一种检测毫摩尔游离钙离子的荧光探针及其合成方法

文档序号:31877594发布日期:2022-10-21 22:09阅读:37来源:国知局
1.本发明涉及金属离子荧光检测领域。更具体地,涉及一种检测毫摩尔游离钙离子的荧光探针及其合成方法。
背景技术
::2.钙离子在细胞的生命活动中起着重要作用,是机体各项生理活动不可缺少的重要离子,许多生理生化过程如心脏和肌肉的收缩舒张运动、物质代谢、细胞内信号的传递和神经细胞的兴奋等都必须有钙离子参与。健康人体血清中总钙离子含量在2.2-2.6mm范围内,其中,游离的钙离子浓度在1.1-1.3mm范围内。当血清中游离的钙离子浓度过高或过低时,会显著影响正常的生命活动。人体细胞外的游离钙离子在细胞间的信号传递及细胞的生理功能方面有极其重要的作用,其浓度也需要维持在1.2-1.4mm范围内。因此,能灵敏地检测毫摩尔游离钙离子在生理病理上具有重要意义。3.在生物检测中,传统的毫摩尔级别钙离子检测方法是基于钙离子胂试剂或钙离子选择性电极。其中,胂试剂检测样品中的钙离子是样品中的总钙离子(结合钙离子和游离钙离子),而在生物体中起关键生理作用的是游离钙离子,因此检测生物体中游离钙离子才能更加准确确定生物体的生理状态。而离子选择电极能检测毫摩尔级别的游离钙离子,但是检测速度慢,且对生物样品只能单点检测,不适合检测生物组织样品。荧光检测技术可以克服上述传统钙离子检测的缺点,且具有高的选择性和高的时间空间分辨率,并且适合生物组织样品中的游离钙离子检测,但是,荧光检测技术的难点在于游离钙离子荧光探针的设计合成。现阶段商用的钙离子荧光探针的ca2+络合常数基本在亚微摩尔及微摩尔级别,并且在检测细胞外ca2+时会受到细胞外mg2+(~0.4mm)的影响,不适合用于细胞外或血清中毫摩尔级别的钙离子检测。4.因此,开发出一种适用于检测生物样本的毫摩尔游离钙离子的荧光探针是必需的。技术实现要素:5.本发明的第一个目的在于提供一种检测毫摩尔游离钙离子的荧光探针,该荧光探针可以灵敏地检测被测生物样品中毫摩尔级别的游离钙离子。6.本发明的第二个目标是提供一种上述荧光探针的合成方法。7.本发明的第三个目的在于提供一种上述荧光探针在检测生物样品中游离的毫摩尔级别钙离子的应用。8.为达到上述目的,本发明采用下述技术方案:9.第一方面,本发明提供一种检测毫摩尔游离钙离子的荧光探针,所述荧光探针具有如下结构式通式:[0010][0011]其中,r1,r2,r3分别独立的选自羧基、磷酸、甲基亚磷酸、乙基亚磷酸、丙基亚磷酸、异丙基亚磷酸、苯基亚磷酸、甲基、乙基或氢原子,且r1,r2,r3不能全为氢原子;x为荧光基团。[0012]需要说明的是,本发明的荧光探针可分为两部分:钙离子识别配体:和荧光基团-x。钙离子识别配体可以特异性识别游离的钙离子,并形成螯合物(其配位数可以是2、3、4、5和6中的任一种),荧光基团作为信号基团,使探针的吸收发射波长位于可见光区,方便信号收集。该荧光探针的识别机理是光诱导电子转移,在没有目标检测物时,荧光探针受到合适的光激发后,发生从钙离子识别配体到荧光基团的电子转移,使荧光基团的激发态猝灭,荧光探针不发光或发光弱;钙离子识别配体结合游离的钙离子后,钙离子识别配体的电子能级被改变,抑制了光诱导电子转移,促使荧光探针发出强光。[0013]优选地,所述荧光团为罗丹明类染料基团或荧光素类染料基团。[0014]优选地,所述荧光探针具有如下结构式通式:[0015]可以理解上述结构式通式中,r1=甲基亚磷酸,r2=r3=羧基,或者,r1=r2=r3=羧基;其中,该类荧光探针可以更优地检测毫摩尔游离钙离子。[0016]优选地,所述罗丹明类染料基团具有如下结构式通式:[0017][0018]其中,r1,r2,r3,r4分别独立的选自氢原子、甲基、乙基、丙基或1,3-丙烷基。