酞菁组合物和使用该酞菁组合物的光电导材料、电子照相感光体、电子照相感光体盒和成...的制作方法

文档序号:3776863阅读:260来源:国知局
专利名称:酞菁组合物和使用该酞菁组合物的光电导材料、电子照相感光体、电子照相感光体盒和成 ...的制作方法
技术领域
本发明涉及一种适合用作光电导材料的酞菁组合物和使用所述酞菁组合物的光电导材料、电子照相感光体、电子照相感光体盒和成像装置。具体地说,本发明涉及用于激光打印机、复印机、传真机等的、对LED光和半导体激光高度敏感且对例如温度和湿度等环境条件的依赖性低的光电导材料以及使用所述酞菁组合物的光电导材料、电子照相感光体、电子照相感光体盒和成像装置,本发明还涉及具有含有氟代镓酞菁化合物的感光层的高性能的新型电子照相感光体、电子照相感光体盒和成像装置。
背景技术
因为电子照相技术能够得到即时性的高品质图像,所以,近年来电子照相技术不仅在复印机领域中,而且在各种打印机和印刷机领域中得到了广泛的应用。
电子照相技术的核心是电子照相感光体,电子照相感光体通常使用的光电导材料为无机光电导体,例如硒、砷-硒合金、硫化镉和氧化锌;使用有机光电导材料的电子照相感光体具有不产生污染、容易成膜和容易制造等优点,它的使用最近已经成为主流。
使用有机光电导材料的电子照相感光体的感光度因电荷产生材料的种类而异。酞菁化合物是对例如600nm~800nm的长波长具有感光度的电荷产生材料,它已经引起了人们的注意并且正被积极地研究。特别是已经对例如氯铝酞菁、氯铟酞菁、氧钒基酞菁、羟基镓酞菁、氯镓酞菁、镁酞菁、氧钛氧基酞菁等含金属酞菁以及无金属酞菁等进行了积极的研究。
非专利文献1公开道,对于酞菁化合物,即使单个分子的结构相同,但是作为单个分子的集合体的结晶排列规则性(晶型)不同,其电荷产生效率也不相同。
专利文献1~4中对含有具有单一结构的有效成分的结晶性酞菁化合物进行了研究。另外,还对含有未取代的酞菁和取代的酞菁作为有效成分的组合物进行了研究(例如见专利文献5~7),以及对具有不同中心金属的未取代的酞菁之间的组合物进行了研究(例如见专利文献8~11)。
关于电子照相感光体的感光层,已经广泛地使用无机光电导物质,例如硒、硫化镉、氧化锌、无定形硅等。近年来,已经进行了对各种有机光电导物质用于电子照相感光体的感光层的研究,其中一些物质已经投入实际应用。与无机光电导物质相比,有机光电导物质具有重量轻、容易成膜、容易制造感光体、根据它们的种类能制成透明感光体、不含有产生污染的材料等优点。
作为感光层的结构,已经知道单层型感光层和所谓的功能分防粘感光层,在所述单层型感光层中,电荷产生物质和电荷传输物质包含在同一层中,且分散在粘合剂树脂中,在所述功能分防粘感光层中,产生电荷载体的功能和传输电荷载体的功能分别由不同的化合物承担。其中,积层型感光层具有电荷产生物质分散在粘合剂树脂中的电荷产生层和电荷传输物质分散在粘合剂树脂中的电荷传输层,这种积层型感光层由于有效地提高了感光度而成为发展的主流,这种类型的有机感光体已经投入实际应用。
已知充当电荷产生物质的有机光电导物质为酞菁材料,例如无金属酞菁和含金属酞菁;各种有机颜料,例如苝酮(perynone)颜料、靛蓝、硫靛蓝、喹吖啶酮、苝颜料、蒽醌颜料、偶氮颜料、双偶氮颜料、三偶氮颜料、四偶氮颜料、花青颜料、多环醌、吡喃鎓盐、硫代吡喃鎓盐、蒽嵌蒽醌和皮蒽酮;和染料。
特别地,酞菁材料在长波长区域表现出高的感光度,并且已知具有许多种类,在它们中,具有特定晶型的钛氧基酞菁化合物已知表现出特别优异的感光度(例如专利文献12)。
特开昭62-67094号公报 特开平5-98181号公报[专利文献3]特开平5-263007号公报[专利文献4]特开平10-67946号公报[专利文献5]特开平9-120171号公报[专利文献6]特开2002-251026号公报[专利文献7]特开平10-48859号公报[专利文献8]特开2000-336283号公报[专利文献9]特开平4-372663号公报[专利文献10]特开平6-175382号公报[专利文献11]特开平5-45914号公报[专利文献12]特开平2-008256号公报[非专利文献1]Electrophotographythe society journal,1990,第29卷,第3期,第250~258页。

发明内容
本发明解决的问题近年来,随着对复印机、打印机和传真机的高速化、高清晰度化和高画质化需求的提高,对电子照相感光体的要求也在提高。
具体来说,根据装置的小型化和节能的要求,需要进一步改进感光材料的感光度;另一方面,为了甚至在各种不同温度或湿度的使用环境下也形成良好的图像,希望感光体的感光度、响应性、残留电位等特性相对于使用环境变化的波动小,且平衡良好。即,满足机器的高速化、高清晰度化和高画质化要求的理想电子照相感光体必须表现出高的感光度,而且光导电特性保持恒定而不随使用环境变化,即具有低的环境依赖性。
与该要求相反,尽管以往已知的具有特定晶型的氧钛酞菁具有优异的感光度,但是随着使用环境的变化,其特性波动相当大,缺乏特性平衡,在电子照相特性方面有欠缺。
具体来说,关于作为具有高感光度的电荷产生材料的D(Y)型氧钛氧基酞菁结晶,其结晶中的水分子起敏化剂的作用,所以在低湿度的条件下,水分子从结晶中脱离出来,引起电子照相感光体的感光度下降。简言之,D(Y)型氧钛氧基酞菁结晶具有高的环境依赖性。因此,在用在打印机、复印机、传真机等的情况中,使用环境的湿度发生变化时,在湿度变化前后以相同强度使感光体曝光,所得到的图像存在浓度差。
另外,与D(Y)型氧钛氧基酞菁结晶不同,对于作为其它具有高感光度的电荷产生材料的V型羟基镓酞菁结晶来说,其感光度对湿度的非依赖性良好。但是,在V型羟基镓酞菁结晶中,生产阶段使用的浓硫酸会使酞菁环开环,或者残留来自浓硫酸的杂质,从而发生感光度降低或充电性变差,不能确保稳定生产。
如上所述,以专利文献1~12中记载的技术为代表的常规酞菁化合物和酞菁组合物的感光度低,或者感光度随环境变化的波动大,所以从理想的电荷产生材料的角度看是不令人满意的。
针对上述问题,本发明的目的是提供一种高感光度、低环境依赖性和适合用作电荷产生物质的酞菁组合物和使用所述酞菁组合物的光电导材料、电子照相感光体、电子照相感光体盒和成像装置,即使在不同温度或湿度的各种使用环境中,它们的感光度、响应性和残留电位等特性相对于使用环境变化的波动小(即环境依赖性低),而且平衡性良好。
解决问题的手段为了解决上述问题和满足上述要求,本发明人进行了深入的研究,结果发现,当含有特定结构的酞菁化合物的酞菁组合物用作电荷产生物质时,表现出高的感光度和低的环境依赖性,从而完成了本发明。
本发明的一方面(权利要求1)提供一种同时包含以下通式(1)表示的至少一种酞菁化合物和以下通式(2)表示的至少一种酞菁化合物的酞菁组合物化学式1
化学式2 在通式(1)和(2)中,M1表示能键合到酞菁上的任意的至少一个任意原子或原子团,M2表示能键合到酞菁上的周期表第二周期和第二周期以下周期的原子,或含有周期表第二周期和第二周期以下周期的原子的原子团,M1和M2的种类不同,X1~X4各自独立地表示卤原子,和a、b、c和d分别表示该卤原子的数目,各自独立地表示0~4的整数,而且满足a+b+c+d≥1。
本发明的另一方面(权利要求2)提供一种同时包含以下通式(3)表示的至少一种酞菁化合物和以下通式(4)表示的至少一种酞菁化合物的酞菁组合物化学式3
化学式4 在通式(3)和(4)中,M3和M4各自表示长周期型周期表的第13族的原子,M3和M4是同种原子,X5~X8各自独立地表示卤原子,Y1表示能键合到M3上的一价键合基团,Y2表示能键合到M4上的一价键合基团,至少Y1或Y2之一是卤原子,和e、f、g和h分别表示由X5~X8表示的该卤原子的数目,各自独立地表示0~4的整数,而且满足e+f+g+h≥1。
作为优选特征(权利要求3、5),该酞菁组合物可以具有共结晶性结构。
作为另一个优选特征(权利要求4、6),所述酞菁组合物可以通过形成无定形态的机械方法制备。
本发明的再一方面(权利要求7)提供一种包含上述酞菁组合物的光电导材料。
本发明的再一方面(权利要求8)提供一种包含导电性支持体和形成在所述支持体上的感光层的电子照相感光体,其中,该感光层中含有上述酞菁组合物。
本发明的再一方面(权利要求9)提供一种包含导电性支持体和形成在所述支持体上的感光层的电子照相感光体,其中,该感光层中含有以下通式(5)表示的氟代镓酞菁化合物
化学式5 在通式(1)中,X表示卤原子,和k、l和m各自表示进行取代的氟原子的数目,各自独立地表示0~4的整数。
本发明的再一方面(权利要求10、11)提供一种电子照相感光体盒,所述电子照相感光体盒包括上述电子照相感光体;和下列至少一个部件给该电子照相感光体充电的充电部件,使充电后的该电子照相感光体曝光以形成静电潜像的曝光部件,和使在该电子照相感光体上形成的静电潜像显影的显影部件。
本发明的再一方面(权利要求12、13)提供一种成像装置,所述成像装置包括上述电子照相感光体;使该电子照相感光体充电的充电部件;使充电后的该电子照相感光体曝光以形成静电潜像的曝光部件;和使在该电子照相感光体上形成的静电潜像显影的显影部件。
发明效果根据本发明,可以提供一种当用作电荷产生物质时表现出高的感光度和具有低的环境依赖性的酞菁组合物。
使用所述酞菁组合物,还可以提供表现出高的感光度和具有低的环境依赖性的光电导材料、电子照相感光体、电子照相感光体盒和成像装置。
另外,本发明的电子照相感光体具有以下优点曝光后的感光体表面电位几乎不受使用环境变化的影响,电特性的平衡良好,当重复使用时,尽管使用环境变化,但其特性的波动小。通过这些优点,可以提供一种在长期使用中,在各种环境下图像特性稳定的电子照相感光体。


图1是合成例1制备的α型氧钛氧基酞菁结晶的粉末X射线衍射图。
图2是合成例2制备的氯镓酞菁结晶的粉末X射线衍射图。
图3是合成例3制备的氯铟酞菁结晶的粉末X射线衍射图。
图4是合成例4制备的四氟氧钛氧基酞菁结晶的粉末X射线衍射图。
