医用管以及用于制造其的组合物和方法与流程

文档序号:20115448发布日期:2020-03-17 19:48阅读:198来源:国知局

相关申请

本申请要求美国临时申请no.62/729058的优先权,其申请日为2018年9月10日,其全部公开内容出于所有目的通过引用并入本文。

本发明涉及医用管以及用于制造其的组合物和方法。



背景技术:

氢化的苯乙烯嵌段共聚物已广泛作为硫化橡胶或氯乙烯单体基树脂的替代材料,用于生产各种模塑制品,其中包括医疗制品。聚烯烃基树脂与氢化的苯乙烯嵌段共聚物配合,以提供聚合物组合物,该聚合物组合物在诸如食品接触、家用电器和医用管等应用中也被作为氯乙烯单体基树脂的更有效替代品。医用管应用(其中管与血液直接接触)有严格的法规限制,因为其必须按照药典协议通过可提取和可浸出的物质测试。

一直需要更高质量的医用管及其聚合物组合物,其不仅解决上述缺点,而且还具有其它所需的特性,例如良好的透明度、柔韧性和机械性能。

发明概述

本发明一方面涉及医用管,其包含式a-b-a、(a-b-a)nx、(a-b)nx或其混合物的氢化的苯乙烯嵌段共聚物,其中n为2-30的整数,x为用于具有x的苯乙烯嵌段共聚物的偶联剂的残基。在氢化之前,每个a嵌段为真峰分子量为5-15kg/mol的单烯基芳烃均聚物嵌段,每个b嵌段的真峰分子量为30-200kg/mol。b嵌段为至少一种共轭二烯和至少一种单烯基芳烃的受控分布的共聚物嵌段。具有x的苯乙烯嵌段共聚物的偶联效率为30-95%。中间嵌段单烯基芳烃嵌段指数为3-15%,其中所述单烯基芳烃嵌段指数为在聚合物链上具有两个邻位单烯基芳烃的嵌段b中单烯基芳烃单元的比例。在氢化之后,0-10%的芳烃双键被还原,至少90%的共轭二烯双键被还原,且氢化的苯乙烯嵌段共聚物的中间嵌段聚(单烯基芳烃)含量按中间嵌段的总重量计为35-70wt%。氢化的苯乙烯嵌段共聚物的熔体流动比为1.0-10.0,根据astmd-1238在230℃和2.16kg载荷下测定;肖氏a硬度为60-80,根据astmd-2240测定;在1hz下的dma峰tanδ温度为0-40℃,根据astmd-4065测定;和有序-无序转变温度为200-300℃。

本发明另一方面涉及医用管,其基本上由上述氢化的苯乙烯嵌段共聚物组成。

本发明又一方面涉及医用管,其基本上由式a-b-a、(a-b-a)nx、(a-b)nx或其混合物的氢化的苯乙烯嵌段共聚物组成,其中n为2-30的整数,x为用于具有x的苯乙烯嵌段共聚物的偶联剂的残基。在氢化之前,每个a嵌段为真峰分子量为5-15kg/mol的苯乙烯均聚物嵌段,每个b嵌段的真峰分子量为30-50kg/mol。b嵌段为苯乙烯和至少一种选自1,3-丁二烯、异戊二烯及其混合物的共轭二烯的受控分布的共聚物嵌段。具有x的苯乙烯嵌段共聚物的偶联效率为80-95%。中间嵌段单烯基芳烃嵌段指数为3-15%,其中所述单烯基芳烃嵌段指数为在聚合物链上具有两个邻位单烯基芳烃的嵌段b中单烯基芳烃单元的比例。在氢化之后,0-10%的芳烃双键被还原,至少90%的共轭二烯双键被还原,氢化的苯乙烯嵌段共聚物的中间嵌段聚(单烯基芳烃)含量按中间嵌段的总重量计为35-50wt%。氢化的苯乙烯嵌段共聚物的熔体流动比为1.0-10.0,根据astmd-1238在230℃和2.16kg载荷下测定;肖氏a硬度为60-80,根据astmd-2240测定;在1hz下的dma峰tanδ温度为0-40℃,根据astmd-4065测定;和有序-无序转变温度为200-300℃。