[0019]优选地,所述罗丹明类染料基团具有如下结构式:[0020]其中,该罗丹明类染料基团可以更加灵敏地检测毫摩尔游离钙离子。[0021]优选地,所述荧光素类染料基团具有如下结构式:[0022]其中,该荧光素类染料基团可以更加灵敏地检测毫摩尔游离钙离子。[0023]第二方面,本发明提供一种上述荧光探针的制备方法[0024]在化合物上接枝醛基,获得中间体所述中间体与含有所述荧光基团的化合物进行反应,即得荧光探针。[0025]优选地,具体步骤可参见calciumrubies:afamilyofred-emittingfunctionalizableindicatorssuitablefortwo-photonca2+imaging.[j].journaloftheamericanchemicalsociety,2012,134(36):14923-31.[0026]第三方面,本发明提供一种上述荧光探针检测生物样品中游离的毫摩尔级别钙离子的应用。[0027]优选地,所述生物样品为细胞或血清;更优选为细胞外或血清。[0028]优选地,所述应用,包括如下检测步骤:[0029]将所述荧光探针和待测生物样品加入到荧光样品池中,使用荧光光谱仪收集信号;或者,将待测生物样品用所述荧光探针染色后,置于荧光显微镜上收集信号。[0030]另需注意的是,如果没有特别说明,本发明所记载的任何范围包括端值以及端值之间的任何数值以及以端值或者端值之间的任意数值所构成的任意子范围。本发明中制备方法如无特殊说明则均为常规方法,所用的原料如无特别说明均可从公开的商业途径获得或根据现有技术制得。[0031]本发明的有益效果如下:[0032]1、本发明提供的荧光探针对钙离子的识别基于电子转移机制,属于络合型探针,对游离钙离子的络合常数位于毫摩尔级别。同时,该荧光探针对钙离子的选择性较高,几乎不受其它金属离子的干扰,特别是mg2+,能够满足生物组织样本中游离的毫摩尔级别钙离子的检测要求。[0033]2、本发明提供的荧光探针可在可见光区灵敏地检测毫摩尔水平的游离钙离子。附图说明[0034]下面结合附图对本发明的具体实施方式作进一步详细的说明。[0035]图1示出实施例1制备的荧光探针的吸收及发射光谱;[0036]图2示出实施例1制备的荧光探针在不同mg2+浓度下的发射光谱;[0037]图3示出实施例1制备的荧光探针在不同mg2+浓度下荧光强度变化曲线;[0038]图4示出实施例1制备的荧光探针的mg2+络合常数;[0039]图5示出实施例1制备的荧光探针在不同ca2+浓度下的发射光谱;[0040]图6示出实施例1制备的荧光探针在不同ca2+浓度下的荧光强度变化曲线;[0041]图7示出实施例1制备的荧光探针的ca2+络合常数;[0042]图8示出实施例2制备的荧光探针的吸收光谱及荧光发射光谱;[0043]图9示出实施例2制备的荧光探针在不同mg2+浓度下的荧光发射光谱;[0044]图10示出实施例2制备的荧光探针在不同mg2+浓度下的荧光强度变化曲线;[0045]图11示出实施例2制备的荧光探针在不同ca2+浓度下的荧光发射光谱;[0046]图12示出实施例2制备的荧光探针在不同ca2+浓度下的荧光发射光强度变化曲线;[0047]图13示出计算实施例2制备的荧光探针的ca2+络合常数;[0048]图14示出实施例2制备的荧光探针的二价阳离子选择性实验。具体实施方式[0049]为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。[0050]实施例1:荧光探针的合成[0051]一、aptra识别配体的合成路线如下(r1=r2=r3=cooh):[0052][0053]具体步骤:[0054]在500ml的双口玻璃瓶中加入邻氨基苯酚(10.9788g,0.1mol),氯乙酸(40.368g,0.5mol)和氢氧化钠(24.747g,0.7mol),再缓慢加入100ml水,加入ph计检测反应进程,快速磁力搅拌,后升温到100℃,当ph低于10时,加入氢氧化钠,使体系的ph维持在10-11之间。