crgdfk在h2o(10μl,0.008μmol)中的溶液。70分钟后,通过放射性-itlc(硅胶注入玻璃纤维板,0.1mph6柠檬酸缓冲液作为洗脱液,产物rf=0)确认反应完成。89zr标记的dfosq-crgdfk(加入89zr后60分钟取样)的放射性-itlc色谱图如图8所示。89zrdfosq-转铁蛋白的合成与分析将dfosq(0.17mg,0.25μmol)在dmso/h2o(1:10,26μl)中的溶液加入到人全血转铁蛋白(1.0mg,0.013μmol)在ph9硼酸盐缓冲液(0.5m,974μl)中的溶液中。将反应混合物在室温下静置17小时,然后使用amicon10kda离心机过滤器过滤。将粗产物用nacl溶液(0.9%w/v,2×400μl)洗涤,收集浓缩物,得到dfosq-转铁蛋白(1.25mg,0.012μmol)。通过lcms(安捷伦多层孔c185μm×2.175mm柱)分析产物,其表明转铁蛋白(tf)与2-8个螯合剂的混合物,平均4.5个螯合剂/蛋白(参见图9)。对于放射性标记,将na2co3水溶液(2m,10μl)加入到89zr的1m草酸(1.2mbq,20μl)溶液中,直至ph升至10。然后加入hepes缓冲液(0.5m,ph7,30μl)并将溶液静置5分钟。证实ph为中性,然后加入dfosq-tf在0.9%nacl(2μl,100μg)中的溶液。20分钟后,反应完成,并通过放射性-itlc(硅胶注入的玻璃纤维板,0.1mph6柠檬酸盐缓冲液作为洗脱液,产物rf=0)和sehplc(biosuite125,5umhrsec7.8×300mm柱,20mmph7具有5%iproh的杜尔贝科pbs作为洗脱剂,产物保留时间为12.56分钟)证实89zr标记的dfosq-tf(加入89zr后20分钟取样)的放射性-itlc色谱图如图10所示。89zr标记的dfosq-tf(加入89zr后20分钟)的uv-vis色谱图和辐射色谱图如图11所示。bt474荷瘤小鼠中89zrdfosq-赫赛汀的合成与分析-研究1将dfosq(0.46mg,0.67μmol)在dmso/h2o(1:10,228μl)中的溶液加入到临床级曲妥珠单抗(5.0mg,0.034μmol)溶液中,将反应混合物放置在环境温度下的ph9硼酸盐缓冲液(0.5m,总体积1.0ml)中。16小时后,使用amicon50kda离心机过滤器浓缩溶液。然后过滤器用nacl/dmso溶液(0.9%w/vnacl,5%dmso,4×400μl),随后用nacl溶液(0.9%w/v,400μl)洗涤粗产物,收集浓缩物得到dfosq-赫赛汀(1.4mg,0.0093μmol,28%)。通过lcms(agilentporoshellc185μm×2.175mm柱)分析产物,其表明赫赛汀(herc)与2-7个螯合剂的混合物和平均4.5个螯合剂/抗体(参见图12)。对于放射性标记,将na2co3水溶液(2m,25μl)加入到89zr的1m草酸(55mbq,75μl)溶液中,直到ph升至10。加入hepes缓冲液(0.5m,ph7,100μl),并将溶液静置5分钟。确认ph为中性,然后加入dfosq-herc在0.9%nacl(4μl,225μg)中的溶液。25分钟后,通过放射性-itlc(硅胶注入玻璃纤维板,0.1mph6柠檬酸缓冲液作为洗脱液,产物rf=0)确认反应完成。将反应混合物在pd-10尺寸排阻柱上进行纯化,使用ph7的pbs(20mm,5%龙胆酸钠)作为洗脱液。柱加载后,弃去流过液,收集第一级分(1.5ml,45mbq)。通过放射性-itlc和sehplc(biosuite125,5μmhrsec7.8×300mm柱,20mmph7含5%iproh的杜尔贝科pbs作为洗脱液,产物保留时间12.55min)分析产物。89zr标记的dfosq-herc(加入89zr后25分钟)的放射性-itlc色谱图如图13所示。纯化的89zr标记的dfosq-herc的放射性-itlc色谱图如图14所示。