以下术语用于说明书并具有以下含义:

“表观扭结直径”为当柔性管弯曲到管开始扭结的点时柔性管的半圆形部分的直径。

“中间嵌段苯乙烯嵌段度”是指在聚合物链上具有两个苯乙烯单元作为最近邻位的聚合物的中间嵌段中苯乙烯单元的比例。苯乙烯嵌段度可通过1hnmr光谱法使用美国专利no.7244785b2中描述的方法测定。

“受控分布”是指具有以下属性的分子结构:(1)与富含(即,具有大于平均量的)共轭二烯单元的单烯基芳烃均聚物(“a”)嵌段相邻的末端区域;(2)与富含(即,具有大于平均量的)单烯基芳烃单元的a链嵌段不相邻的一个或多个区域;且(3)具有较低嵌段度的整体结构。术语“富含”定义为大于平均量,优选大于平均量的5%。

“不含聚烯烃”是指没有故意添加聚烯烃。在一个实施方案中,该术语是指存在小于0.5wt%的聚烯烃。

本发明提供了一种包含氢化的苯乙烯嵌段共聚物的医用管,其透明度高、抗扭结性良好且具有其他物理性能的合适组合。在另一实施方案中,本发明提供了一种医用管,其基本上由苯乙烯嵌段共聚物组成,例如,不添加聚烯烃。氢化的sbc可用于制造医用管。

氢化的苯乙烯嵌段共聚物(sbc)组分:氢化的sbc的结构为aba、(aba)nx、(ab)nx或其混合物,其中n为2-30的整数,x为用于具有x的苯乙烯嵌段共聚物的偶联剂的残基。在氢化之前,a嵌段为真峰分子量优选为5-15kg/mol的单烯基芳烃均聚物嵌段;每个b嵌段为至少一种共轭二烯和至少一种单烯基芳烃的受控分布的共聚物嵌段,且其真峰分子量为30-200kg/mol。此外,中间嵌段单烯基芳烃嵌段指数优选为5-10%。在氢化之后,氢化的sbc中的中间嵌段聚(单烯基芳烃)的含量按中间嵌段的总重量计为35-50%。在一些实施方案中,偶联效率为30-95%。

在一些实施方案中,a嵌段的真峰分子量为5-15kg/mol。在一些实施方案中,b嵌段的真峰分子量为30-200kg/mol,或30-150kg/mol,或80-150kg/mol。在一个实施方案中,中间嵌段单烯基芳烃嵌段指数为3-15%。在其他实施方案中,氢化的sbc的中间嵌段聚(单烯基芳烃)含量为35-65wt%,40-65wt%,或40-60wt%。在一些实施方案中,在氢化之前,sbc的中间嵌段乙烯基含量为30-90mol%,50-70mol%,或30-40mol%,或35-40mol%。在一些实施方案中,氢化的sbc的总分子量为60-200kg/mol,或80-120kg/mol。在其他实施方案中,氢化后的总嵌段共聚物的总聚(单烯基芳烃)含量为40-80wt%,或50-70wt%,或60-70wt%。

可通过本领域已知的方法制备氢化的sbc。其通常通过使所述一种或多种单体与有机碱金属化合物在合适的溶剂中在-150℃-300℃的温度下、优选0℃-100℃的温度下接触来制备。嵌段共聚物链中存在的侧接乙烯基和链内双键的氢化在使至少90mol%、至少95mol%或至少98mol%的乙烯基还原和0-10mol%的芳烃双键还原的条件下进行。在氢化步骤中使用基于镍、钴或钛的合适催化剂。

适用于制备a和b嵌段的合适单烯基芳烃化合物包括具有8-20个碳原子的那些,且包括苯乙烯、邻甲基苯乙烯、对甲基苯乙烯、对叔丁基苯乙烯、2,4-二甲基苯乙烯、α-甲基苯乙烯、乙烯基萘、乙烯基甲苯和乙烯基二甲苯、或其混合物。在一个实施方案中,单烯基芳烃为苯乙烯。