ph值稳定后,加热回流30min,反应结束后加浓盐酸酸化,用乙酸乙酯萃取,有机相用无水硫酸钠干燥后过滤减压除去溶剂,所得的固体用二氯甲烷:乙醇:石油醚(50:50:50,v/v)重结晶,得到目标产物(2)(6.865g,0.0242mol)为白色固体,产率23.1%。1hnmr(400mhz,cd3oh)6.91(t,4h),4.92(s,3h),4.68(s,2h),4.14(s,4h)。[0055]二、基于识别配体的中间体合成路线如下:[0056][0057]具体步骤:[0058]步骤i:在一个250ml的两口烧瓶中加入目标产物(2)(2.8643g,10mmol),4-二甲氨基吡啶(dmap,0.757g,6mmol),10ml二氯甲烷(dcm,120ml)和1-乙基-(3-二甲基氨基丙基)碳化二亚胺盐酸盐(edc.hcl,7.468g,36mmol)后强搅拌30min后,再加入10ml无水乙醇。常温搅拌4h后,加入水,用dcm萃取,有机相用卤水洗两次,无水硫酸钠干燥,减压除去溶剂。用硅胶柱快速分离得到淡黄色油状液体的目标产物(3),淋洗剂为石油醚和乙酸乙酯(v/v,4:1–2:1)。[0059]步骤ii:在一个100ml的双口瓶中加入目标产物(3)(1.7823g,5mmol),吡啶(0.5ml)和n,n二甲基甲酰胺(dmf,5ml),氮气保护下,放入冰水浴中搅拌30min后,滴加三氯氧磷(3.2ml)。滴加pocl3完成后撤掉冰水浴,油浴升温到65℃,搅拌反应2h,反应结束后倒入冰水中淬灭反应,用乙酸乙酯萃取,收集的有机相用卤水洗三次,无水硫酸钠干燥,减压除去溶剂,硅胶柱分离提纯得为白色固体的目标产物(4),淋洗剂为石油醚和dcm(v/v,9/1)。1hnmr(400mhz,cdcl3)δ9.76(s,1h),7.40(d,j=8.2hz,1h),7.26(s,1h),6.80(d,j=8.2hz,1h),4.65(s,2h),4.34–4.16(m,10h),1.34–1.21(m,9h).13cnmr(101mhz,cdcl3)δ190.33(s),170.69(s),168.05(s),148.72(s),145.32(s),129.87(s),127.29(s),117.22(s),111.71(s),65.65(s),61.44(s),61.06(s),54.09(s),14.24(s,j=9.7hz),14.14(s)。[0060]三、将目标产物(4)与荧光基团相连接的合成路线如下:[0061][0062]具体步骤:[0063]步骤i:在一个50ml的圆底烧瓶中加入目标产物(4)(280.7mg,0.7mmol),正丙酸(8ml),对甲基苯磺酸(10mg)和8-羟基久洛尼定(273.5mg,1.4mmol),氮气保护下常温搅拌18h后,再往反应体系中加入四氯苯醌(0.386g,1.4mmol)和8mldcm,继续搅拌4h,加压除去溶剂,硅胶柱分离提纯,淋洗剂为dcm和甲醇(20:1到10:1,v/v),收集的目标产物(5)为深紫色固体(0.404g)。[0064]步骤ii:在一个50ml的两口玻璃圆底烧瓶中加入目标产物(5)(0.1558g,0.2mmol)和10ml甲醇,常温搅拌,待产物溶解后再往反应体系中加入氢氧化钾的水溶液(10m,2ml),后常温下搅拌24h,反应结束后,加入20ml卤水和50ml盐酸水溶液(1m),后用dcm萃取,有机相用无水硫酸钠干燥,砂芯漏斗过滤得到的滤液减压蒸馏即可得到目标产物(6),0.1308g,产率91.3%,目标产物(6)为深紫色固体。