图5是合成例5制备的四氟氯镓酞菁结晶的粉末X射线衍射图。
图6是合成例6制备的四氟氯铟酞菁结晶的粉末X射线衍射图。
图7是合成例7制备的β型氧钛氧基酞菁结晶的粉末X射线衍射图。
图8是合成例8制备的β型氧钛氧基酞菁结晶的粉末X射线衍射图。
图9是实施例1制备的酞菁组合物的粉末X射线衍射图。
图10是实施例2制备的酞菁组合物的粉末X射线衍射图。
图11是实施例3制备的酞菁组合物的粉末X射线衍射图。
图12是实施例4制备的酞菁组合物的粉末X射线衍射图。
图13是实施例5制备的酞菁组合物的粉末X射线衍射图。
图14是实施例6制备的酞菁组合物的粉末X射线衍射图。
图15是实施例7制备的酞菁组合物的粉末X射线衍射图。
图16是实施例8制备的酞菁组合物的粉末X射线衍射图。
图17是实施例9制备的酞菁组合物的粉末X射线衍射图。
图18是实施例10制备的酞菁组合物的粉末X射线衍射图。
图19是实施例11制备的酞菁组合物的粉末X射线衍射图。
图20是实施例12制备的酞菁组合物的粉末X射线衍射图。
图21是实施例13制备的酞菁组合物的粉末X射线衍射图。
图22是实施例14制备的酞菁组合物的粉末X射线衍射图。
图23是实施例15制备的酞菁组合物的粉末X射线衍射图。
图24是实施例16制备的酞菁组合物的粉末X射线衍射图。
图25是实施例17制备的酞菁组合物的粉末X射线衍射图。
图26是实施例18制备的酞菁组合物的粉末X射线衍射图。
图27是实施例19制备的酞菁组合物的粉末X射线衍射图。
图28是实施例20制备的酞菁组合物的粉末X射线衍射图。
图29是实施例21制备的酞菁组合物的粉末X射线衍射图。
图30是实施例22制备的酞菁组合物的粉末X射线衍射图。
图31是实施例23制备的酞菁组合物的粉末X射线衍射图。
图32是实施例24制备的酞菁组合物的粉末X射线衍射图。
图33是实施例25制备的酞菁组合物的粉末X射线衍射图。
图34是实施例26制备的酞菁组合物的粉末X射线衍射图。
图35是实施例27制备的酞菁组合物的粉末X射线衍射图。
图36是实施例28制备的酞菁组合物的粉末X射线衍射图。
图37是实施例29制备的酞菁组合物的粉末X射线衍射图。
图38是实施例30制备的酞菁组合物的粉末X射线衍射图。
图39是实施例31制备的酞菁组合物的粉末X射线衍射图。
图40是实施例32制备的酞菁组合物的粉末X射线衍射图。
图41是实施例33制备的酞菁组合物的粉末X射线衍射图。
图42是实施例34制备的酞菁组合物的粉末X射线衍射图。
图43是实施例35制备的酞菁组合物的粉末X射线衍射图。
图44是实施例36制备的酞菁组合物的粉末X射线衍射图。
图45是实施例37制备的酞菁组合物的粉末X射线衍射图。
图46是实施例38制备的酞菁组合物的粉末X射线衍射图。
图47是实施例39制备的酞菁组合物的粉末X射线衍射图。
图48是实施例40制备的酞菁组合物的粉末X射线衍射图。
图49是实施例41制备的酞菁组合物的粉末X射线衍射图。
图50是实施例42制备的酞菁组合物的粉末X射线衍射图。
图51是实施例43制备的酞菁组合物的粉末X射线衍射图。
图52是实施例44制备的酞菁组合物的粉末X射线衍射图。
图53是实施例45制备的酞菁组合物的粉末X射线衍射图。
图54是实施例46制备的酞菁组合物的粉末X射线衍射图。
图55是比较例1制备的酞菁组合物的粉末X射线衍射图。
图56是比较例2制备的酞菁组合物的粉末X射线衍射图。
图57是比较例3制备的酞菁组合物的粉末X射线衍射图。
图58是比较例4制备的酞菁组合物的粉末X射线衍射图。
图59是比较例5制备的酞菁组合物的粉末X射线衍射图。
图60是比较例6制备的酞菁组合物的粉末X射线衍射图。
图61是比较例7制备的酞菁组合物的粉末X射线衍射图。
图62是比较例8制备的酞菁组合物的粉末X射线衍射图。
图63是比较例9制备的酞菁组合物的粉末X射线衍射图。
图64是比较例10制备的酞菁组合物的粉末X射线衍射图。
图65是比较例11制备的酞菁组合物的粉末X射线衍射图。
图66是比较例19制备的氧钛氧基酞菁的粉末X射线衍射图。
图67是制备例47的四氟氯镓酞菁的粉末X射线衍射图。
图68是制备例47的四氟氯镓酞菁的红外吸收光谱。
图69是制备例48的四氟氯镓酞菁的粉末X射线衍射图。
图70是制备例49的含酞菁的混合结晶的粉末X射线衍射图。
图71是制备例50的含酞菁的混合结晶的粉末X射线衍射图。
图72是比较制备例12的氧钛氧基酞菁的粉末X射线衍射图。
图73是表示本发明的成像装置的一个实施方案的要部构成的示意图。
具体实施例方式
下面详细地解释本发明,但是下列说明中提及的具体内容仅仅是举例,本发明决不局限于这些具体内容,可以进行任意改变来对其进行实施。
1.酞菁组合物1-1.酞菁化合物的结构本发明的第一酞菁组合物(此后也称为“第一酞菁组合物”)的特征在于,它同时含有下列通式(1)表示的至少一种酞菁化合物和下列通式(2)表示的至少一种酞菁化合物。在下列通式(1)和(2)中,M1和M2的种类不同。
化学式6 化学式7 下面详细地说明通式(1)和通式(2)。
在上述通式(1)中,M1表示能键合到酞菁上的至少一个任意原子(此后也称为“中心原子”)或原子团(此后也称为“中心原子团”);即,M1可以是单种元素的中心原子或中心原子与其它物质键合的中心原子团。
可以是一个中心原子或多个中心原子。具有多个中心原子的化合物的例子是下面所示的无金属酞菁。在无金属酞菁中,分别键合到氮上的两个氢作为中心原子。
化学式8 无金属酞菁并且,与中心原子一起构成中心原子团的其它物质可以任意地选择;于是,结合了其它物质的中心原子团M1可以是例如氧化物、氢氧化物、卤化物等。
考虑到在酞菁化合物的制备中用来引入M1的化合物的通用性,M1中心原子所属的长周期型周期表的族通常有第1族、第2族、第4族、第5族、第8族和第10~14族。其中,考虑到得到的第一酞菁组合物的光电导特性,优选为第1族、第4族、第5族、第13族和第14族。因为当酞菁化合物的单个分子结构是所谓的羽毛球结构时,得到的第一酞菁组合物将表现出更好的光电导性,所以特别优选第4族、第5族和第13族。
M1除了为氢原子外,通常为主族金属元素、半金属元素或过渡金属元素。
M1除了为氢原子外,M1中心原子所属的周期表的具体周期通常为第2周期及第2周期以下周期,即第2周期、第3周期等;优选第3周期及第3周期以下周期,即第3周期、第4周期、第5周期等;更优选第4周期及第4周期以下周期。原因是,因为第一酞菁组合物的光电导特性受未取代酞菁的光电导特性影响大,所以希望作为未取代酞菁的通式(1)的酞菁化合物具有优异的光电导性。
另一方面,M1中心原子所属的周期表的具体周期优选为第6周期或第6周期以上周期,更优选第5周期或第5周期以上周期。原因是,如果中心原子或中心原子团(以下在适当的不需要区分中心原子和中心原子团的场合,将其统称为“中心物质”)M1占有太大的体积,则分子将会是中心物质夹在酞菁环之间的所谓的双层型或三层型,这种形式的酞菁化合物具有差的光电导性。顺便提及,在本说明书中,涉及周期表的“以上”一词是指该周期或周期表中该周期以上的周期。
M1的例子如下当M1是单种元素的一个或一个以上的原子时,中心原子M1的例子是氢、铜、锌、镁等。
当M1是中心原子与其它物质结合的原子团时,中心原子团M1的例子包括卤化物类,例如氯铝、氯镓、氯铟、二氯锡、二氯硅和二氯锗;氢氧化物类,例如羟基铝、羟基镓、羟基铟、二羟基锡、二羟基硅和二羟基锗;氧化物类,例如氧钛和氧钒;金属醇盐,例如甲氧基镓、乙氧基镓、甲氧基铟、(R,R)-二甲基乙二醇钛、(R,S)-二甲基乙二醇钛、(S,S)-二甲基乙二醇钛和二甲氧基钛等。
另一方面,在通式(2)中,M2表示能键合到酞菁上的任意原子(中心原子)或原子团(中心原子团);如M1的情况,M2可以是单种元素的中心原子或中心原子与其它物质结合的中心原子团(化合物)。可以任意地选择所述其它物质;与其它物质结合的中心原子团M2例如为氧化物、氢氧化物、卤化物等。但是,如上述,M2中心原子必须是与上述M1中心原子种类不同的原子。
考虑到作为本发明的取代的酞菁,通式(2)的酞菁化合物的制造收率(即生产的产率),M2中心原子所属的长周期型周期表的族有第2族、第4族、第5族、第8族和第10~14族。其中,考虑到得到的第一酞菁组合物的光电导特性,优选为第4族、第5族、第13族和第14族。因为当酞菁化合物的单个分子结构是所谓的羽毛球结构时,得到的第一酞菁组合物将表现出理想的光电导性,所以特别优选第4族、第5族和第13族。
M2中心原子通常为主族金属元素、半金属元素或过渡金属元素。
M2中心原子所属的周期表的具体周期通常为第2周期及第2周期以下周期,即第2周期、第3周期、第4周期、第5周期等;优选第3周期及第3周期以下周期;更优选第4周期及第4周期以下周期。原因如下因为例如通式(2)的化合物等本发明的取代的酞菁的生产通常需要昂贵的化合物作原料,所以希望其制造收率高。为了增加通式(2)的酞菁化合物的制造收率,优选使用在酞菁环形成时产生显著的模板效应的元素。
另一方面,M2中心原子所属的周期表的特定周期优选为第6周期或第6周期以上周期,更优选第5周期或第5周期以上周期。原因与M1的情况相同如果中心物质M2占有太大的体积,则分子将会是中心物质夹在酞菁环之间的所谓的双层型或三层型,这种形式的酞菁化合物具有差的光电导性。
M2的具体例子除氢原子外,也可以是与作为M1的具体例子所列举的相同的物质。
在上述通式(2)中,X1~X4各自独立地表示卤原子,即氟原子、氯原子、溴原子或碘原子。在它们中,因为考虑到通式(2)的酞菁化合物的结晶性时,希望作为取代基的卤素基团X1~X4具有小的尺寸,所以优选X1~X4各自为氟原子或氯原子。考虑到第一酞菁组合物的光电导特性,特别优选氟原子。
在上述通式(2)中,a、b、c和d分别表示卤原子X1~X4的数目,表示0~4的整数,而且满足a+b+c+d≥1。