合适的共轭二烯包括具有4-8个碳原子的那些,例如1,3-丁二烯、异戊二烯、2,3-二甲基-1,3-丁二烯、1,3-戊二烯和1,3-己二烯。也可使用此类二烯的混合物。在一个实施方案中,共轭二烯为1,3-丁二烯。在另一个实施方案中,共轭二烯为1,3-丁二烯和异戊二烯的混合物。

任选的组分:具有氢化的sbc的聚合物组合物可通过进一步包括诸如以下的一种或多种任选的添加剂来制备:增粘树脂、无机填料、润滑剂、油、热稳定剂、光稳定剂、紫外线吸收剂、抗氧化剂、着色剂、抗静电剂、阻燃剂、疏水剂、防水剂、亲水性赋予剂、导电性赋予剂、热导电性赋予剂、电磁波屏蔽性赋予剂、半透明性调节剂、荧光剂、滑动性赋予剂、透明性赋予剂、防粘连剂、金属钝化剂和抗菌剂,只要其不会对预期用途产生不利影响即可。在一个实施方案中,所述聚合物组合物还可包括诊断剂,例如变色或发色添加剂,其可作为由所述组合物制成的制品的物理完整性的视觉指示剂。

在一个实施方案中,所述聚合物组合物可原样使用而不与另一种聚合物如聚烯烃共混。例如,聚丙烯可以少量共混,在一个实施方案中为至多0.5wt%,在另一实施方案中为至多5wt%,在又一实施方案中为至多10wt%。在另一实施方案中,所述聚合物组合物可与一种或多种其他聚合物共混,例如聚烯烃、聚有机硅氧烷、聚酯、聚氯乙烯、聚碳酸酯、聚酯碳酸酯、聚偏二氟乙烯等共混。聚烯烃的实例包括聚乙烯、聚丙烯和聚丁烯。在一些实施方案中,聚合物组合物可与至多50wt%或至多40wt%或至多30wt%或至多20wt%的聚烯烃共混。在一个实施方案中,聚烯烃为聚丙烯。

氢化的sbc的性能:在一些实施方案中,当根据astmd-1238在230℃和2.16kg载荷下测定时,氢化的sbc的熔体流动比为1.0-10.0、2.0-8.0、4.0-8.0或4.0-6.0。

在一些实施方案中,根据astmd-2240测定,氢化的sbc的肖氏a硬度为60-80,或60-70,或70-80。

在一些实施方案中,根据astmd-4065测定,氢化的sbc的dma峰tanδ温度为10-40℃,或10-20℃,或20-30℃,或30-40℃。

在一些实施方案中,氢化的sbc的有序-无序温度(odt)为200-300℃,或220-280℃,或240-260℃,或220-260℃,或至少180℃,或小于350℃。

在一些实施方案中,氢化的sbc的拉伸强度为10-30mpa,或10-20mpa,或7.5-15.0mpa。

氢化的sbc在宽的应用温度范围内具有相对稳定的硬度。在一些实施方案中,根据astm1640-99,在0-40℃的温度范围内测定,氢化的sbc的弹性模量变化率(δg0℃-40℃)为-9至-25mpa/℃,或-12至-22mpa/℃,或-15至-20mpa/℃。在另一实施方案中,所述聚合物组合物在20-40℃的范围内的弹性模量变化率(δg20℃-40℃)为-9至-25mpa/℃。

在一些实施方案中,氢化的sbc的伸长率为500-1000%。

氢化的sbc可具有两种或更多种落在上述各种范围内的性能的组合。在一些实施方案中,氢化的sbc的熔体流动比为1.0-10.0,根据astmd-1238在230℃和2.16kg载荷下测定;肖氏a硬度为60-80,根据astmd-2240测定;在1hz下的dma峰tanδ温度为10-40℃,根据astmd-4065测定;和有序-无序转变温度为200-300℃。在另一实施方案中,所述聚合物组合物的熔体流动比为4.0-8.0,肖氏a硬度为70-80,在1hz下的dma峰tanδ温度为15-30℃,和有序-无序转变温度为200-250℃。