冷(即未标记)dfosq-herc的uv-vis色谱图和辐射色谱图如图15所示。89zr标记的dfosq-herc(纯化后24小时取样)的uv-vis色谱图和放射色谱图如图16所示。使用89zrdfosq-赫赛汀的小鼠成像制备两种剂量的在含有5%龙胆酸钠(200μl,每个6.0mbq)的20mmpbs(ph7)中的89zrdfosq-赫赛汀,并通过尾静脉注射给bt474荷瘤小鼠。在给药后22小时,46小时,94小时和8天的间隔拍摄pet图像(参见图17和18)。下表(表1)列出了每个时间点每只小鼠的标准摄取值(suv)。表1.使用89zrdfosq-赫赛汀的bt474荷瘤小鼠的肿瘤最大标准摄取值(suv)给药后的时间点小鼠1suvmax小鼠2suvmax22h10.7611.6246h16.1716.2494h21.9725.798d31.7337.21还进行了比较研究以比较本发明化合物(具体地,89zr(dfo-方酸-曲妥珠单抗))作为肿瘤显像剂与另外两种成像剂(89zr(dfo-马来酰亚胺-曲妥珠单抗))和89zrcl)。通过将50倍过量的dfo-马来酰亚胺溶解在水中,并将其加入到pbs缓冲液中的曲妥珠单抗(赫赛汀)中来制备89zr(dfo-马来酰亚胺-曲妥珠单抗)。通过旋转过滤除去未反应的dfo-马来酰亚胺,并将纯化的缀合物用如上所述用于dfo-方酸酯的89zr(ox)4放射性标记。用含有5%龙胆酸钠(200μl,每个6.0mbq)的20mmpbs(ph7)配制的两剂量的含89zr(dfo-方酸酯-曲妥珠单抗),89zr(dfo-马来酰亚胺-曲妥珠单抗)或89zrcl的溶液注射具有her2阳性肿瘤的小鼠。对于89zr(dfo-方酸酯-曲妥珠单抗)处理的小鼠以给药后22小时,46小时,94小时和8天为间隔,对于89zr(dfo-马来酰亚胺-曲妥珠单抗)-和89zrcl处理的小鼠以24小时为间隔拍摄pet图像(分别参见图1,2和3)。在bt474荷瘤小鼠中使用89zrdfosq-赫赛汀的成像研究-研究2将曲妥珠单抗(2mg)在ph9.0的硼酸盐缓冲液(0.5m,355μl)中稀释,加入dfosq在dmso(1mg/ml,45μl,5eq)中的溶液。将混合物在环境温度下孵育40小时,并使用50kdaamicon旋转过滤器纯化,用盐水配制的4%dmso(3×300μl)洗涤,然后单用盐水洗涤(300ul)。纯化的缀合物的esims分析显示0-5个螯合剂附着物,平均2个螯合剂/mab。立即使用纯化的dfosq-曲妥珠单抗溶液进行放射性标记。89zr放射性标记dfosq-曲妥珠单抗将89zr在1m草酸(150mbq,112μl)中的溶液用milliq水(250μl)稀释,分小部分加入少量na2co3水溶液(2m,32.5μl)直到ph增加至7。加入hepes缓冲液0.5m,ph7,120μl),使溶液静置5分钟。加入0.9%nacl中的dfosq-曲妥珠单抗(56μl,675μg)。30分钟后,通过放射性-itlc(硅胶注入玻璃纤维板,0.1mph6柠檬酸缓冲液作为洗脱液,产物rf=0)确认反应完成。将反应混合物在pd-10尺寸排阻柱上进行纯化,使用ph7的杜尔贝科pbs(20mm,5%龙胆酸钠)作为洗脱液。柱装入后,弃去流过液,收集两个级分(级分a:0.5ml,级分b:1.0ml,90.2mbq)。通过se-hplc(biosuite125,5μmhrsec7.8×300mm柱,20mmph7含5%iproh的杜尔贝科pbs作为洗脱剂,产物保留时间~12.5min)分析级分b。89zr-dfosq-曲妥珠单抗:小鼠pet成像(bt474)从纯化的mab溶液中提取四个剂量(每个7.5mbq)并施用于具有bt474肿瘤的nod/scid小鼠。在24,48和96小时进行pet成像。在96小时获取小鼠的生物分布数据。表2.