一种两性离子水凝胶及其制备方法和应用

文档序号:31332933发布日期:2022-08-31 07:38阅读:81来源:国知局
一种两性离子水凝胶及其制备方法和应用

1.本发明涉及高分子功能材料领域,尤其涉及一种两性离子水凝胶及其制备方法和应用。


背景技术:

2.骨关节炎(oa)是一种由年龄增长、意外创伤等潜在因素导致的慢性疾病。在病变部位,关节软骨基质之间降解,表层软骨润滑的功能逐渐丧失,从而使得运动过程中带来的软骨磨损加剧,最终使得oa逐渐恶化。另外,与其他炎症反应类似,患有oa的病人的关节液的ph降低且伴有大量的ros产生,这两个因素也会不利于软骨的修复,因此,设计一种多功能材料来应对复杂的关节环境并实现oa治疗具有重要科学意义。
3.水凝胶材料是一种较为理想的用于模拟细胞外基质的材料。目前,聚阴离子水凝胶与聚两性离子水凝胶是两种常用于关节润滑的材料,这两种材料除了关节润滑与抗污性能外,尚不具备其他功能。


技术实现要素:

4.本发明的目的在于解决现有技术中存在的水凝胶材料功能较为单一,对骨关节炎的治疗效果较差的问题,提供一种两性离子水凝胶及其制备方法和应用。
5.为解决上述技术问题,本发明采用的技术方案如下:一种两性离子水凝胶的制备方法,包括以下步骤:
6.s1、配置卵磷脂包裹的碳酸钙纳米粒子(caco3@lip)和甲基丙烯酰缩水甘油醚改性透明质酸(ha-gma)的混合溶液a;
7.s2、配置两性离子单体、光引发剂和交联剂的混合溶液b;
8.s3、将s1中的混合溶液a和s2中的混合溶液b等体积混合并超声,制得预溶液,预溶液于紫外光下照5分钟后制备得到两性离子水凝胶。
9.优选地,所述s1的混合溶液a中caco3@lip的浓度为1~20wt%;所述ha-gma的浓度为2wt%。
10.优选地,所述s1中caco3@lip的制备方法为:将caco3纳米粒子悬浮于卵磷脂溶液中,所述卵凝脂溶液浓度为5~20mg/ml;室温搅拌24小时,通过离心、洗涤、干燥得到卵磷脂包裹的碳酸钙纳米粒子。
11.优选地,所述s1中ha-gma的制备方法为:将0.5005g透明质酸溶解于40ml去离子水中,然后加入140μl三乙胺,最后逐渐滴加1.6~6.4ml甲基丙烯酰缩水甘油醚(gma),充分混合后室温条件下继续反应24h,待反应结束后分别在1m的nacl溶液和超纯水中透析12h;冻干后得到白色絮状产物,即为ha-gma。
12.优选地,所述所述s2的混合溶液b中两性离子单体的浓度为2~6m;所述交联剂的浓度为两性离子单体浓度的1~5mol%;所述光引发剂的浓度为1wt%。
13.进一步优选,所述s2中两性离子单体为羧酸甜菜碱甲基丙烯酸酯(cbma)、磺酸甜
菜碱甲基丙烯酸酯(sbma)或者磷酸胆碱甲基丙烯酸酯(mpc)中的一种。
14.进一步优选,所述s2中交联剂由pegda
600
和甲基丙烯酰磺化木质素(mligs)组成,所述pegda
600
和mligs的摩尔比为2~1:1~2。
15.进一步优选,所述甲基丙烯酰磺化木质素(mligs)的制备方法为:称取0.35g磺化木质素,将其溶解于6ml超纯水中,然后加入10μl三乙胺,加热到70℃并维持温度,再逐滴加入0.5~4ml甲基丙烯酸酐并搅拌18h;待反应结束后,降至室温,然后倒入过量冰乙醇中沉淀3次;真空干燥后获得棕色产物,即为mligs。
16.本发明同时提供上述制备方法制备得到的两性离子水凝胶及其在骨关节炎治疗中的应用。
17.本发明所具有的有益效果:
18.一)本发明在两性离子水凝胶中引入卵磷脂包裹的碳酸钙纳米粒子(caco3@lip),既通过碳酸钙的分解调节关节腔内的酸性环境,又通过卵磷脂补充水凝胶的润滑性能,提供持续性润滑性能;同时通过引入双键改性的磺化木质素(mligs)作为交联剂,赋予水凝胶活性氧清除性能;通过引入甲基丙烯酸缩水甘油醚改性的透明质酸,进一步提高水凝胶的锁水能力以及抗炎效果;因此本发明中的两性离子水凝胶能显著提高骨关节炎的治疗效果;
19.二)本发明中的制备方法简单,反应条件温和,无需特殊设备,适于工业化生产。
附图说明