组合物的用途:上述各种物理性能使得氢化的sbc对于制备各种制品是有价值的,所述制品例如具有高透明度和其它所需性能的医用管。除了医用管之外,氢化的sbc还可用于制造各种其他制品,特别是用于医疗领域的制品。因此,其可用于生产多腔管、多层管等。医用管也可为医疗领域中使用的其他制品例如iv袋和导管的一部分,例如用于输注、输血、腹膜透析和导管介入的那些,例如血管内导管和球囊导管。其他医疗制品包括血袋、合成血管假体、血管回路、注射器、血液透析器、血细胞分离器、体外膜氧合、敷料材料和与体液(特别是血液)接触的医疗装置。

用于制造制品的组合物可通过使用诸如亨舍尔混合机、v型混合机、带式混合机、单螺杆或双螺杆挤出机、捏合机等装置混合如上所述的各组分来制备。可将所得树脂组合物造粒。所述管可通过本领域已知的方法制备。例如,将树脂组合物送入挤出机中、熔融并强制通过模头以形成管形状,并用水或空气冷却。对由树脂组合物制备的管的尺寸、形状或横截面尺寸没有特别限制。在一些实施方案中,所述管的外径为1-60mm或1-20mm或1-10mm。所述管的内径为1-50mm或1-25mm或1-10mm。在一些实施方案中,所述管的厚度为0.1-20mm或0.5-10mm或1-5mm。

医用管应用:在一些实施方案中,由所述混合物制成的医用管显示出x射线衍射图谱,其14°的散射角(2θ)处的峰强度[i(14)]与15°的散射角(2θ)处的衍射峰强度[i(15)]的比率i(14)/i(15)为1.4或更大。i(14)/i(15)比率给出了医用管中存在的结晶聚丙烯的量的量度。

在一些实施方案中,使用氢化的sbc制备的医用管显示出低表面粘性。聚合物表面的粘性是由于所述聚合物组合物的性质导致的。当医用管的外表面彼此接触时,由于较低的表面粘性,其粘性降低。这使得此类管的使用更容易。表面粘性可根据expresspolymerletters,vol5,no.11(2011),1009-1016中描述的工序,通过“粘性系数”测定。在一些实施方案中,所述医用管的粘性系数为0.45-0.65,在25℃和50%的相对湿度下测定。

在一些实施方案中,由其制成的医用管具有抗扭结性,即,其可明显弯曲而不会扭结。扭结性能以“表观扭结直径”来测定。在一些实施方案中,内径和外径分别为5mm和7mm的医用管的表观扭结直径为30-40mm。在另一个实施方案中,内径和外径分别为3mm和4mm的医用管的表观扭结直径为20-30mm。在又一个实施方案中,医用管的表观扭结直径与管内径之比为6-10、7-9、8-9或9-10。在又一个实施方案中,所述医用管的表观扭结直径与管外径之比为4-8、5-7、6-7、7-8或9-10。在另一个实施方案中,所述医用管的表观扭结直径与管壁厚度之比为15-30、15-20、20-25或25-30。

医用管具有良好的光学透明度,这使得容易看到液位和流体流动。在一个实施方案中,使用astmd1003测定,医用管的雾度为小于5%、小于4%或小于3%。由于所述管的透明度高,因此可在视觉上检测由于聚合物降解导致的管壁的模糊或混浊。