使用89zr-dfosq-曲妥珠单抗的bt474荷瘤小鼠的肿瘤最大标准摄取值(suv)小鼠id#3小鼠id#5小鼠id#6小鼠id#724h8.711.412.29.548h11.614.412.911.096h10.811.59.99.1在skov3或ls174t荷瘤小鼠中89zrdfosq-赫赛汀的合成、分析和成像研究dfosq与曲妥珠单抗的缀合将曲妥珠单抗(10mg)稀释在ph9.0的硼酸盐缓冲液(0.5m,1.5ml)中,加入dfosq在dmso(2mg/ml,455μl,16eq)中的溶液。将混合物在环境温度下温育过夜,并使用50kdaamicon旋转过滤器纯化,用盐水配制的4%dmso(2×300μl)洗涤,然后仅用盐水洗涤(300ul)。纯化的缀合物的esims分析表明1-6个螯合剂附着物,平均3.4个螯合剂/mab。纯化的dfosq-曲妥珠单抗溶液在放射性标记之前在4℃下储存8-9天。89zr放射性标记dfosq-曲妥珠单抗将89zr在1m草酸(150mbq,195μl)中的溶液用milliq水(350μl)稀释,分小部分加入na2co3水溶液(2m,65μl)直到ph增加至8。加入hepes缓冲液0.5m,ph7,200μl),使溶液静置5分钟。加入0.9%nacl中的dfosq-曲妥珠单抗(8μl,675μg)。1小时后,通过放射性-itlc(硅胶注入玻璃纤维板,0.1mph6柠檬酸缓冲液作为洗脱剂,产物rf=0)确认反应完成。将反应混合物在pd-10尺寸排阻柱上纯化,使用ph7的杜尔贝科pbs(20mm,含5%龙胆酸钠)作为洗脱液。柱装入后,弃去流过液,收集第一级分(1.0ml,54mbq)。通过sehplc(biosuite125,5μmhrsec7.8×300mm柱,20mmph7含5%iproh的杜尔贝科pbs作为洗脱液,产物保留时间~12.5min)分析产物。将89zr在1m草酸(145mbq,195μl)中的溶液用milliq水(400μl)稀释,分小部分加入na2co3水溶液(2m,75μl)直到ph增加至10。加入hepes缓冲液(0.5m,ph7,250μl),使溶液静置5分钟。加入0.9%nacl中的dfosq-曲妥珠单抗(8μl,675μg)。1.5小时后,通过放射性-itlc(硅胶注入玻璃纤维板,0.1mph6柠檬酸缓冲液作为洗脱液,产物rf=0)确认反应完成。将反应混合物在pd-10尺寸排阻柱上纯化,使用ph7的杜尔贝科pbs(20mm,5%龙胆酸钠)作为洗脱液。柱装入后,弃去1ml流过液,收集第一级分(1.0ml,47mbq)。通过sehplc(biosuite125,5μmhrsec7.8×300mm柱,20mmph7含5%iproh的dulbecco'spbs作为洗脱液,产物保留时间~12.5min)分析产物。推测在11分钟的信号是由于在放射性标记之前的储存期间的搅动导致的抗体聚集。89zr-dfosq-曲妥珠单抗:小鼠pet成像(skov3)从纯化的mab溶液中提取三个剂量(每个7.5mbq),并给予带有skov3肿瘤的nod/scid小鼠。在24,48和96小时进行pet成像。在96小时获取小鼠生物分布数据。表3.使用89zr-dfosq-曲妥珠单抗的skov3荷瘤小鼠的肿瘤标准摄取值(suv)小鼠1小鼠2小鼠424h5.276.324.6848h6.787.375.8096h4.877.594.97表4.使用89zr-dfosq-曲妥珠单抗的skov3小鼠的生物分布数据。数值以%id/g给出。器官小鼠id#1小鼠id#2小鼠id#4平均值sdsem血液1.101.780.471.120.650.33肺4.173.301.963.141.110.56心脏1.321.676.383.122.831.41肝脏9.2611.029.609.960.940.47肾脏3.534.073.143.580.470.23肌肉0.550.570.340.490.130.06脾脏77.40106.48118.20100.6921.0010.50肿瘤15.8118.2612.3715.482.961.4889zr-dfosq-曲妥珠单抗:小鼠pet成像(ls174t)从纯化的mab溶液中提取三个剂量(每个7.5mbq),并给予带有ls174t肿瘤的balb/c裸鼠。