因为如果a+b+c+d的值太小,不能得到具有需要的光电导性的酞菁组合物,所以a+b+c+d的值优选为2或大于2,更优选3或大于3。相反,如果a+b+c+d的值太大,得到的酞菁组合物的充电性变差,因此该值优选为7或小于7,更优选6或小于6。
考虑到其原料的通用性,a、b、c和d各自优选为2或小于2,更优选1或小于1。
关于生产的容易性,优选a=b=c=d。考虑到通式(2)的酞菁化合物的结晶性,更优选a=b=c=d=1。
另一方面,本发明的第二酞菁组合物(此后称为“第二酞菁组合物”)的特征在于,它同时含有下列通式(3)表示的至少一种酞菁化合物和下列通式(4)表示的至少一种酞菁化合物。在通式(3)和(4)中,M3和M4表示同种原子,至少Y1或Y2之一表示卤原子。
化学式9
化学式10 下面详细地解释通式(3)和通式(4)。
在通式(3)中,M3表示周期表第13族的原子。如在通式(1)的解释中提及的,因为第二酞菁组合物的光电导特性受未取代的酞菁的光电导特性影响大,所以希望作为未取代的酞菁的通式(3)的酞菁化合物具有优异的光电导性。因此优选M3选自Al、Ga和In。考虑到通式(3)的酞菁化合物的结晶稳定性,特别优选Ga和In。
Y1表示能键合到M3上的一价键合基团。其具体例子包括卤原子、羟基、烷氧基、芳氧基和烷硫基。考虑到生产的容易性,优选它们中的卤原子、羟基和烷氧基。考虑到酞菁组合物的光电导性,更优选卤原子和羟基,进而更优选卤原子。
在通式(4)中,M4表示周期表第13族的原子。如后面描述的,特别优选本发明的酞菁组合物表现出共结晶性。
Y2表示能键合到M4上的一价键合基团。如Y1的情况,其具体例子包括卤原子、羟基、烷氧基、芳氧基和烷硫基。考虑到生产的容易性,优选它们中的卤原子、羟基和烷氧基。考虑到酞菁组合物的光电导性,更优选卤原子和羟基,进而更优选卤原子。
在上述通式(4)中,X5~X8各自独立地表示卤原子,即氟原子、氯原子、溴原子或碘原子。在它们中,因为考虑到通式(4)的酞菁化合物的结晶性时,希望作为取代基的卤素基团X5~X8具有小的尺寸,所以优选X5~X8各自为氟原子或氯原子。考虑到第二酞菁组合物的光电导性,特别优选氟原子。
在通式(4)中,e、f、g和h分别表示卤原子X5~X8的数目,表示0~4的整数,并且满足e+f+g+h≥1。
因为如果e+f+g+h的值太小,则不能得到具有需要的光电导性的酞菁组合物,e+f+g+h的值优选为2或大于2,更优选3或大于3。相反,如果e+f+g+h的值太大,则得到的酞菁组合物的充电性变差,因此该值优选为7或小于7,更优选6或小于6。
考虑到原料的通用性,e、f、g和h各自优选为2或小于2,更优选为1或小于1。
关于生产的容易性,优选e=f=g=h。考虑到通式(4)的酞菁化合物的结晶性,特别优选e=f=g=h=1。
在通式(2)的酞菁化合物和通式(4)的酞菁化合物中,作为卤原子X1~X8与酞菁环的六元环键合的位置,可以列举如下式(6)中(a)~(d)表示的四个位置(式(6)表示通式(2)或通式(4)的六元环部分的部分结构)。对卤原子的键合位置没有特别的限定,可以键合在(a)~(d)中的任何位置上。但是,两个卤原子X1~X8不键合在同一位置上。
化学式11 在例如通式(2)中a=b=c=d=1或通式(4)中e=f=g=h=1的情况中,通过选择在下述制备方法中使用的原料种类,可以制备通式(2)的酞菁化合物或通式(4)的酞菁化合物,因此制备的化合物具有下列两种结构中的所需要的一种卤原子键合到六元环的位置(a)或位置(b)上的结构;卤原子键合到六元环的位置(c)或位置(d)上的结构。
以通式(2)的酞菁化合物的合成为例。在作为原料的具有卤原子X1~X4的取代的邻苯二甲腈的异构体中,如果单独地使用下式(7)的取代的邻苯二甲腈,得到的酞菁化合物具有所有卤原子X1~X4键合到位置(a)或位置(b)上的结构,但是如果单独地使用下式(8)的取代的邻苯二甲腈,得到的酞菁化合物具有所有卤原子X1~X4键合到位置(c)或位置(d)上的结构。以通式(4)的酞菁化合物的合成作为另一个例子。在作为原料的具有卤原子X5~X8的取代的邻苯二甲腈的异构体中,如果单独地使用下式(7)的取代的邻苯二甲腈,得到的酞菁化合物具有所有卤原子X5~X8键合到位置(a)或位置(b)上的结构,但是如果单独地使用下式(8)的取代的邻苯二甲腈,得到的酞菁化合物具有所有卤原子X5~X8键合到位置(c)或位置(d)上的结构。在式(7)和式(8)中,卤原子X1~X8用符号Xx表示。
化学式12 自然地,组合地使用两种或两种以上的这些取代的邻苯二甲腈异构体作原料,可以得到含有不同键合位置(a)、(b)、(c)、(d)的通式(2)的酞菁化合物或通式(4)的酞菁化合物。但是,考虑到生产成本,优选单独地使用式(7)的取代的邻苯二甲腈作原料。在此基础上,作为通式(2)的a=b=c=d=1的酞菁化合物或通式(4)的e=f=g=h=1的酞菁化合物的结构,优选所有卤原子键合到位置(a)或位置(b)上的结构。
另外,当卤原子X1~X4的总数等于或大于2时或当卤原子X5~X8的总数等于或大于2时,通式(2)的酞菁化合物或通式(4)的酞菁化合物各自具有构造异构体。作为例子,通式(2)的a=b=c=d=1和所有卤原子X1~X4键合到位置(a)或位置(b)上的酞菁化合物根据卤原子X1~X4的键合位置组合的不同,具有六个不同的构造异构体。作为另一个例子,通式(4)的e=f=g=h=1和所有卤原子X5~X8键合到位置(a)或位置(b)上的酞菁化合物根据卤原子X1~X4的键合位置组合的不同,具有六个不同的构造异构体。为了方便起见,此后这些构造异构体用符号(I)~(VI)表示。
各构造异构体(I)~(VI)中的卤原子X1~X4、X5~X8的键合位置的组合表示在下表1中。尽管每个构造异构体(III)~(VI)可以是多种组合,但是组合之一作为代表例表示表1中。
在通式(2)的酞菁化合物或通式(4)的酞菁化合物的六元环中,表1所示的环A、环B、环C和环D各自表示下式(9a)或(9b)表示的位置的环。
化学式13

表1

以上通式(2)的酞菁化合物和通式(4)的酞菁化合物各自不局限于上述构造异构体(I)~(VI)中的一个,可以是任何一种异构体的纯物质或两种或两种以上的异构体的混合物。但是,通常得到所有六种构造异构体(I)~(VI)的混合物。在这种情况中,也不特别地限定各个构造异构体(I)~(VI)的组成比。
并且,可以作为多种取代基(卤原子)数目不同的酞菁化合物的组合物得到通式(2)的酞菁化合物和通式(4)的酞菁化合物。
通式(2)的酞菁化合物和通式(4)的酞菁化合物各自是结晶性的或无定形的(非结晶性),但是考虑到用作光电导材料,优选通式(2)的酞菁化合物和通式(4)的酞菁化合物各自具有下列特定的结晶型或无定形的性质。
具体地,就X射线衍射光谱的布喇格角(Bragg angle)(2θ±0.2°)而言,上述化合物的优选模式为i)至少在7.0°、16.6°、25.4°和27.0°处具有强峰的那些化合物;ii)至少在6.9°、13.0°、16.2°、25.7°和28.0°处具有强峰的那些化合物;iii)在7.0°、16.5°和27.2°处具有峰的那些化合物;iv)在6.9°、16.0°和26.4°处具有峰的那些化合物;和v)在3°~40°的范围内没有明显峰的那些化合物(此下也称为“无定形物”)。
1-2.酞菁组合物的组成在本发明的第一和第二酞菁组合物(在不需要区分的情况下,以下将第一酞菁组合物和第二酞菁组合物简单地统称为“本发明的酞菁组合物”)中,不限定各酞菁化合物的组成比例;可以任意地选择具体的组成比例。
但是,当本发明的酞菁组合物的总重量为100重量份时,所述组合物中含有的本发明的取代的酞菁(即,对于第一酞菁组合物,为通式(2)的酞菁组合物;对于第二酞菁组合物,为通式(4)的酞菁组合物)的组成比通常为0.1重量份或0.1重量份以上。如果本发明的取代的酞菁的组成比过低,则当该组合物用作电荷产生物质时,不能得到所需的感光度,因此本发明的取代的酞菁的组成比优选为1重量份或高于1重量份。另一方面,考虑到得到的电子照相感光体的环境依赖性等的平衡,本发明的取代的酞菁的组成比优选为5重量份或高于5重量份,更优选10重量份或高于10重量份。
并且,本发明的取代的酞菁的生产需要一般昂贵的原料,例如取代的或未取代的邻苯二甲腈、1,3-二亚氨基异二氢吲哚、邻苯二甲酸等,因此考虑到生产成本,本发明的取代的酞菁的组成比通常为80重量份或低于80重量份。另一方面,考虑到本发明的酞菁组合物的光电导性,该比例优选为50重量份或低于50重量份,考虑到制备时的操作性,更优选40重量份或低于40重量份。
另外,具有至少一个卤原子X1~X8的本发明的取代的酞菁可以称为卤代酞菁。
1-3.酞菁组合物的存在状态不对本发明的酞菁组合物的存在状态进行限定,只要它含有本发明的未取代的酞菁{即,第一酞菁组合物中的通式(1)的酞菁化合物,第二酞菁组合物中的通式(3)的酞菁组合物}和本发明的取代的酞菁就可以,可以是任意存在状态。存在状态的具体例子为不同种颗粒的混合状态;组合物以分子水平混合和分子排列没有任何规则性的无定形状态;组合物以分子水平混合和分子排列具有规则性的共结晶性状态等。但是,一般优选该组合物是无定形状态或共结晶性状态。因为无定形状态一般具有缺乏稳定性的部分,所以特别优选共结晶性状态。本发明的酞菁组合物可以具有单独一种存在状态或具有任意组合和比例的多种存在状态。
并且,不限定由本发明的酞菁组合物表现出的粉末X射线谱图,可以是任何谱图。
例如,当本发明的酞菁组合物是不同粉末的混合物形式时,它表现为叠加混合前的酞菁化合物颗粒的各个谱图(即,通式(1)的酞菁化合物和通式(2)的酞菁化合物的谱图,或通式(3)的酞菁化合物和通式(4)的酞菁化合物的谱图)而得到的粉末X射线谱图。
当本发明的酞菁组合物为无定形状态时,它的粉末X射线谱图没有任何明显峰。
当本发明的酞菁组合物为共结晶状态时,它主要表现出本发明的酞菁组合物含有的任一酞菁结晶的晶体结构,但是,它有时也呈不属于所含酞菁结晶的晶型中任一种的新晶型。