也可使用一系列溶剂使采用氢化的sbc制成的医用管与其他塑料材料牢固地结合。在医疗应用中,塑料连接器由多种材料制成,例如聚烯烃、聚酯、聚碳酸酯、聚氯乙烯、聚醚酮、abs、聚苯乙烯、聚酰胺、聚酰亚胺、聚甲醛、聚丙烯酸酯、聚氨酯或聚砜。使用诸如四氢呋喃、环己酮、甲基乙基酮等溶剂的溶剂结合将连接器与医用管粘接。如果医用管与连接器的结合强度不强,则连接可能松开,导致流体泄漏。通过确定将医用管与连接器分开的剥离强度来测定所述粘接的结合强度。在一些实施方案中,由上述氢化的sbc制成的医用管需要15-100n或至少30n或至少50n或至少75n或小于125n的剥离力,以将溶剂浸没的医用管与塑料连接器分开。

上述医用管在盘绕或弯曲时回弹倾向低。所述性能使储存一卷医用管更加容易。

实施例

以下说明性实施例是非限制性的。

根据astm5296-11,使用聚苯乙烯校准标准物,通过凝胶渗透色谱法(gpc)测定聚合物分子量。将聚合物样品溶解于thf中,并使用ri和uv检测器在合适的柱组上运行。然后使用对于总的聚苯乙烯含量的gpc转换因子,将获得的分子量值转换为真实分子量。通过gpc由苯乙烯-二烯二嵌段相对于较高分子量偶联的峰的峰积分比确定偶联效率。

质子nmr方法用于测定总聚苯乙烯含量(psc)、乙烯基含量和苯乙烯嵌段指数。使用美国专利no.7244785b2中描述的方法测定苯乙烯嵌段指数。

使用tainstrumentsdmaq800通过动态机械分析测定所有聚合物样品的玻璃化转变温度(tg)。温度扫描实验在-80℃-120℃下进行,其中获得储能模量(g')、损耗模量(g”)和损耗因子(tanδ)作为温度的函数。所有实验均在1hz频率下进行。玻璃化转变温度报告为tanδ峰值处的温度。

确定odt(有序无序转变)流变学的测试在malverninstruments的bohlin流变仪上进行。在0.005hz和0.2hz的两个频率下进行温度扫描实验,其中测定复合粘度。odt被报告为其中在两个频率下聚合物的复合粘度相同的温度。

使用instron方法对管进行抗扭结性测试。最初将管弯曲并置于相距100mm的两个夹头之间。然后通过十字头的向下运动使管弯曲。当管扭结时,测定十字头之间的距离(xmm)。然后,表观扭结直径通过(100-x)mm给出。

使用微型d模头狗骨样品,根据astmd412的拉伸测试方法测定机械性能。测试在装有1kn称重传感器的instron3366上进行。样品的标距长度为25.4mm,并且以254mm/min的拉伸速率进行测试。

使用自动硬度测试仪测定所有样品的肖氏a硬度。堆叠三片厚度为2mm的相同配合物,并在四个角和中心处测定硬度。在硬度计尖端与材料接触后10秒钟记录硬度。报告的值为五个测定的硬度值的平均值。

实施例1-4:制备表1中所示的氢化的苯乙烯嵌段共聚物。“s”为苯乙烯,“bd”为丁二烯。分子式中的数字表示s和bd嵌段的分子量。结果示于表1和2中。mfr为根据astmd-1238在230℃和2.16kg下测定的熔体流动速率。kd/id为管的扭结直径与管内径之比,id为3mm,od为4mm。用dma在1hz下测定tg值。nm表示未测定。

对比例1为总分子量为187kg/mol的氢化的苯乙烯嵌段共聚物,苯乙烯嵌段的真峰分子量为13.5,含有30.5wt%的1,2-丁二烯,总聚苯乙烯含量为67wt%,总嵌段度为34.2,odt为260-270℃,偶联效率为93%,tg(dma,1hz)为23.4℃,mfr为4.7dg/min(230℃/2.16kg),肖氏a硬度(10秒)为70。

表1.制备的氢化的苯乙烯嵌段共聚物,“na”表示未知

表2.氢化嵌段共聚物的性能

从表2可以看出,与实施例1、2、3相比,竞争性材料的δg0-40℃的绝对值更高。这表明,与竞争性聚合物相比,实施例1、2、3的聚合物的硬度随着温度在0-40℃范围内变化将更稳定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1