在24,48和96小时进行pet成像。在96小时获取小鼠生物分布数据。表5.使用89zr-dfosq-曲妥珠单抗的ls174t荷瘤小鼠的肿瘤标准摄取值小鼠5小鼠6小鼠724h3.103.323.0748h3.703.734.0496h4.725.325.65表6.使用89zr-dfosq-曲妥珠单抗的ls174t小鼠的生物分布数据。数值以%id/g给出。器官小鼠id#5小鼠id#6小鼠id#7血液12.8212.2411.4912.180.660.38肺7.997.047.387.470.480.28心脏4.854.414.614.620.220.13肝脏6.377.884.586.281.650.95肾脏6.248.786.067.031.520.88肌肉1.341.371.231.310.080.04脾脏17.895.536.509.976.883.97肿瘤13.1112.4713.6713.080.600.35在skov3肿瘤小鼠中89zrdfo-ph-ncs-赫赛汀的合成,分析和成像研究dfophncs的合成将去铁胺(203mg,0.309mmol)在iproh/h2o(32:3ml)中搅拌,加入ph(ncs)2(271mg,1.41mmol)的chcl3溶液(20ml)溶液。立即加入三乙胺(100μl,0.717mmol),将反应混合物在环境温度下搅拌1.5小时。加入hcl(0.1m,25ml),分离有机层。蒸发溶剂,得到米色固体,将其用ch2cl2研磨。滤出剩余的固体并干燥,得到白色粉末的dfophncs(207mg,89%)。esims[m+h]+:753.34,计算值(c33h53n8o8s2)+:753.34。分析型hplc:方法a,保留时间8.95分钟。1hnmr(500mhz,dmso)δ7.98(s,1h),7.78(s,2h),7.57(d,j=8.8hz,2h),7.36(d,j=8.9hz,2h),3.52–3.39(m,j=13.9,7.0hz,8h),3.00(dd,j=12.7,6.5hz,4h),2.61–2.54(m,j=3.9hz,4h),2.31–2.24(m,j=10.4,5.4hz,4h),1.96(s,3h),1.59–1.45(m,j=22.1,14.6,7.3hz,8h),1.42–1.33(m,4h),1.30–1.16(m,j=18.8,15.3,7.1hz,8h).将dfophncs与曲妥珠单抗缀合程序直接按照vosjan,m.j.w.d.;perk,l.r.;visser,g.w.m.;budde,m.;jurek,p.;kiefer,g.e.;vandongen,g.a.m.s.,nat.protocols2010,5(4),739-743.将曲妥珠单抗(3.03mg)稀释在盐水(1ml)中,并用0.1mna2co3将溶液调节至ph9。在持续温和摇动下,分部分将dmso中的三倍过量的dfophncs(2.3mg/ml,20μl)加入到mab溶液中。将混合物在37℃,550rpm下孵育30分钟,并在pd-10柱上使用龙胆酸(5mg/ml)/乙酸钠(0.25m)缓冲液(ph5.5)作为洗脱液进行纯化。将纯化的dfophncs-mab溶液在放射性标记之前在-20℃下储存5天。缀合物的esims分析表明0-1个螯合剂附着物,平均0.2个螯合剂/mab。89zr放射性标记dfophncs-曲妥珠单抗程序直接按照vosjan,m.j.w.d.等(如上)。将na2co3(2m,90μl)加入到89zr(200μl,55mbq)在草酸(1m)中的溶液中。将混合物在环境温度下温和摇动3分钟。然后加入hepes缓冲液(0.5m,ph7.2,300μl),然后加入dfophncs-曲妥珠单抗溶液(710μl),然后加入hepes缓冲液(0.5m,ph7.0,700μl)。将反应混合物在环境温度下温和振荡温和。在各种时间点进行itlc分析(20mm柠檬酸,ph5作为洗脱剂)以监测放射性标记进展(1小时:30%标记,1.5小时:53%标记,2小时:%标记)。