并且,当本发明的酞菁组合物涉及两种或两种以上的存在状态时,其粉末X射线谱图等同于各个存在状态所对应的谱图的叠加谱图。
然而,共结晶状态的本发明的酞菁组合物所表现出的粉末X射线谱图可以是任何已知晶型的谱图。但是,当具有与已知的未取代酞菁中光电导性优异的未取代酞菁的晶型相类似的晶型时,或当具有与由已知未取代酞菁组成的酞菁组合物中光电导性优异的酞菁组合物的晶型相类似的晶型时,具有共结晶状态的本发明的酞菁组合物将表现出优异的光电导性。因此,具有共结晶状态的本发明的酞菁组合物优选具有与上述光电导性优异的材料的晶型相类似的晶型。公开了优选的晶型的已知文献的例子如下,但是本发明的酞菁组合物的晶型不局限于下列晶型,只要不和本发明的要旨相抵触就可以。
关于A、B、C和D型TiOPc(其中Pc表示酞菁),提及下列文献。
特开昭62-67094号公报;特开昭61-217050号公报;特开昭61-239248号公报;特开平1-207755号公报;特开平4-323270号公报;特开平6-287189号公报;特开平2-008256号公报;特开平2-289658号公报;特开平7-271073号公报;和特开平3-128973号公报。
关于其它I型和II型GaClPc,提及下列文献。
特开平1-221459号公报;特开平5-98181号公报;和特开平11-172142号公报;关于V型GaOHPc,提及下列文献。
特开平5-263007号公报;特开平6-279698号公报;
特开平10-67946号公报;和特开2002-235014号公报。
关于PcGaOGaPc,提及下列文献。
特开平10-88023号公报;和特开2000-219817号公报。
关于X型和τ型无金属酞菁,提及下列文献。
Journal of Imaging Science,第35卷,第4期,第235-239页(1991);Electrophotographythe society journal,第24卷,第2期,1985,第102-107页;Journal of Imaging Technology 117-11(1985);和美国专利第3357989号公报的说明书。
关于酞菁化合物的组合物,提及下列文献。
特开平4-351673号公报;特开平4-372663号公报;特开平5-45914号公报;特开平5-186702号公报;特开平6-234937号公报;特开平8-41373号公报;特开平6-175382号公报;特开平6-145550号公报;特开平3-9962号公报;特开2000-313819号公报;特开2000-336283号公报;和特开2002-244321号公报。
尽管本发明的酞菁组合物的形式没有特别限制,但是通常为颗粒形式。不特别地限定粒径,但是,从充分发挥作为光电导材料的性能的观点来看,优选粒径在通常10nm或大于10nm,优选50nm或大于50nm,且通常1.0μm或小于1.0μm,优选500nm或小于500nm,更优选300nm或小于300nm的范围。
1-4.酞菁化合物的制备方法下面接着解释以上通式(1)~(4)的酞菁化合物的制备方法。不特别地限定以上通式(1)~(4)的酞菁化合物的制备方法,可以使用任何制备方法,只要能制备出上述通式(1)~(4)的酞菁化合物即可。作为例子,可以提及邻苯二甲腈法,其中,热熔融或在有机溶剂的存在下加热取代的或未取代的邻苯二甲腈和例如金属卤化物等金属盐;热熔融或在有机溶剂的存在下加热例如取代的或未取代的1,3-二亚氨基异二氢吲哚等二氢吲哚化合物和例如金属卤化物等金属盐的方法;Weiler法,其中,热熔融或在有机溶剂的存在下加热取代的或未取代的邻苯二甲酸酐、脲和例如金属卤化物等金属盐;使取代的或未取代的氰基苯酰胺与金属盐反应的方法;使取代的或未取代的二锂酞菁与金属盐反应的方法等。
优选在有机溶剂的存在下进行上述通式(1)~(4)的酞菁化合物的合成。如果在例如氟代氯镓酞菁(即上述通式(4)的化合物,其中M4是镓,Y2是氯原子,X5-X8都是氟原子)的生产中,在无溶剂条件下进行合成,酞菁环也可能被氯化,因此不能得到需要结构的酞菁化合物。另外,如果不使用任何有机溶剂,例如反应中存在的杂质、未反应的原料和反应产生的副产物等物质会包含在酞菁固体中,对得到的酞菁化合物的光电导性产生有害影响。
作为合成用的有机溶剂,优选使用对反应具有惰性和高沸点的溶剂。提及下列溶剂作为例子卤化的芳香族溶剂,例如α-氯萘、β-氯萘、邻二氯苯和二氯甲苯;烷基化的芳香族溶剂,例如α-甲基萘、β-甲基萘和(四磷酸化)四氢萘;二芳基化的脂肪族溶剂,例如二苯基甲烷和二苯基乙烷;烷氧基化的芳香族溶剂,例如甲氧基萘;多元醇溶剂,例如乙二醇;醚溶剂,例如二苯醚、二乙二醇二甲醚和丁基溶纤剂;杂环芳香族溶剂,例如喹啉;非质子极性溶剂,例如环丁砜、二甲亚砜、N-甲基甲酰胺和1,3-二甲基-2-咪唑啉酮等。在这些溶剂中,优选卤化的芳香族溶剂、烷基化的芳香族溶剂和非质子极性溶剂。这些溶剂可以单一地使用或以两种或两种以上的溶剂的混合溶剂组合地使用。
根据邻苯二甲腈法,在25℃~300℃下,在有机溶剂中,搅拌或搅拌并加热取代或未取代的邻苯二甲腈和金属盐,从而制备以上通式(1)~(4)的酞菁化合物。必要时,该反应也可以在例如季铵盐、脲和1,8-二氮杂双环[5.4.0]-7-十一碳烯(DBU)等催化剂的存在下进行。
在通式(2)的酞菁化合物或通式(4)的酞菁化合物的合成中,如果合成反应时,使用一种取代的邻苯二甲腈,可以得到酞菁骨架的四个苯环(即环A~D)具有相同数目的取代基(卤原子)的酞菁化合物。另一方面,如果合成反应时,使用各自具有不同数目的取代基的邻苯二甲腈(包括未取代的邻苯二甲腈),可以得到酞菁骨架的四个苯环具有不同数目的取代基的酞菁化合物的混合物。所述化合物和混合物在本发明中都是可接受的。
作为取代的邻苯二甲腈的等价物,也可以使用取代的二亚氨基异二氢吲哚、取代的邻苯二甲酸、取代的邻苯二甲酸酐、取代的氰基苯酰胺等。
1-5.本发明的酞菁组合物的制备方法接着解释本发明的酞菁组合物的制备方法。不特别地限定本发明的酞菁组合物的制备方法,可以使用任何制备方法,只要它能制备本发明的酞菁组合物就可以。但是,通常的制备方法通过混合本发明的未取代的酞菁{通式(1)、(3)的酞菁化合物}和本发明的取代的酞菁{通式(2)、(4)的酞菁化合物}来进行。
另外,特别是为了制备共结晶状态的本发明的酞菁组合物,在混合本发明的未取代的酞菁和本发明的取代的酞菁之后,理想的是进行无定形化步骤和共结晶化步骤,在所述无定形化步骤中,使本发明的未取代的酞菁和取代的酞菁的结晶中的分子排列无规则化,从而成为无定形状态;在所述共结晶化步骤中,通过溶剂处理等,诱导在无定形化步骤中无定化的酞菁组合物进入在分子水平上具有规则性的共结晶性状态。也可以同时进行无定形化步骤和共结晶化步骤。
无定形化步骤是使本发明的未取代的酞菁和本发明的取代的酞菁无定形化的步骤。
对于无定形化步骤的操作没有特别的限制,可以使用任何方法,只要它能使上述本发明的未取代的酞菁和本发明的取代的酞菁无定形化就可以。作为具体例子,可以提及各种已知的处理方法,包括化学无定形化处理方法(此后称为“化学处理方法”),例如酸膏法和酸浆法;用机械或物理力的机械无定形化处理方法(此后称为“机械处理方法”),例如研磨法。这些方法可以单独进行一种,或任意组合地进行两种或两种以上的方法。
当使用例如酸膏法或酸浆法等化学处理方法时,作为原料的酞菁化合物存在以下可能性发生化学反应,因酞菁环的开裂而使分子破坏,使用的酸带来的杂质残留下来。因此,该方法对得到的本发明的酞菁组合物的光电导性产生有害影响。另外,由于化学处理方法需要大量的酸,所以它在处理废酸等的过程中存在大的环境负荷。因为这个原因,无定形化步骤优选使用机械处理方法。即,在本发明的酞菁组合物的生产中,优选进行机械无定形化步骤,其中,通过机械处理方法使本发明的未取代的酞菁和本发明的取代的酞菁无定形化。
在这些步骤中,本发明的未取代的酞菁和取代的酞菁可以分别独立地进行无定形化,或者可以先混合本发明的未取代的酞菁和取代的酞菁,然后使得到的混合物无定形化。为了得到更均匀的共结晶性组合物,优选先混合本发明的未取代的酞菁和取代的酞菁,然后对得到的混合物进行无定形化处理。
对用来实施机械处理方法的装置没有限定,可以使用任何已知的装置,其例子包括自动研钵、行星磨、振动球磨机、CF磨、辊式磨碎机、砂磨机、捏合机、球磨机、磨碎机、辊磨机、均匀混合器等。
当进行研磨处理作为机械处理时,使用的研磨介质可以是任何已知的研磨介质,例如玻璃珠、钢珠、氧化铝珠、氧化锆珠、碳化硅珠、氮化硅珠、氮化硼珠等。并且,在进行研磨处理中,除了研磨介质以外,还可以使用研磨后容易除去的例如食盐或芒硝等研磨助剂。
机械处理可以以干式或湿式进行。
当进行干式机械处理时,处理温度通常为0℃或高于0℃,优选10℃或高于10℃,且通常为150℃或低于150℃,优选100℃或低于100℃。
当进行湿式机械处理时,可以使用任何已知的溶剂。已知的溶剂的具体例子包括饱和链状和环状脂肪族溶剂,例如戊烷、己烷、辛烷、壬烷、甲基环己烷和乙基环己烷;芳香族溶剂,例如甲苯、二甲苯、萘、四氢萘、甲基萘、二苯基甲烷和茴香醚;卤代芳香族溶剂,例如氯苯、二氯苯和氯萘;醇类溶剂,例如甲醇、乙醇、异丙醇、正丁醇和苯甲醇;脂肪族多元醇,例如乙二醇、甘油和聚乙二醇;链状和环状酮类溶剂,例如丙酮、环己酮和甲乙酮;酯类溶剂,例如甲酸甲酯、乙酸乙酯和乙酸正丁酯;卤代烃类溶剂,例如二氯甲烷、氯仿和1,2-二氯乙烷;链状和环状醚类溶剂,例如乙醚、二甲氧基乙烷、四氢呋喃、1,4-二氧己环、1,3-二氧戊环(1,3-dioxaline)、甲基溶纤剂、乙基溶纤剂和丁基溶纤剂;非质子极性溶剂,例如二甲基甲酰胺、N-甲基-2-吡咯烷酮、二甲基亚砜、环丁砜、1,3-二甲基-2-咪唑啉酮、2-丁内酯和六甲基磷酸三酰胺;含氮化合物,例如正丁胺、异丙胺、二乙胺、三乙醇胺、乙二胺、三乙二胺和三乙胺;矿物油,例如石脑油;和水。考虑到湿式机械处理时的操作性,在这些溶剂中,优选使用链状和环状饱和脂肪族溶剂、芳香族溶剂、醇类溶剂、链状和环状酮类溶剂、酯类溶剂、链状和环状醚类溶剂、非质子极性溶剂和水。这些溶剂可以单独地使用,或者以任意组合和比例使用两种或两种以上的溶剂。