20.图1为实施例1中caco3纳米离子和caco3@lip纳米离子的动态光散射(dls)和扫描电镜(sem)图;
21.图2为实施例1中caco3纳米离子和caco3@lip纳米离子的原子力显微镜图(afm);
22.图3为实施例1中合成甲基丙烯酰磺化木质素(mligs)的化学反应过程图;
23.图4为实施例1中mligs核磁共振氢谱;
24.图5为实施例1中mligs红外吸收光谱;
25.图6为实施例1中合成甲基丙烯酰缩水甘油醚改性透明质酸(ha-gma)的化学反应过程图;
26.图7为实施例1中ha-gma核磁共振氢谱;
27.图8为实施例1中ha-gma红外谱图;
28.图9为实施例1中制备得到的聚磺酸甜菜碱-透明质酸水凝胶外观图;
29.图10为实施例4中两性离子水凝胶的酸响应性能检测结果图;
30.图11为实施例5中两性离子水凝胶的润滑性能检测结果图;
31.图12为实施例6中两性离子水凝胶的压缩力学性能检测结果图。
具体实施方式
32.下面结合附图和具体实施例对本发明作进一步的说明。
33.实施例1制备聚磺酸甜菜碱-透明质酸水凝胶
34.本实施例制备了聚磺酸甜菜碱-透明质酸水凝胶,本实施例中使用的两性离子单体为磺酸甜菜碱甲基丙烯酸酯(sbma)。
35.(1)制备卵磷脂包裹碳酸钙纳米粒子(caco3@lip)
36.将1100.2mg氯化钙(cacl2)溶解于100ml tris-hcl缓冲液中,记录为溶液a。将819.1mg氯化钠与106.2mg碳酸钠(na2co3)一起溶解于100ml hepes缓冲液中,记录为溶液b。将溶液a与溶液b等体积混合,在冰水浴中缓慢搅拌过夜,然后通过离心、洗涤、干燥得到caco3纳米粒子。将得到的caco3纳米粒子悬浮于5mg/ml的卵磷脂溶液中,室温搅拌24小时,通过离心、洗涤、干燥得到caco3@lip纳米粒子。
37.caco3纳米粒子和caco3@lip纳米离子的动态光散射(dls)和扫描电镜(sem)图如附图1所示;caco3纳米粒子和caco3@lip纳米离子的原子力显微镜图(afm)如附图2所示。附图1-2显示,本实施例所制备的caco3纳米粒子为纳米尺度的球形粒子,其被卵磷脂包裹后,所得的caco3@lip纳米离子的形貌仍为球形粒子,仅粒子尺寸增加。
38.(2)合成甲基丙烯酰磺化木质素(mligs)
39.准确称取0.35g磺化木质素,将其溶解于6ml超纯水中,然后加入10μl三乙胺,将溶液加热到70℃。逐滴加入0.5ml的甲基丙烯酸酐(maa)后继续高温搅拌18h。待反应结束后,将反应体系降至室温,然后倒入过量冰乙醇中沉淀3次。真空干燥后获得棕色产物,即为mligs。
40.化学反应过程如附图3所示;mligs核磁共振氢谱和红外吸收光谱分别如附图4、附图5所示。核磁谱图中双键的化学位移以及红外谱图中的双键的特征吸收峰都说明甲基丙烯酰磺化木质素的制备成功。
41.(3)合成甲基丙烯酰缩水甘油醚改性透明质酸(ha-gma)
42.本实施例中用于改性的透明质酸的分子量为400-1,000kda。将0.5005g透明质酸溶解于40ml去离子水中,然后加入140μl三乙胺,最后逐渐滴加1.6ml的甲基丙烯酰缩水甘油醚(gma),充分混合后室温条件下继续反应24h。待反应结束后将粗产物进行透析(mwco 7,000),分别在浓度为1m的nacl溶液和超纯水中透析12h;冻干后可得到白色絮状产物,即为ha-gma。
43.化学反应过程如附图6所示;ha-gma核磁共振氢谱和红外吸收光谱分别如附图7和附图8所示。核磁谱图中双键的化学位移以及红外谱图中的双键的特征吸收峰都说明成功合成甲基丙烯酰缩水甘油醚改性透明质酸(ha-gma)。
44.(4)制备聚磺酸甜菜碱-透明质酸水凝胶
45.以水为溶剂配置卵磷脂包裹的碳酸钙纳米粒子(caco3@lip)和甲基丙烯酰缩水甘油醚改性透明质酸(ha-gma)的混合溶液a(caco3@lip的浓度为1wt%,ha-gma的浓度为2wt%);以水为溶剂配置两性离子单体、光引发剂和交联剂的混合溶液b(混合溶液b的配置如表1所示);将混合溶液a和混合溶液b等体积混合并超声5分钟,制得预溶液;最后将预溶液倒入聚四氟乙烯模具,紫外光照5分钟后制备得到磺酸甜菜碱-透明质酸水凝胶。