[0065]实施例2:荧光探针的合成[0066]一、基于识别配体的中间体的合成路线如下(识别配体中,r1=甲基亚磷酸,r2=r3=cooh):[0067][0068]具体步骤:[0069]步骤i:在一个250ml的茄形瓶中加入原料(7)(4.0804g,12.5mmol),pcl5(3.1125g,15mmol)和40ml的苯,n2保护回流直到溶液澄清透明后,再回流2h。关闭加热常温搅拌过夜,减压蒸馏除去溶剂后,再加入80ml甲苯后转移到一个250ml的两口圆底烧瓶,再减压蒸馏除去溶剂,往体系中加入无水60mlthf(使用氢化钙作为脱水剂,现蒸现用),抽充氮气三次,氮气保护下搅拌冷却至-78℃并保持30min,向反应体系中滴加4.4mlmemgbr的乙醚溶液(3m),完成滴加后,再迅速向反应体系中加入2ml的冰醋酸淬灭反应。恢复到常温后,加入水,再用乙酸乙酯萃取,收集的有机相用饱和nahco3的水溶液洗两次,水洗一次,无水硫酸钠干燥后减压浓缩,最后加入甲醇共蒸发。产物用正己烷沉淀,最后收到目标产物(8)为白色固体,产量:3.089g(10.57mmol),产率85%。1hnmr(400mhz,cdcl3)δ7.81(d,j=7.7hz,2h),7.39(d,j=7.6hz,2h),4.29–3.90(m,4h),2.47(s,3h),1.54(d,j=14.9hz,3h),1.30(t,j=6.7hz,3h);13cnmr(101mhz,cdcl3)δ145.74(s),131.61(s),130.14(s),128.20(s),63.12(d,j=105.8hz),61.39(d,j=6.6hz),21.71(s),16.41(d,j=6.0hz),12.38(d,j=100.9hz);31pnmr(162mhz,cdcl3)δ44.15(s).。[0070]步骤ii:在一个100ml的两口烧瓶中加入目标产物(8)(7.283g,24.9mmol),邻硝基苯酚(2.793g,20.1mmol)和k2co3(6.7236g,48mmol),抽充n2三次,氮气保护下加入30ml超干乙腈。加热搅拌回流反应36h后加水,用乙酸乙酯萃取,收集的有机相用卤水洗三次,后用无水硫酸钠干燥,过滤,收集滤液,减压蒸馏浓缩,硅胶柱分离提纯,梯度淋洗,dcm:meoh(200:1–40:1,v/v),收集的目标产物(9)为淡黄色油状液体,产量:3.195g(12.33mmol),产率:61.43%。1hnmr(400mhz,cdcl3)δ7.89(d,j=7.7hz,1h),7.60(t,j=7.6hz,1h),7.24–7.05(m,j=14.3,7.9hz,2h),4.42–4.28(m,2h),4.17(ddd,j=23.1,15.0,7.5hz,2h),1.71(d,j=14.7hz,3h),1.35(t,j=6.4hz,3h).;13c-nmr(101mhz,cdcl3)δ151.85(d,j=13.0hz),140.07(s),134.42(s),125.89(s),121.86(s),114.71(s),65.23(d,j=111.0hz),61.40(d,j=6.6hz),16.52(d,j=5.9hz),12.27(d,j=97.9hz);31pnmr(162mhz,cdcl3)δ46.60(s)。[0071]步骤iii:在一个500ml的单口瓶中,加入目标产物(9)(2.592g,10mmol),pd/c(600mg)和200ml无水乙醇,将反应置于氢气气氛下搅拌,用薄层色谱板监控反应,当反应结束后,使用砂芯漏斗过滤,使用无水乙醇淋洗几次(回收pd/c),收集滤液,减压蒸馏除去溶剂,得到的淡黄色油状液体即为目标产物(10),定量反应。