在湿式机械处理时,相对于1重量份酞菁组合物,溶剂的使用量的下限通常为0.01重量份或大于0.01重量份,从生产率的角度看,优选0.1重量份或大于0.1重量份。上限通常为200重量份或小于200重量份,从生产率的角度看,优选100重量份或小于100重量份。
关于湿式机械处理时的处理温度,其下限通常等于或高于溶剂的凝固点,从安全性的角度考虑,优选10℃或高于10℃。上限通常等于或低于溶剂的沸点,从安全性的角度考虑,优选200℃或低于200℃,更优选150℃或低于150℃。
在无定形化步骤之后,对无定形化的本发明的未取代的酞菁和本发明的取代的酞菁进行共结晶化步骤。共结晶化步骤是将通过无定形化步骤无定形化的本发明的未取代的酞菁和本发明的取代的酞菁诱导为具有分子水平的规则性的共结晶性状态的步骤。
实施共结晶化步骤的操作没有特别限定,可以使用任何方法,只要它能将本发明的未取代的酞菁和本发明的取代的酞菁诱导为具有分子水平的规则性的共结晶性状态即可。通常的进行方式是,对机械无定形化处理之后的无定形固体进行溶剂处理,从而将它转变成所需要的晶型。当进行研磨处理作为机械无定形化处理时,首先将无定形固体从研磨介质中分离出来,然后进行溶剂处理,或者与研磨介质一起进行溶剂处理。实施溶剂处理的具体方法可以是,经搅拌将无定形固体分散在溶剂中的处理方法,或将无定形固体暴露于溶剂蒸汽的处理方法。另外,也可以同时进行无定形化步骤和共结晶化步骤。
作为用于溶剂处理的溶剂的具体例子,可以提及饱和链状和环状脂肪族溶剂,例如戊烷、己烷、辛烷、壬烷、甲基环己烷和乙基环己烷;芳香族溶剂,例如甲苯、二甲苯、萘、四氢萘、甲基萘、二苯基甲烷和茴香醚;卤代芳香族溶剂,例如氯苯、二氯苯和氯萘;醇类溶剂,例如甲醇、乙醇、异丙醇、正丁醇和苯甲醇;脂肪族多元醇,例如乙二醇、甘油和聚乙二醇;链状和环状酮类溶剂,例如丙酮、环己酮和甲乙酮;酯类溶剂,例如甲酸甲酯、乙酸乙酯和乙酸正丁酯;卤代烃类溶剂,例如二氯甲烷、氯仿和1,2-二氯乙烷;链状和环状醚类溶剂,例如乙醚、二甲氧基乙烷、四氢呋喃、1,4-二氧己环、1,3-二氧戊环、甲基溶纤剂、乙基溶纤剂和丁基溶纤剂;非质子极性溶剂,例如二甲基甲酰胺、N-甲基-2-吡咯烷酮、二甲基亚砜、环丁砜、1,3-二甲基-2-咪唑啉酮、2-丁内酯和六甲基磷酸三酰胺;含氮化合物,例如正丁胺、异丙胺、二乙胺、三乙醇胺、乙二胺、三乙二胺和三乙胺;矿物油,例如石脑油;和水。考虑到转变晶型中的操作性,在这些溶剂中,优选使用饱和的链状和环状脂肪族溶剂、芳香族溶剂、醇类溶剂、链状和环状酮类溶剂、酯类溶剂、链状和环状醚类溶剂、非质子极性溶剂和水。这些溶剂可以单独地使用,或者以任意组合和比例使用两种或两种以上的溶剂。
关于溶剂处理时的处理温度,其下限通常等于或高于所使用溶剂或混合溶剂的凝固点,从安全性的角度考虑,优选10℃或高于10℃。上限通常等于或低于所使用溶剂或混合溶剂的沸点,从安全性的角度考虑,优选200℃或低于200℃。
相对于1重量份酞菁组合物,溶剂的量通常为0.01重量份或大于0.01重量份,考虑到生产率,优选0.1重量份或大于0.1重量份,且通常为500重量份或小于500重量份,考虑到生产率,优选250重量份或小于250重量份。
当在微细化步骤中进行湿式研磨处理时,必要时,在溶剂处理时也可以使用例如玻璃珠、氧化铝珠、钢珠、氧化锆珠、碳化硅珠、氮化硅珠、氮化硼珠等已知的研磨介质进行研磨处理。
在共结晶化步骤中,在溶剂处理之后,通常经干燥从得到的本发明的酞菁组合物中除去溶剂处理用的溶剂。不限定干燥方法,可以采用任何方法,包括常温干燥、减压干燥、热空气干燥和冷冻干燥等公知方法。
下面解释本发明的酞菁组合物的制备方法所具有的优点。过去,如例如专利文献3等现有技术,在酞菁化合物的制备中使用大量的浓硫酸。由于在这种情况中产生大量的废物,所以废物处理等对环境的负担非常大。另外,还有如下缺点使用酸将产生化学反应,当该化合物用在电子照相中时,因为来源于酸的杂质,感光度和充电性等电性能将变差。相反,本发明的酞菁组合物具有如下优点由于它的制备过程中不需要浓硫酸等,因此对自然环境几乎没有任何有害影响,对感光度和充电性等电性能没有任何有害影响,并具有高的生产率。
2.氟代镓酞菁化合物2-1.氟代镓酞菁化合物的结构本发明使用的氟代镓酞菁化合物是由下列通式(5)表示的化合物,其中,在酞菁环的芳香环上发生氟原子取代,该酞菁环配位到镓金属上。
化学式14
在以上通式(5)中,X表示卤原子,k、l和m分别表示取代基氟原子的数目,k、l和m各自独立地表示0~4的整数。
尽管k、l和m各自独立地为选自0~4的任意整数,但是因为如果氟原子数太少,则不能得到需要的充电性和残留电位,所以优选满足1≤k+l+m,更优选3≤k+l+m。另一方面,如果氟原子数太多,也不能得到需要的充电性和残留电位,因此优选满足式子k+l+m≤6。另外,随着取代基数目增加,例如邻苯二甲腈、邻苯二甲酸酐或1,3-二亚氨基异二氢吲哚等原料化合物的单位成本将更高,因此考虑到生产成本,优选满足k+l+m≤5。从得到的氟代镓酞菁化合物的光电导性来看,更优选满足k+l+m=3,从生产用的原料的通用性角度考虑,特别优选满足k=l=m=1。
酞菁环的各个六元环具有氟原子可以键合的如下式(6)中(a)~(d)表示的四个位置(其中式(6)表示对应着通式(5)的六元环部分的部分结构)。对每个氟原子不特别地限定其键合位置,可以键合在选自(a)~(d)中的任意位置上,但是任意两个氟原子不键合在同一位置上。
化学式15 在例如k=l=m=1的情况中,通过选择下述生产方法中使用的原料种类,可以一定程度地选择性地产生氟原子键合到六元环的位置(a)或位置(b)上的结构和氟原子键合到六元环的位置(c)或位置(d)上的结构。具体地,在作为原料之一的单氟邻苯二甲腈的异构体中,如果仅使用4-氟邻苯二甲腈,则得到的氟代镓酞菁化合物具有氟原子全部键合到位置(a)或位置(b)上的结构。另一方面,如果仅使用3-氟邻苯二甲腈,则得到的氟代镓酞菁化合物具有氟原子全部键合到位置(c)或位置(d)上的结构。
自然地,合适地组合地使用氟邻苯二甲腈的这些异构体,可以得到具有不同键合位置(a)、(b)、(c)、(d)的氟代镓酞菁化合物。但是,考虑到生产成本,优选单独地使用4-氟邻苯二甲腈作原料。在此基础上,就k=l=m=1的氟代镓酞菁化合物的结构而言,优选所有氟原子键合到位置(a)或位置(b)上的结构。
另外,当取代基氟的总数等于或大于2时,氟代镓酞菁化合物具有构造异构体。以所有氟原子键合到位置(a)或位置(b)上的氟代镓酞菁化合物为例,根据氟的键合位置的组合,存在6种不同的构造异构体(为了方便起见,此后这些构造异构体用符号(I)~(VI)表示)。构造异构体(I)~(VI)中氟原子的键合位置的组合表示在下表2中。尽管对于构造异构体(III)~(VI)来说有多种组合,但是这些组合之一作为代表例表示在表2中。
在本发明的氟代镓酞菁化合物的六元环中,表2所示的环A、环B、环C和环D表示位于下式(10)表示的位置的环。
化学式16

表2

本发明的氟代镓酞菁化合物不局限于上述构造异构体(I)~(VI)中的一种,可以是任何一种异构体的纯物质或两种或两种以上异构体的混合物。但是,通常得到所有六种构造异构体(I)~(VI)的混合物。在这种情况中,也不特别地限定各个构造异构体(I)~(VI)的组成比。
并且,本发明的氟代镓酞菁化合物可以以多种取代基氟的数目不同的化合物的组合物得到。
本发明的氟代镓酞菁化合物可以是结晶性的或无定形的(非结晶性的),但是考虑到它们作为光电导材料用途,优选具有以下列举的特定的晶型或无定形性质。
其中,依据X射线衍射光谱的布喇格角(Bragg angle)(2θ±0.2°),优选的化合物为(1)在7.0°、16.5°和27.2°处具有峰的那些化合物;(2)在6.9°、16.0°和26.4°处具有峰的那些化合物;和(3)在3°~40°的范围内没有明显峰的那些化合物(无定形物)。特别优选氟取代基的数目为4的氟代氯镓酞菁。
另外,对本发明的氟代镓酞菁化合物不限定其形式,但是通常为颗粒形式。也不特别地限定粒径,但是,从充分发挥作为光电导材料的特性的角度来看,希望粒径在通常0.01μm或大于0.01μm,优选0.03μm或大于0.03μm,且通常0.5μm或小于0.5μm,优选0.3μm或小于0.3μm,更优选0.15μm或小于0.15μm的范围。
2-2.氟代镓酞菁化合物的制备方法本发明的氟代镓酞菁化合物可以根据制备酞菁的已知方法生产。制备方法的例子为邻苯二甲腈法,其中,热熔融或在有机溶剂的存在下加热氟代邻苯二甲腈和例如金属卤化物等金属盐;热熔融或在有机溶剂的存在下加热例如氟代1,3-二亚氨基异二氢吲哚等二氢吲哚化合物和例如金属卤化物等金属盐的方法;Weiler法,其中,热熔融或在有机溶剂的存在下加热氟代邻苯二甲酸酐、脲和例如金属卤化物等金属盐;使氟代氰基苯酰胺与金属盐反应的方法;使氟代二锂酞菁与金属盐反应的方法等。
优选在有机溶剂的存在下进行本发明的氟代镓酞菁化合物的合成。如果在例如氟代氯镓酞菁(即以上通式(5)的化合物,其中X是氯原子)的生产中在无溶剂条件下进行合成,则酞菁环也可能被氯化,因此不能得到所需结构的氟代氯镓酞菁。另外,如果不使用任何有机溶剂,则例如反应中存在的杂质、未反应的原料和反应产生的副产物等物质会包含在酞菁固体中,对得到的氟代镓酞菁化合物的光电导性产生有害影响。