反应2小时后,使用用新鲜的乙酸钠(0.25m)/龙胆酸(5mg/ml)缓冲液(ph5-6)调节的pd-10柱纯化混合物。通过itlc和sec-hplc分析纯化的89zr-dfophncs-曲妥珠单抗(1ml,21.8mbq)。89zr-dfophncs-曲妥珠单抗:小鼠pet成像skov3从纯化的mab溶液中提取三个剂量(每个3.5mbq),并给予带有skov3肿瘤的nod/scid小鼠。在24,48和96小时进行pet成像。在96小时获取小鼠生物分布数据。表7.使用89zr-dfophncs-曲妥珠单抗的skov3小鼠的生物分布数据竞争研究1dfo-crgdfk衍生物的合成使用碳酸钠溶液将crgdfk(100ul,2mg,2μmol)的水溶液增加至ph9。dfosq在dmso(100ul,2当量)中在ph9硼酸盐缓冲液(0.5m,100μl)中的溶液。将反应混合物在室温下静置过夜,然后通过半制备型hplc(protecolc18柱,h2o/mecn,0.1%tfa)纯化,并冷冻干燥,得到dfosq-crgdfk,为白色固体。使用相同的方法由dfo-ph-ncs制备dfophncs-crgdfk,然而由于沉淀,将其在纯化之前离心,并且仅纯化可溶性物质。每个dfo-crgdfk衍生物的水溶液以相等的浓度制备,并且使用uv-vis光谱法(425nm)通过fe3+滴定证实。竞争实验将89zr(2ul,~2mbq)在1m草酸中的溶液用h2o(50ul)稀释,并用2mna2co3(1ul)中和,然后用ph7.4的hepes缓冲液(5ul)缓冲。然后将少量缓冲的zr溶液(5ul)加入到每个dfo-crgdfk溶液(各50μl)中。20分钟后,通过放射性-itlc确认反应完成。每个样品经hplc(phenomenexluna色谱柱)作为标准。dfophncs-crgdfk配体在20.1分钟洗脱,zr络合物在18.5分钟洗脱(图39)dfosq-crgdfk配体在18.0分钟洗脱,zr复合物在15.5分钟洗脱(图40)。dfosq-crgdfk配体溶液中未知的杂质也在18.0分钟时洗脱,但是这并不结合zr。制备相同浓度的两种配体的溶液(各40μl)并充分混合,并加入5μl缓冲的zr溶液。45分钟后通过hplc分析反应混合物,表明仅形成了zrdfosq-crgdfk复合物(图41)。竞争研究2dfo-so3h衍生物的合成:dfosqtaur向牛磺酸(18mg,0.14mmol)的h2o溶液中加入少量三乙胺(5滴)。将dfosq(100mg,0.15mmol)溶于dmso中并加入到牛磺酸溶液中,将反应混合物在环境温度下搅拌过夜。将溶剂蒸发并将粗物质温和加热溶解在h2o中,通过离心除去任何未反应的dfosq。蒸发溶剂,得到白色粉末。图42和43显示了dfosqtaur的1hnmr和esi-ms光谱。dfo-so3h衍生物的合成:dfophso3h将少量三乙胺(5滴)加入到异硫氰酸4-磺基苯基钠盐一水合物(38mg,0.15mmol)在meoh中的溶液中。将dfo甲磺酸盐(100mg,0.15mmol)加入到溶液中,并加入h2o(1ml)以改善溶解度。将反应混合物在环境温度下搅拌过夜。通过蒸发除去溶剂,并将粗白色粉末在40℃用meoh彻底洗涤,得到产物,为白色粉末。图44和45显示了dfophso3h的1hnmr和esi-ms光谱。竞争性实验在h2o和meoh的混合物中制备每种配体dfophso3h和dfosqtaur的3mm储备溶液(在h2o中作uv-visfe3+滴定,430nm,从而在稀释之前确认浓度)。将两种溶液(各25μl)的混合物充分混合并加热至50℃。还制备了zrcl4(thf)2在h2o/meoh(3mm)中的储备溶液,并将20ul加入到配体混合物中。将混合物在50℃温育7小时。混合物在7小时的esi-ms分析(图46)表明存在zrdfosqtaur络合物(图46),[m]+m/z(calc)=850.22。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1