1hnmr(400mhz,cdcl3)δ6.89–6.79(m,j=13.4,7.4hz,1h),6.76–6.69(m,1h),4.29–4.07(m,2h),3.87(brs,1h),1.64(d,j=14.5hz,2h),1.35(t,j=6.9hz,2h);13cnmr(101mhz,cdcl3)δ146.29(d,j=11.8hz),136.60(s),122.75(s),118.42(s),115.59(s),112.28(s),64.63(d,j=111.2hz),61.01(d,j=6.4hz),16.62(d,j=5.9hz),12.66(d,j=97.3hz);31pnmr(162mhz,cdcl3)δ47.53(m)。[0072]步骤iv:在一个250ml的圆底烧瓶中加入目标产物(10)(8.428g,36.8mmol)和碘化钾(14.953g),抽充氮气三次,氮气保护下加入超干二异丙基(36ml)和溴代乙酸乙酯(15ml),90℃下加热搅拌反应18h,后再加入二异丙基乙胺(10ml)和溴代乙酸乙酯(7ml),90℃继续反应6h。反应结束后降至室温,倒入200ml水中,用dcm萃取三次,收集的有机相用水洗一次,用卤水洗三次,无水硫酸钠干燥后过滤,收集的滤液减压浓缩,硅胶柱分离提纯,梯度淋洗:乙酸乙酯:石油醚(1:1–1:0,v/v),收集的产物为淡黄色油状液体,目标产物(11)产量:11.479g(28.6mmol),产率:77.7%。所得产物经核磁测试,有部分杂质。产物在避光封闭环境下放置一个月后颜色由淡黄色转变为深棕色液体,再次用硅胶柱快速分离,再次分离得到的产物为透明油状液体。1hnmr(400mhz,cdcl3)δ6.96(s,3h),6.92(s,1h),4.36–4.06(m,12h),1.67(d,j=14.6hz,3h),1.35(t,j=6.8hz,3h),1.25(t,j=6.9hz,6h);13cnmr(101mhz,cdcl3)δ170.97(s),150.95(d,j=11.8hz),139.40(s),122.90(s,j=16.4hz),122.73(s),120.81(s),114.44(s),64.81(d,j=110.7hz),60.89(d,j=6.4hz),60.67(s),53.27(s),16.54(d,j=5.9hz),14.19(s),12.45(d,j=97.0hz);31pnmr(162mhz,cdcl3)δ48.17(m)。[0073]步骤v:将目标产物(11)(8.495g,21.2mmol)置于100ml的两口圆底烧瓶中,抽充n2三次,n2保护下,再向瓶中加入2ml的吡啶和20ml的dmf。将反应装置置于冰水浴中保持30min后,向反应体系中滴加15ml。滴加结束后,撤下冰水浴,换成油浴,升温到65℃,反应2h后关闭加热自然降温到室温。另取一个500ml的双口瓶,n2保护下加入60ml超干乙醇和150ml的超干三乙胺。将上面的反应完全的溶液转移滴加在第二个瓶中,滴加完成后,将反应升温回流2h。反应结束后,减压除去浓缩,加水,用乙酸乙酯萃取,收集的有机相用卤水洗三次,无水硫酸钠干燥,过滤收集的滤液减压浓缩。硅胶柱分离提纯,梯度淋洗:etoac:dcm(1:2–2:1,v/v)。收集的目标产物(12)为淡黄色固体,产量:1.7g(3.88mmol),产率:19.4%。1hnmr(400mhz,cdcl3)δ9.82(s,1h),7.44(d,j=8.3hz,2h),6.87(d,j=8.0hz,1h),4.36–4.15(m,12h),1.65(d,j=14.6hz,3h),1.36(t,j=6.8hz,3h),1.29(t,j=6.9hz,6h);13cnmr(101mhz,cdcl3)δ190.29(s),170.37(s),150.01(d,j=12.2hz),145.03(s),130.34(s),127.14(s),118.14(s),112.04(s),64.91(d,j=110.6hz),61.17(s),61.10(s),53.45(s),16.56(d,j=5.8hz),14.19(s),12.74(d,j=97.5hz);31pnmr(162mhz,cdcl3)δ47.00–46.21(m)。