作为合成用的有机溶剂,优选使用对反应具有惰性和具有高沸点的溶剂。其例子包括卤化的芳香族溶剂,例如α-氯萘、β-氯萘、邻二氯苯和二氯甲苯;烷基化的芳香族溶剂,例如α-甲基萘、β-甲基萘和四氢萘(萘满);二芳基化的脂肪族溶剂,例如二苯基甲烷和二苯基乙烷;烷氧基化的芳香族溶剂,例如甲氧基萘;多元醇溶剂,例如乙二醇;醚类溶剂,例如二苯醚、二乙二醇二甲醚和丁基溶纤剂;杂环芳香族溶剂,例如喹啉;非质子极性溶剂,例如环丁砜、二甲亚砜、N-甲基甲酰胺和1,3-二甲基-2-咪唑啉酮等。在这些溶剂中,优选使用卤化的芳香族溶剂、烷基化的芳香族溶剂和非质子极性溶剂。这些溶剂可以单一地使用或以两种或两种以上的溶剂的混合溶剂组合地使用。
根据邻苯二甲腈法,在25℃~300℃下,在上述有机溶剂中,搅拌或搅拌加热氟代邻苯二甲腈和卤化的镓化合物,从而可以制备本发明的氟代镓酞菁化合物。必要时,该反应也可以在例如季铵盐、脲和1,8-二氮杂双环[5.4.0]-7-十一碳烯(DBU)等催化剂的存在下进行。
作为更具体的例子,可以通过使氟代邻苯二甲腈与作为镓源的GaCl3混合,使其在作为溶剂的α-氯萘中在200℃下反应约12小时的时间,从而制备X为氯原子的化合物。
在合成通式(5)表示的化合物时,如果合成反应时使用单独一种氟代邻苯二甲腈作原料,则可以得到酞菁骨架的四个苯环上具有相同数目的氟原子的氟代镓酞菁化合物。另一方面,如果合成反应时同时使用具有不同数目的氟的邻苯二甲腈作原料,则可以得到酞菁骨架的四个苯环具有不同数目的氟原子的酞菁化合物的混合物。所述化合物和混合物在本发明中都是可接受的。作为氟代邻苯二甲腈原料的等价物,也可以使用氟代二亚氨基异二氢吲哚、氟代邻苯二甲酸、氟代邻苯二甲酸酐、氟代氰基苯酰胺等。
在这样得到的氟代镓酞菁化合物中,氟取代基的数目依赖于原料的选择在原理上,可以合成氟取代基的数目为1~13的氟代镓酞菁化合物。例如,如果使用未取代的邻苯二甲腈和单氟邻苯二甲腈,则得到的氟代镓酞菁化合物中的氟取代基的数目为0、1、2、3或4。另一方面,如果使用单氟邻苯二甲腈和四氟邻苯二甲腈,则得到的氟代镓酞菁化合物中的氟取代基的数目为4、7、10或13。并且,通过调节合成时使用的各邻苯二甲腈的混合比,可以使具有特定数目的氟取代基的特定的氟代镓酞菁化合物的量增加,也可以使得基本上不含有该特定化合物。这里,“基本不含有”是指认为不含有该特定的氟代镓酞菁化合物,或者即使包含很少量,只要不能分辨出其影响即可。
就作为原料的氟代邻苯二甲腈或其等价物而言,从原料的易得性和成本的角度来看,优选使用氟原子数少的化合物,具体地为单氟邻苯二甲腈或其等价物。
得到的氟代镓酞菁化合物可以直接用于电子照相感光体的感光层,或者进行进一步处理以制成特定的晶型。如果氟代镓酞菁化合物含有具有不同数目的氟取代基的镓酞菁,则晶型随合成得到的组成分布的变化而变化。尤其是当具有两个或两个以上的氟取代基的氟代邻苯二甲腈或其等价物用作氟代镓酞菁化合物合成的原料时,可能因为氟取代基的尺寸,得到的氟代镓酞菁化合物可能表现出晶型变化。因此,组合使用原料时,应使得在得到的氟代镓酞菁混合物中,具有最大数目的氟取代基的氟代镓酞菁化合物的含量通常为1%或低于1%,优选0.1%或低于0.1%。另外,当氟代镓酞菁化合物含有具有不同数目的氟取代基的镓酞菁时,优选将氟代镓酞菁的氟取代基的最大数目限定为7或小于7。
另外,当氟代镓酞菁化合物含有具有不同数目的氟取代基的氟代镓酞菁组合物时,可能表现出晶型的变化,结果,难以使得使用所述的氟代镓酞菁组合物的电子照相感光体的各种特性稳定。因为这个原因,优选使用具有相同数目的氟取代基的氟代镓酞菁化合物。在这种情况中,从原料的电性能和易得性角度考虑,优选使用总共具有四个氟取代基的化合物。
本发明使用的氟代镓酞菁化合物可以是无定形物,该无定形物在使用CuKα特性X射线的X射线衍射光谱中不表现出任何明显的峰,即不具有所谓的结晶性(此后也称为“氟代镓酞菁无定形物”或简称为“无定形物”),或者本发明使用的氟代镓酞菁化合物可以是具有结晶性的结晶性物。但是,依据使用CuKα特性X射线的X射线衍射光谱,就布喇格角(Bragg angle)(2θ±0.2°)而言,优选选择下列化合物中的化合物(1)在7.0°、16.5°和27.2°处具有峰的那些化合物;(2)在6.9°、16.0°和26.4°处具有峰的那些化合物;和(3)在3°~40°的范围内没有明显峰的那些化合物(无定形物)。特别优选具有四个氟取代基的氟代氯镓酞菁。
依据使用CuKα特性X射线的X射线衍射光谱,就布喇格角(Braggangle)(2θ±0.2°)而言,为了得到(1)在7.0°、16.5°和27.2°处具有峰的化合物和(2)在6.9°、16.0°和26.4°处具有峰的化合物,需要对干式研磨或化学处理后的无定形物进一步进行以下处理,从而将它转变成需要的晶型(此后,该处理也称为“晶型转变处理”)。
使无定形物与溶剂接触进行晶型转变处理。作为与溶剂的接触方法,可以进行将颗粒制成在溶剂中的浆体状态的方法,或使用例如将颗粒暴露于溶剂蒸汽中等任何已知的接触方法。使用的溶剂的例子为饱和脂肪族溶剂,例如戊烷、己烷、辛烷和壬烷;芳香族溶剂,例如甲苯、二甲苯和茴香醚;卤化的芳香族溶剂,例如氯苯、二氯苯和氯萘;醇类溶剂,例如甲醇、乙醇、异丙醇、正丁醇和苯甲醇;脂肪族多元醇,例如甘油和聚乙二醇;链状和环状酮类溶剂,例如丙酮、环己酮和甲乙酮;酯类溶剂,例如甲酸甲酯、乙酸乙酯和乙酸正丁酯;卤化的烃类溶剂,例如二氯甲烷、氯仿和1,2-二氯乙烷;链状和环状醚类溶剂,例如二乙醚、二甲氧基乙烷、四氢呋喃、1,4-二氧己环、1,3-二氧戊环、甲基溶纤剂和乙基溶纤剂;非质子极性溶剂,例如二甲基甲酰胺、N-甲基-2-比咯烷酮、二甲基亚砜、环丁砜和六甲基磷酸三酰胺;含氮化合物,例如正丁胺、异丙胺、二乙胺、三乙醇胺、乙二胺、三乙二胺和三乙胺;矿物油,例如石脑油;和水。考虑到操作性,在这些溶剂中,优选使用饱和脂肪族溶剂、芳香族溶剂、醇类溶剂、链状和环状酮类溶剂、酯类溶剂、链状和环状醚类溶剂、非质子极性溶剂和水。这些溶剂可以单独地使用,或者以任意组合和比例使用两种或两种以上溶剂的混合溶剂。处理温度可以在溶剂(或混合溶剂)的凝固点和沸点之间的范围选择,包括凝固点和沸点,但是从安全性角度考虑,通常在10℃~200℃的范围。从生产率的角度看,相对于1重量份的氟代镓酞菁化合物的无定形物,溶剂的使用量通常在0.1重量份或大于0.1重量份,优选1重量份或大于1重量份,且通常500重量份或小于500重量份,优选250重量份或小于250重量份的范围。
在氟代镓酞菁化合物的无定形物与溶剂的接触处理时,必要时,可以进行例如搅拌等操作以改进接触性。在搅拌时,可以使用例如湿式玻璃珠、氧化铝珠、钢珠、氧化锆珠、碳化硅珠、氮化硅珠和氮化硼珠等已知的搅拌介质。
另外,当进行湿式研磨处理时,通过选择与晶型转变处理所用的相同的溶剂用于湿式研磨处理,可以同时进行湿式研磨处理和晶型转变处理。
通过以上晶型转变处理,可以将氟代镓酞菁的无定形物转变成上述晶型。
如果进行湿式研磨处理和/或晶型转变处理,得到的氟代镓酞菁化合物的无定形物或结晶为分散在上述溶剂和/或溶媒中的湿饼状态。通过使用例如常温干燥、减压干燥、热空气干燥和冷冻干燥等已知方法从该湿饼中除去溶剂和/或溶媒,通过干燥,可以得到需要的氟代镓酞菁化合物的无定形物或结晶。
用作电子照相感光体的电荷产生物质的本发明的氟代镓酞菁化合物可以单独地使用,或与一种或一种以上的其它酞菁化合物组合地使用,但是优选与一种或一种以上的其它酞菁化合物一起使用。作为组合地使用本发明的氟代镓酞菁化合物与至少一种不同于本发明的氟代镓酞菁化合物的其它酞菁化合物的情况的例子,可以提及下列情况。
1)在氟代镓酞菁化合物的合成反应时,在同一反应体系中也合成另外的化合物,将得到的组合物用于感光层。
2)单独地合成氟代镓酞菁化合物和另外的酞菁化合物,然后在后面的合成或提纯过程中混合,将得到的组合物用于感光层。
3)混合氟代镓酞菁化合物和另外的酞菁化合物,并在根据下述的感光层用涂布液的制备方法制备感光层用涂布液时使用。
4)在感光层用涂布液的制备中,单独地制备氟代镓酞菁化合物的涂布液和另外的酞菁化合物的涂布液,在通过涂布形成感光层时,混合所述两种涂布液,用来形成感光层。
在这些情况中,优选对应于上面例子2)的情况。尤其优选的情况是,酞菁组合物含有单独合成的氟代镓酞菁化合物和另外的酞菁化合物,并以下述混晶性组合物的状态使用。
2-3.使用氟代镓酞菁化合物的酞菁组合物和混晶性组合物当使用含有本发明的氟代镓酞菁化合物的前面段落的酞菁组合物作为本发明的电子照相感光体用电荷产生物质时,使用含有通式(5)表示的酞菁环上具有氟原子的氟代镓酞菁化合物作为组分的组合物。
除了氟代镓酞菁化合物,上述组合物优选还含有一种或一种以上的具有酞菁骨架、卟啉骨架或四氮杂卟啉骨架的酞菁类似化合物。从材料成本的角度来看,特别优选酞菁化合物。作为酞菁化合物,可以使用无金属酞菁或金属酞菁,但是在电子照相感光体用途中,优选结合使用无金属酞菁、氧钛酞菁、氯镓酞菁和/或羟基镓酞菁。
本发明的氟代镓酞菁化合物和酞菁类似化合物可以以任意组成比使用,但是氟代镓酞菁化合物通常以80重量%或低于80重量%的比例包含在该酞菁组合物中。从成本的角度看,该含量优选为60重量%或低于60重量%,更优选50重量%或低于50重量%。
另一方面,如果含量太低,则不能充分地表现出本发明的效果,因此,通常在组合物中,氟代镓酞菁化合物的使用量在0.1重量%或高于0.1重量%,优选1重量%或高于1重量%。
该酞菁组合物可以是所含的各成分以各自的独立的颗粒处于混合状态,或具有分子水平的规则性的结构,但是优选为具有结晶性结构的组合物。特别优选表现出不同于所混合的原始酞菁化合物和其类似物的晶型的新晶型的组合物,和主要表现出组合物所含有的一种化合物的晶体结构的混晶性组合物。
通常使用经微细化将酞菁组合物无定形化,然后进行溶剂处理等以得到具有规则性的结构的方法,可以使该酞菁组合物具有分子水平的规则性的结构。
从例如研磨法等使用机械力的处理方法和例如酸膏法和酸浆法等化学处理方法中任意地选择一种方法,可以实施通过微细化实现无定形化的方法。也可以组合地进行两种或两种以上的上述方法。但是,酸浆法和酸膏法存在很大的问题。具体来说,由于必须使用大量的酸,为了在生产后处理废酸,需要使用大量的碱进行中和,因此废物处理需要相当大的费用,且产生大量的废弃物。另外,通常来自所使用的酸的阴离子的杂质使电性能变差,尤其是使充电性能变差。酞菁环或中心金属的配体可以与酸反应,使得酞菁分子的结构可以转变成不同结构,并使得酞菁环的结构因酸发生分解等。因此,优选使用例如研磨法等使用机械力的处理方法。