46.本实施例制备得到的磺酸甜菜碱-透明质酸水凝胶的照片如附图9所示,sb代表sbma,ha代表ha-gma,ml代表mligs以及cl代表caco3@lip;引入两性离子单体或卵磷脂包裹碳酸钙纳米粒子后,水凝胶透明度有所改变,引入mligs后,制备得到的水凝胶为黄色。
47.表1混合溶液b配置表
[0048][0049]
实施例2制备聚羧酸甜菜碱-透明质酸水凝胶
[0050]
本实施例制备了聚羧酸甜菜碱-透明质酸水凝胶,本实施例中的两性离子单体为羧酸甜菜碱甲基丙烯酸酯(cbma)。
[0051]
本实施例与实施例1的制备方法的不同之处在于:步骤(1)中,caco3纳米粒子悬浮于10mg/ml的卵磷脂溶液中;步骤(2)中,加入2ml的甲基丙烯酸酐(maa);步骤(3)中,滴加3.2ml的甲基丙烯酰缩水甘油醚(gma);步骤(4)中,混合溶液a中caco3@lip的浓度为10wt%;混合溶液b的配置如表2所示。
[0052]
表2混合溶液b配置表
[0053][0054]
实施例3制备聚磷酸胆碱-透明质酸水凝胶
[0055]
本实施例制备了聚磷酸胆碱-透明质酸水凝胶,本实施例中的两性离子单体为磷酸胆碱甲基丙烯酸酯(mpc)。
[0056]
本实施例与实施例1的制备方法的不同之处在于:步骤(1)中,caco3纳米粒子悬浮于20mg/ml的卵磷脂溶液中;步骤(2)中,加入4ml的甲基丙烯酸酐(maa);步骤(3)中,滴加6.4ml的甲基丙烯酰缩水甘油醚(gma);步骤(4)中,混合溶液a中caco3@lip的浓度为20wt%;混合溶液b的配置如表3所示。
[0057]
表3混合溶液b配置表
[0058][0059]
实施例4通过ph计检测两性离子水凝胶的酸响应性能
[0060]
分别将质量为5mg,10mg和50mg的聚磺酸甜菜碱-透明质酸水凝胶(由实施例1制备)放置于pbs缓冲液(ph=5)中,于37℃浸泡不同时间后,用ph计测试溶液的ph。此外,在浸
泡过程中,检测溶液中气泡产生的数量变化,用于判断酸响应性能。试验结果如附图10所示,sb代表psbma,ha代表ha-gma,ml代表mligs以及cl代表caco3@lip;在引入卵磷脂包裹的碳酸钙的水凝胶中,水凝胶周围会出现大量气泡,说明碳酸钙在酸溶液中会发生分解,并且扩散到溶液中。
[0061]
实施例5两性离子水凝胶的润滑性能检测
[0062]
本实施例中,通过质构仪以及斜坡滑动试验检测水凝胶的润滑性能。
[0063]
质构仪测试摩擦系数的参数是:滑动速度分别是0.1mm/s,0.2mm/s,0.5mm/s和1mm/s;压力分别设置为0.1n,0.2n,0.5n和1n。润滑剂采用不同ph的pbs缓冲液。
[0064]
斜坡滑动试验的步骤是:将聚四氟乙烯模具倾斜一个高度并且固定,然后把充分水合的聚磺酸甜菜碱-透明质酸水凝胶(由实施例1制备)放置于模具上,通过相机观察水凝胶下滑情况。试验结果图附图11所示,sb代表sbma,ha代表ha-gma,ml代表mligs以及cl代表caco3@lip;在1s的时间点,sb-ha-ml-cl已经完全下滑至底部,体现更好地润滑性能。
[0065]
实施例6两性离子水凝胶的压缩力学性能检测
[0066]
本实施例中,通过万能力学试验机测试以实施例1中制备的聚磺酸甜菜碱-透明质酸水凝胶为检测对象进行压缩力学性能。其测试参数如下:样品为圆柱状样品,直径为10mm;高为8mm;压缩速度:0.2mm/s。试验结果如附图12所示,sb代表sbma,ha代表ha-gma,ml代表mligs以及cl代表caco3@lip;在引入mligs以及caco3@lip后,水凝胶的压缩模量和压缩强度都明显提高。
[0067]
本发明的说明书和附图被认为是说明性的而非限制性的,在本发明基础上,本领域技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中一些技术特征做出一些替换和变形,均在本发明的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1