[0074]二、将中间体与荧光基团相连接的合成路线如下:[0075][0076]具体步骤:[0077]步骤i:在一个50ml的圆底烧瓶中加入目标产物(12)(311.4mg,0.7mmol),正丙酸(8ml),对甲基苯磺酸(8.9mg)和8-羟基久洛尼定(281.6mg,1.4mmol),氮气保护下常温搅拌18h,再往反应体系中加入四氯苯醌(0.363g,1.4mmol)和8mldcm,继续搅拌4h,加压除去溶剂,硅胶柱分离提纯,淋洗剂为dcm和甲醇(25:1–20:1,v/v),收集的目标产物(13)为深紫色固体(0.32g)。[0078]步骤ii:在一个50ml的两口玻璃圆底烧瓶中加入目标产物(13)(0.1646g,0.2mmol)和10ml甲醇,常温搅拌,待产物溶解后再往反应体系中加入氢氧化钾的水溶液(10m,2ml),后常温下搅拌24h,反应结束后,加入20ml卤水和50ml盐酸水溶液(1m),后用dcm萃取,有机相用无水硫酸钠干燥,砂芯漏斗过滤得到的滤液减压蒸馏即可得到目标产物(14),0.114g,产率77.5%。产物为深紫色固体。[0079]实施例3:荧光探针的合成(荧光基团为荧光素类染料基团)[0080]合成路线如下:[0081][0082]具体步骤:[0083]步骤i:在一个100ml的圆底烧瓶中加入目标产物(12)(0.4296g,1.0mmol)和2,4-二羟基氟苯(0.291g,2.2mmol),抽充氮气三次,在氮气保护下加入7.5ml无水乙醚和67.5mldcm,搅拌成透明溶液,再加入甲基磺酸(0.75ml),接着在室温下搅拌两个小时。反应结束是,加入50ml无水乙醚淬灭反应,将淬灭的反应倒入包含有nahco3(0.85g)的100ml水中,用浓盐酸调节体系的ph至5-6,接着用乙酸乙酯萃取,无水硫酸钠干燥,过滤收集滤液,减压浓缩,硅胶柱分离提纯,淋洗剂:dcm和甲醇(20:1–10:1),收集的目标产物(15)到淡黄色固体粉末。产量:0.390g,产率:60%。1hnmr(400mhz,dmso-d6)δ9.41(s,2h),8.99(s,2h),6.72(d,j=7.8hz,1h),6.61(s,1h),6.42(t,3h),6.28(d,j=12.4hz,2h),5.65(s,1h),4.27–3.88(m,12h),1.47(d,j=14.6hz,3h),1.19(t,j=6.2hz,3h),1.13(t,j=6.7hz,6h);13cnmr(101mhz,dmso-d6)δ170.47(s),150.58(s),149.89(d,j=11.5hz),145.23(s),142.91(d,j=6.5hz),142.75(s),137.29(d,j=154.5hz),121.96(s),120.93(s),119.12(s),116.05(d,j=19.9hz),114.86(s),104.39(s),64.12(d,j=105.0hz),60.11(s),60.05(s),52.87(s),41.03(s),16.30(d,j=5.7hz),13.99(s),12.14(d,j=95.1hz);19f-nmr(377mhz,dmso-d6)δ-148.46–‑148.62(m);31p-nmr(162mhz,dmso)δ47.07(m)。[0084]步骤ii:在一个100ml的圆底烧瓶中加入目标产物(15)(0.237g,0.36mmol),抽充氮气三次,在氮气保护下加入14ml冰醋酸和14ml苯,搅拌成透明溶液。