在进行使用机械力的研磨处理时,对用于研磨的装置没有特别的限定,其例子包括自动研钵、行星磨、球磨、CF磨、辊式磨碎机、砂磨机、捏合机、粉碎机等。当使用研磨介质时,不特别地限定研磨介质的种类,其具体例子包括玻璃珠、钢珠、氧化铝珠、氧化锆珠、碳化硅珠、氮化硅珠和氮化硼珠。除了研磨介质,也可以同时使用研磨后容易除去的研磨助剂进行研磨。研磨助剂的例子为食盐和芒硝。
可以用干法进行研磨,或在溶剂存在下用湿法进行研磨。当用湿法进行研磨时,对所使用的溶剂没有限定,其例子包括饱和脂肪族溶剂,例如戊烷、己烷、辛烷和壬烷;芳香族溶剂,例如甲苯、二甲苯和茴香醚;卤化的芳香族溶剂,例如氯苯、二氯苯和氯萘;醇类溶剂,例如甲醇、乙醇、异丙醇、正丁醇和苯甲醇;脂肪族多元醇,例如甘油和聚乙二醇;链状和环状酮类溶剂,例如丙酮、环己酮和甲乙酮;酯类溶剂,例如甲酸甲酯、乙酸乙酯和乙酸正丁酯;卤化的烃类溶剂,例如二氯甲烷、氯仿和1,2-二氯乙烷;链状和环状醚类溶剂,例如乙醚、二甲氧基乙烷、四氢呋喃、1,4-二氧己环、甲基溶纤剂和乙基溶纤剂;非质子极性溶剂,例如二甲基甲酰胺、N-甲基-2-吡咯烷酮、二甲基亚砜、环丁砜和六甲基磷酸三酰胺;含氮化合物,例如正丁胺、异丙胺、二乙胺、三乙醇胺、乙二胺、三乙二胺和三乙胺;矿物油,例如石脑油;和水。在这些溶剂中,考虑到湿式研磨处理时的操作性,优选使用饱和脂肪族溶剂、芳香族溶剂、醇类溶剂、链状和环状酮类溶剂、酯类溶剂、链状和环状醚类溶剂、非质子极性溶剂和水。这些溶剂可以单独地使用,或者组合使用两种或两种以上的混合溶剂。从生产率的角度看,相对于1重量份的作为研磨对象的氟代镓酞菁组合物,溶剂的使用量在通常0.01重量份或大于0.01重量份,优选0.1重量份或大于0.1重量份,且通常为200重量份或小于200重量份,优选100重量份或小于100重量份的范围。处理温度可以选自溶剂(或混合溶剂)的凝固点和沸点之间的范围,但是从安全性角度考虑,通常在10℃~200℃的范围。湿式研磨处理的装置的例子包括捏合机和上述研磨装置的例子。
通过干式研磨/化学处理得到的氟代镓酞菁组合物的细颗粒变成在CuKα特性X射线的X射线衍射光谱中没有清晰的峰即没有结晶性的无定形物。
为了形成具有分子水平的规则性的结构,使由无定形化步骤得到的颗粒与溶剂接触。作为与溶剂接触的方法,可以通过将颗粒制成在溶剂中的浆体状态来进行,或者使用例如暴露于溶剂蒸汽等已知的接触方法。溶剂的例子包括饱和脂肪族溶剂,例如戊烷、己烷、辛烷和壬烷;芳香族溶剂,例如甲苯、二甲苯和茴香醚;卤化的芳香族溶剂,例如氯苯、二氯苯和氯萘;醇类溶剂,例如甲醇、乙醇、异丙醇、正丁醇和苯甲醇;脂肪族多元醇,例如甘油和聚乙二醇;链状和环状酮类溶剂,例如丙酮、环己酮和甲乙酮;酯类溶剂,例如甲酸甲酯、乙酸乙酯和乙酸正丁酯;卤化的烃类溶剂,例如二氯甲烷、氯仿和1,2-二氯乙烷;链状和环状醚类溶剂,例如乙醚、二甲氧基乙烷、四氢呋喃、1,4-二氧己环、1,3-二氧戊环、甲基溶纤剂和乙基溶纤剂;非质子极性溶剂,例如二甲基甲酰胺、N-甲基-2-吡咯烷酮、二甲基亚砜、环丁砜和六甲基磷酸三酰胺;含氮化合物,例如正丁胺、异丙胺、二乙胺、三乙醇胺、乙二胺、三乙二胺和三乙胺;矿物油,例如石脑油;和水。其中,考虑到操作性,优选使用饱和脂肪族溶剂、芳香族溶剂、醇类溶剂、链状和环状酮类溶剂、酯类溶剂、链状和环状醚类溶剂、非质子极性溶剂和水。这些溶剂可以单独地使用,或者组合地使用两种或两种以上的混合溶剂。处理温度可以在溶剂(或混合溶剂)的凝固点和沸点之间的范围进行选择,但是从安全性角度考虑,通常在10℃~200℃的范围。从生产率的角度看,相对于1重量份的氟代镓酞菁化合物的无定形物,溶剂的使用量通常在0.1重量份或大于0.1重量份,优选1重量份或大于1重量份,且通常为500重量份或小于500重量份,优选250重量份或小于250重量份的范围。
当使氟代镓酞菁化合物的无定形物与溶剂接触时,也可以根据需要进行搅拌等操作以改进接触性。搅拌时,也可以使用已知的搅拌介质,例如湿式玻璃珠、氧化铝珠、钢珠、氧化锆珠、碳化硅珠、氮化硅珠、氮化硼珠等。
另外,当进行湿式研磨处理时,通过选择与晶型转变处理所用的相同的溶剂用于湿式研磨处理,可以同时进行湿式研磨处理和晶型转变处理。
通过晶型转变处理,可以将氟代镓酞菁的无定形物转变成上述结晶。
如果进行湿式研磨处理和/或晶型转变处理,得到的氟代镓酞菁化合物的无定形物或结晶为分散在上述溶剂和/或溶媒中的湿饼状态。使用例如常温干燥、减压干燥、热空气干燥和冷冻干燥等已知方法从湿饼中除去溶剂和/或溶媒,通过干燥,可以得到需要的氟代镓酞菁化合物的无定形物或结晶。
3.光电导材料本发明的酞菁组合物可以用作片状(paperlike)显示器材等各种图像显示器材、光学信息记录介质和太阳能电池用材料和用作光电导性材料,但是特别优选用作电子照相感光体的材料。
4.电子照相感光体本发明的电子照相感光体是在导电性支持体上形成有感光层的电子照相感光体,其特征在于,所述感光层中含有上述本发明的酞菁材料(即,本发明的酞菁组合物或本发明的氟代镓酞菁)。
4-1.导电性支持体尽管对导电性支持体没有限制,但是通常使用的材料的例子包括金属材料,例如铝、铝合金、不锈钢、铜或镍;或与例如金属、碳或氧化锡等导电性粉末混合而被赋予导电性的树脂材料;表面汽相沉积或涂覆有例如铝、镍或ITO(氧化铟氧化锡合金)等导电性材料的树脂、玻璃或纸材料。这些材料可以单独地使用,或者以任意组合和比例地使用任意两种或两种以上所述材料。其形状例如为鼓形、片形、带形等。另外,为了控制例如导电性和表面性质等性能以及遮盖缺陷,也可以使用表面上涂布了具有适当电阻值的导电性材料的由金属材料制成的导电性支持体。
当例如铝合金等金属材料用于导电性支持体时,金属材料可以事先进行阳极氧化处理。在这种情况中,需要在阳极氧化处理之后,用已知方法进行密封处理。
支持体表面可以是光滑的,或者使用特殊的切割方法或摩擦处理进行粗糙化。另外,也可以通过使组成支持体的主要材料与具有合适粒径的颗粒混合来粗糙化。另一方面,从降低成本的角度,也可以不进行切割处理而直接使用拉制管。
4-2.底涂层为了改进例如附着性和粘结性(blocking),可以在导电性支持体和后面提及的感光层之间形成底涂层。用于底涂层的材料包括树脂以及将金属氧化物等颗粒分散在树脂中得到的材料。底涂层可以形成为单层或由多层组成。
可用于底涂层的金属氧化物颗粒的例子包括包含一种金属元素的金属氧化物颗粒,例如二氧化钛、氧化铝、二氧化硅、氧化锆、氧化锌、氧化铁等;包含多种金属元素的金属氧化物颗粒,例如钛酸钙、钛酸锶、钛酸钡等。其中,可以单独地使用一种颗粒,或以任意组合和比例作为混合物使用多种颗粒。
在这些金属氧化物颗粒中,优选二氧化钛和氧化铝,特别优选二氧化钛。
也可以使用例如氧化锡、氧化铝、氧化锑、氧化锆和二氧化硅等无机物或例如硬脂酸、多元醇或硅酮等有机物,事先对二氧化钛颗粒进行表面处理。二氧化钛颗粒可以单独地进行一种处理,或任意组合地进行两种或两种以上的处理,并且前述各处理均达到需要的程度。
就二氧化钛颗粒的晶型而言,可以使用任意形式,例如金红石型、锐钛矿型、板钛矿型和无定形。二氧化钛颗粒可以具有单一晶型或以任意组合和比例含有两种或两种以上的晶型。
金属氧化物颗粒可以任意地选自宽范围的粒径,但是,从例如粘合剂树脂等底涂层原料的性能和液体的稳定性角度看,它们的平均一次粒径在通常10nm或大于10nm,且通常100nm或小于100nm,优选50nm或小于50nm的范围。
希望以金属氧化物颗粒分散在粘合剂树脂中的方式形成底涂层。用于底涂层的粘合剂树脂的例子为环氧树脂、聚乙烯树脂、聚丙烯树脂、丙烯酸树脂、甲基丙烯酸树脂、聚酰胺树脂、氯乙烯树脂、乙酸乙烯酯树脂、酚醛树脂、聚碳酸酯树脂、聚氨酯树脂、聚酰亚胺树脂、偏二氯乙烯树脂、聚乙烯醇缩乙醛树脂、氯乙烯-乙酸乙烯酯共聚物、聚乙烯醇树脂、聚氨酯树脂、聚丙烯酸树脂、聚丙烯酰胺树脂、聚乙烯基吡咯烷酮树脂、聚乙烯基吡啶树脂、水溶性聚酯树脂、例如硝基纤维素等纤维素酯树脂、纤维素醚树脂、酪蛋白、明胶、聚谷氨酸、淀粉、乙酸淀粉、氨基淀粉、例如锆螯合物和烷氧基锆化合物等有机锆化合物、例如钛氧基螯合物和钛氧基烷氧化合物等有机钛化合物、硅烷偶联剂等。可以单独地使用以上物质,或者以任意组合和比例地使用至少两种以上物质。它们也可以以用硬化剂硬化的形式使用。其中,例如醇溶性共聚聚酰胺和改性聚酰胺等粘合剂表现出优异的分散性和涂布性,因此它们是优选的。
可以任意地选择用于底涂层的金属氧化物颗粒与粘合剂树脂的混合比,但是从涂布液的稳定性和涂布性的角度来看,通常,相对于100重量份的粘合剂树脂,希望该混合比在10重量份~500重量份的范围。
另外,可以任意地选择底涂层的膜厚,但是,从改善得到的电子照相感光体的电特性、强曝光特性、图像特性和重复性以及生产时的涂布性的角度来看,该膜厚优选在通常0.01μm或大于0.01μm,优选0.1μm或大于0.1μm,且通常30μm或小于30μm,优选20μm或小于20μm的范围。
为了防止图像缺陷的目的,底涂层可以含有例如颜料颗粒和树脂颗粒等其它颗粒。
4-3.感光层接着解释在导电性支持体上形成的感光层(当前述底涂层存在时,感光层形成在底涂层上)。
感光层是含有作为电荷产生物质的本发明的上述酞菁材料的层。就感光层的类型而言,可以提及电荷产生物质和电荷传输物质均包含在同一层且分散在粘合剂树脂中的单层结构的类型(此后也称为“单层型感光层”);和具有两层或两层以上的层状结构的类型(此后也称为“积层型感光层”),其中包含电荷产生物质分散在粘合剂树脂中的电荷产生层和电荷传输物质分散在粘合剂树脂中的电荷传输层。这两种类型都是可接受的。就层状形式的积层型感光层而言,可以提及从导电性支持体侧起,依次层叠电荷产生层和电荷传输层的正积层型感光层,和依次层叠电荷传输层和电荷产生层的逆积层型感光层。可以使用任何已知的层状形式。