将ddq(0.166g,0.72mmol)的冰醋酸(7ml)和苯(7ml)溶液滴加到上述的反应体系中。滴加试剂结束后,继续搅拌反应两个小时,反应结束后,减压浓缩,硅胶柱分离提纯,梯度淋洗:dcm:methol:acoh(400:10:1–400:20:1),收集到目标产物16为暗红色固体粉末。1hnmr(400mhz,dmso-d6)δ11.90(s,1h),7.19(s,1h),6.99(d,2h),6.78(brs,2h),4.36(d,2h),4.30–3.87(m,10h),1.54(d,j=16hz,3h),1.26–1.08(m,9h);31p-nmr(162mhz,dmso-d6)δ46.55(m)。[0085]步骤iii:在一个50ml的圆底烧瓶中加入目标产物(16)(50mg),加入15ml甲醇,在冰水浴中搅拌30min,然后再加入1ml的2m的氢氧化钠水溶液,搅拌24h后,加等量盐酸,后减压除去溶剂,获得目标产物(17)。[0086]试验例[0087]荧光测试步骤:[0088]一、配置荧光探针溶液:取100mmhepes缓冲液(包含115mmkcl和15mmnacl,后面简称hepes缓冲液),hepes缓冲液ph调到7.4。称取一定量的在待测实施例制得的荧光探针,并将其溶解在hepes缓冲液中,最终浓度定为1mm。[0089]二、络合常数的测试及计算:在一个荧光比色皿中加入2ml含有一定浓度mg2+或ca2+的hepes缓冲液,再加入4μl的1mm的荧光探针溶液,最后置于荧光光谱仪上测试。光谱测试条件:激发波长:530nm,狭缝宽度:5nm。室温恒定25摄氏度。[0090]络合常数的计算方法:在低浓度ca2+或mg2+范围内,计算[ca2+或mg2+]/(f–fmin)并作为y轴数据;计算1/(fmax–f)并作为x轴,最后线性拟合,斜率即为荧光探针的ca2+或mg2+的络合常数。[0091]三、吸收及发射光谱的测试:在一个吸收比色皿中加入2ml的hepes缓冲液和4μl的1mm荧光探针,在吸收光谱仪上测得吸收光谱,在一个吸收比色皿中加入2ml包含有不同浓度的金属离子的hepes缓冲液和4μl的1mm荧光探针,在吸收光谱上收集吸收光谱。[0092]四、荧光探针的选择性测试步骤如下:在荧光比色皿中加入2mlhepes缓冲液和4μl的1mm荧光探针溶液,测试基础信号;再加入4μl的的干扰离子,测试信号;最后再加入200μl的200mm的ca2+的hepes缓冲液,测试信号。荧光测试条件:激发波长:530nm,狭缝宽度:5nm。室温恒定25摄氏度。[0093]按照上述步骤及参数进行以下测试:[0094](1)测试实施例1制得的荧光探针在20mm的ca2+中的吸收及发射光谱,结果如图1所示。[0095]由图1可知,加入20mmca2+(曲线3umprobe+20mmca2+)和未加入ca2+(曲线3umprobe)时,荧光探针的吸收峰位置没有明显变化;加入ca2+后,荧光探针的信号强度明显强于未加入ca2+时,说明该荧光探针检测ca2+的机理是光诱导电子转移。[0096](2)测试实施例1制备的荧光探针在不同浓度mg2+(0mm,0.1mm,0.2mm,0.5mm,1.0mm,2.0mm,5.0mm,10mm,20mm,50mm,100mm,200mm,500mm)下的吸收及发射光谱,结果如图2所示。[0097]由图2可知,荧光探针的荧光信号强度随着mg2+浓度的增加逐渐增加。[0098](3)测试实施例1制备的荧光探针在603nm处的荧光强度在不同浓度mg2+下变化曲线,数据来源于将图2中不同浓度mg2+下,荧光探针在603nm处的荧光强度,结果如图3所示。[0099]由图3可知,荧光探针与mg2+结合模式是1:1的模式。[0100](4)测试并计算实施例1制备的荧光探针的mg2+络合常数,结果如图4所示。[0101]由图4可知,实施例1制备的荧光探针的mg2+络合常数:12.01mm。该探针对mg2+检测的有效范围是1.2–120mm,基本对细胞外的mg2+(~0.4mm)不响应,可以排除细胞外mg2+的影响。[0102](5)测试实施例1制得的荧光探针在不同ca2+浓度下的荧光发射光谱,测试的钙离子浓度为:0mm,0.001mm,0.002mm,0.005mm,0.01mm,0.02mm,0.05mm,0.1mm,0.2mm,0.5mm,1.0mm,2.0mm,5.0mm,10mm,20mm。结果如图5所示。[0103]由图5可知,荧光探针的荧光信号强度随着ca2+浓度的增加逐渐增加。[0104](6)测试实施例1制备的荧光探针在603nm处的荧光强度在不同浓度ca2+下荧光强度变化曲线,数据来源于将图5中不同浓度ca2+下,荧光探针在603nm处的荧光强度结果如图6所示。[0105]由图6可知,荧光探针与ca2+结合模式是1:1的模式。[0106](7)测试并计算实施例1制备的荧光探针的ca2+络合常数,结果如图7所示。[0107]由图7可知,实施例1制备的荧光探针的ca2+络合常数:0.12mm,有效的检测范围在0.012mm到1.2mm之间,可以大致确定生理自由ca2+浓度(细胞间质或血清中的游离ca2+=~1mm)。[0108](8)测试实施例2制得的荧光探针在20mm的ca2+中的吸收及发射光谱,结果如图8所示。[0109]由图8可知,加入20mmca2+和未加入ca2+时,荧光探针的吸收峰位置没有明显变化;加入ca2+后,荧光探针的信号强度明显强于未加入ca2+时,说明该荧光探针检测ca2+的机理是光诱导电子转移。[0110](9)测试实施例2制备的荧光探针在不同浓度mg2+(0mm,1.0mm,2.0mm,5.0mm,10mm,20mm,50mm,100mm,200mm,500mm,1000mm)下的发射光谱,结果如图9所示。[0111]由图9可知,荧光探针的荧光信号强度随着mg2+浓度的增加逐渐增加。[0112](10)测试实施例2制备的荧光探针在603nm处的荧光强度在不同浓度mg2+下荧光强度变化曲线,数据来源于将图9中不同浓度mg2+下,荧光探针在603nm处的荧光强度,结果如图10所示。[0113]由图10可知,荧光探针与mg2+结合模式是1:1的模式,并且该荧光探针对细胞外的mg2+基本不响应,可以排除细胞外mg2+的影响。[0114](11)测试实施例2制得的荧光探针在不同ca2+浓度下的荧光发射光谱,(ca2+浓度从0mm到100mm递增)结果如图11所示。[0115]由图11可知,荧光探针的荧光信号强度随着ca2+浓度的增加逐渐增加。[0116](12)测试实施例2制备的荧光探针在603nm处的荧光强度在不同浓度ca2+下荧光强度变化曲线,数据来源于将图11中不同浓度ca2+下,荧光探针在603nm处的荧光强度,结果如图12所示。[0117]由图12可知,荧光探针与ca2+结合模式是1:1的模式。[0118](13)测试并计算实施例2制备的荧光探针的ca2+络合常数,结果如图13所示。[0119]由图13可知,实施例2制备的荧光探针的ca2+络合常数:0.82mm,络合常数接近生理游离ca2+浓度,可以灵敏地测量生理毫摩尔级别的ca2+,(细胞间质或血清中的游离ca2+~1mm)。[0120](14)测试实施例2制备的荧光探针的选择性干扰离子分别为:浓度为2μm的co2+、cu2+、fe2+、mn2+、ni2+、zn2+及浓度为2mmmg2+,结果如图14所示。[0121]由图14可知,实施例2制备的荧光探针对其他生理范围内的二价阳离子有较弱或不响应,适合检测细胞间质或血清中的游离钙离子。[0122]显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1