(电荷产生层)在积层型感光层的情况下,按照以下方法形成电荷产生层将含有至少一种上述本发明的酞菁材料的电荷产生物质分散在粘合剂树脂溶解在有机溶剂中的溶液中,从而制备涂布液;将该涂布液涂布到导电性支持体上,从而以各种粘合剂树脂粘结电荷产生物质。
作为电荷产生物质,可以单独地或与任何其它已知电荷产生物质组合地使用前述的本发明的酞菁材料。当与这样的其它电荷产生物质一并使用时,可以简单地以混合和分散状态使用它们。另外,如果并用的电荷产生物质能与本发明的酞菁材料一起形成共结晶状态,它们也可以以共结晶状态使用。
作为和本发明的酞菁材料一并使用的电荷产生物质,可以提及酞菁颜料、偶氮颜料、二硫酮吡咯并吡咯(dithioketopyrrolopyrrole)颜料、角鲨烯(角鲨鎓(squalilium)颜料)、喹吖啶酮颜料、靛蓝颜料、二萘嵌苯颜料、多环醌颜料、蒽嵌蒽醌颜料、苯并咪唑颜料等。在这些颜料中,就感光度而言,优选酞菁颜料和偶氮颜料。
当和其它电荷产生物质一并使用本发明的酞菁材料时,本发明的酞菁材料和其它电荷产生物质可以混合成粉末或分散液的状态。另外,它们也可以在生产本发明的酞菁材料或其它电荷产生物质时的任何步骤(包括例如颜料化和结晶化等各种处理步骤)中混合。在例如并用的电荷产生物质能与本发明的酞菁材料形成共结晶的情况中,作为在制备过程的任一阶段进行混合的方法,可以提及酸膏处理、研磨处理、溶剂处理等。特别是,为了使电荷产生物质成为共结晶状态,可以提及特开平10-48859号公报中描述的方法,在该方法中,混合两种不同的结晶,然后以机械方式研磨,从而形成非结晶性状态,接着通过溶剂处理转变成特定的结晶状态。
对用于积层型感光层的电荷产生层的粘合剂树脂没有特别的限定,可以是任意的树脂。粘合剂树脂的具体例子有绝缘性树脂,例如聚乙烯醇缩丁醛树脂、聚乙烯醇缩甲醛树脂、例如部分乙醛化的聚乙烯醇缩丁醛树脂(其中一部分丁缩醛被缩甲醛、缩乙醛等改性)等聚乙烯醇缩醛树脂、聚芳酯树脂、聚碳酸酯树脂、聚酯树脂、改性的醚类聚酯树脂、苯氧基树脂、聚氯乙烯树脂、聚偏二氯乙烯树脂、聚乙酸乙烯酯树脂、聚苯乙烯树脂、丙烯酸树脂、甲基丙烯酸树脂、聚丙烯酰胺树脂、聚酰胺树脂、聚乙烯基吡啶树脂、纤维素树脂、聚氨酯树脂、环氧树脂、硅酮树脂、聚乙烯醇树脂、聚乙烯基吡咯烷酮树脂、酪蛋白、氯乙烯/乙酸乙烯酯类共聚物(例如,如氯乙烯/乙酸乙烯酯共聚物,羟基改性的氯乙烯/乙酸乙烯酯共聚物、羧基改性的氯乙烯/乙酸乙烯酯共聚物和氯乙烯/乙酸乙烯酯/马来酸酐共聚物)、苯乙烯/丁二烯共聚物、偏二氯乙烯/丙烯腈共聚物、苯乙烯/醇酸树脂、硅酮/醇酸树脂、苯酚/甲醛树脂等;以及有机光电导性聚合物,例如聚N-乙烯基咔唑、聚乙烯基蒽和聚乙烯基二萘嵌苯。另外,也可以提及乙烯基化合物的聚合物和共聚物,例如聚乙酸乙烯酯、聚乙烯乙酰乙缩醛、聚乙烯丙缩醛、纤维素酯、纤维素醚、苯乙烯、乙酸乙烯酯、氯乙烯、丙烯酸酯、甲基丙烯酸酯、乙烯醇和乙基乙烯基醚等;以及聚酰胺、硅树脂等。这些物质可以单独地使用,或以任意组合和比例地使用它们中的两种或两种以上的物质。
对溶解粘合剂树脂来制备涂布液的溶剂或分散介质没有特别的限定,可以使用任意溶剂或分散介质。溶剂或分散介质的具体例子为饱和链状和环状脂肪族溶剂,例如戊烷、己烷、辛烷、壬烷、甲基环己烷和乙基环己烷;芳香族溶剂,例如甲苯、二甲苯和茴香醚;卤化的芳香族溶剂,例如氯苯、二氯苯和氯萘;酰胺类溶剂,例如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和N-甲基-2-吡咯烷酮;醇类溶剂,例如甲醇、乙醇、异丙醇、正丁醇和苯甲醇;脂肪族多元醇,例如乙二醇、甘油和聚乙二醇;链状和环状酮类溶剂,例如丙酮、环己酮和甲乙酮;酯类溶剂,例如甲酸甲酯、乙酸乙酯和乙酸正丁酯;卤化的烃类溶剂,例如二氯甲烷、氯仿和1,2-二氯乙烷;链状和环状醚类溶剂,例如乙醚、二甲氧基乙烷、四氢呋喃、1,4-二氧己环、甲基溶纤剂、乙基溶纤剂和乙二醇单甲醚;非质子极性溶剂,例如乙腈、N,N-二甲基甲酰胺、1,3-二甲基-2-咪唑啉酮、N-甲基-2-吡咯烷酮、γ-丁内酯、二甲基亚砜、环丁砜和六甲基磷酸三酰胺;含氮化合物,例如正丁胺、异丙胺、二乙胺、三乙醇胺、乙二胺、三乙二胺和三乙胺;矿物油,例如石脑油;和水。其中,优选不溶解底涂层的物质。这些物质可以单独使用一种,或以任意组合和比例使用任意两种或两种以上的物质。
在积层型感光层的电荷产生层中,相对于100重量份粘合剂树脂,电荷产生物质与粘合剂树脂的配合比(重量)为通常1重量份或大于1重量份,优选10重量份或大于10重量份,更优选30重量份或大于30重量份,且通常为2000重量份或小于2000重量份,优选1000重量份或小于1000重量份,更优选500重量份或小于500重量份。如果电荷产生物质的比例太高,则会因例如电荷产生物质聚集等导致涂布液的稳定性降低,但是如果该比例太低,则感光体的感光度降低。因此希望该比例在上述范围内。当与其它电荷产生物质一并使用本发明的酞菁材料作为电荷产生物质时,该并用的电荷产生物质和本发明的酞菁材料的总和的配合比在上述范围内。
电荷产生层可以含有吸电子化合物。只要不明显地损害本发明的有益效果,可以使用任何吸电子化合物。吸电子化合物的例子为醌类,例如氯醌、2,3-二氯-1,4-萘醌、1-硝基蒽醌、1-氯-5-硝基蒽醌、2-氯蒽醌和菲醌;醛类,例如4-硝基苯甲醛;酮类,例如9-苯酰基蒽、茚满二酮、3,5-二硝基二苯甲酮、2,4,7-三硝基芴酮、2,4,5,7-四硝基芴酮和3,3’,5,5’-四硝基二苯甲酮;酸酐,例如邻苯二甲酸酐和4-氯萘二甲酸酐;氰基化合物,例如四氰基乙烯、对苯二亚甲基丙二腈、9-蒽亚甲基丙二腈(9-antholyl methylidene malononitrile)、4-硝基苯亚甲基丙二腈和4-(对硝基苯酰氧基)苯亚甲基丙二腈;苯酞,例如3-苯亚甲基苯酞、3-(α-氰基-对硝基苯亚甲基)苯酞和3-(α-氰基-对硝基苯亚甲基)-4,5,6,7-四氯苯酞。
积层型感光层的电荷产生层的膜厚为通常0.05μm或大于0.05μm,优选0.1μm或大于0.1μm,更优选0.15μm或大于0.15μm,且通常10μm或小于10μm,优选5μm或小于5μm,更优选2μm或小于2μm,更优选0.8μm或小于0.8μm。
作为将电荷产生物质分散在分散介质中的方法,可以使用任何已知的分散方法,例如球磨分散法、磨碎分散法、砂磨分散法、行星磨分散法、辊磨分散法和超声波分散法。分散时,有效的是,将电荷产生物质的颗粒微细化成通常0.5μm或小于0.5μm,优选0.3μm或小于0.3μm,更优选0.15μm或小于0.15μm的颗粒。
(电荷传输层)积层型感光层的电荷传输层除了含有电荷传输物质,通常还含有粘合剂树脂,必要时,还含有其它组分。具体地,可以根据以下方法形成电荷传输层例如,将电荷传输物质和其它组分与粘合剂树脂一起溶解或分散在溶剂或分散介质中,从而制备涂布液;对于正积层型感光层,将该涂布液涂布在电荷产生层上,或对于逆积层型感光层,将其涂布在导电性支持体上(当底涂层存在时,涂布在底涂层上),然后干燥。
为了确保电荷传输层的膜强度,可以使用粘合剂树脂。对粘合剂树脂的种类没有限定,可以任意地使用任何已知树脂。粘合剂树脂的例子包括乙烯基化合物的聚合物和共聚物,例如丁二烯树脂、苯乙烯树脂、乙酸乙烯酯树脂、氯乙烯树脂、丙烯酸酯树脂、甲基丙烯酸酯树脂、乙烯醇树脂和乙基乙烯基醚;以及聚乙烯醇缩丁醛树脂、聚乙烯醇缩甲醛树脂、部分改性的聚乙烯醇缩乙醛、聚碳酸酯树脂、聚酯树脂、聚芳酯树脂、聚酰胺树脂、聚氨酯树脂、纤维素酯树脂、苯氧基树脂、硅酮树脂、硅酮-醇酸树脂、聚N-乙烯基咔唑树脂等。在它们中,特别优选聚碳酸酯树脂和聚芳酯树脂。也可以采用合适的硬化剂,用例如加热或光照等任何方法对粘合剂树脂进行交联处理。这些树脂可以单独地使用一种,或以任意组合和比例地使用两种或两种以上的树脂。
作为特别优选的粘合剂树脂,可以提及包含一种或多种由下列通式(11)表示的单元的聚碳酸酯树脂;包含一种或多种由下列通式(12)表示的单元的聚芳酯树脂。
化学式17 在上式中,Ar1和Ar2各自独立地表示可以具有取代基的亚芳基。并且在通式(11)中,X表示例如氧原子或硫原子等交联原子、单键或-CR1R2-,其中R1和R2各自独立地表示氢原子、烷基、芳基,或R1和R2之间连接形成脂环结构。
化学式18 在上式中,Ar1和Ar2各自独立地表示可以具有取代基的亚芳基。并且在通式(12)中,X表示例如氧原子或硫原子等交联原子、单键或-CR1R2-,其中R1和R2各自独立地表示氢原子、烷基、芳基,或连接形成的脂环结构。Ar3表示可以具有取代基的亚芳基或具有通过例如氧原子或硫原子等交联原子相互连接的多个芳基的二价基团。
在通式(11)和(12)中,由O-Ar1-X-Ar2-O表示的结构部分优选由双酚组分或联苯二酚组分的部分结构组成。这些双酚组分和联苯二酚组分的优选例子如下。
联苯二酚化合物的例子是4,4’-联苯二酚、3,3’-二甲基-4,4’-二羟基-1,1’-联苯、3,3’-二叔丁基-4,4’-二羟基-1,1’-联苯、3,3’,5,5’-四甲基-4,4’-二羟基-1,1’-联苯、3,3’,5,5’-四叔丁基-4,4’-二羟基-1,1’-联苯、2,2’,3,3’,5,5’-六甲基-4,4’-二羟基-1,1’-联苯、2,4’-联苯二酚、3,3’-二甲基-2,4’-二羟基-1,1’-联苯、3,3’-二叔丁基-2,4’-二羟基-1,1’-联苯、2,2’-联苯二酚、3,3’-二甲基-2,2’-二羟基-1,1’-联苯和3,3’-二叔丁基-2,2’-二羟基-1,1’-联苯。
双酚组分的例子是双(4-羟基苯基)甲烷、双(4-羟基-3-甲基苯基)甲烷、双(4-羟基-3,5-二甲基苯基)甲烷、1,1-双(4-羟基苯基)乙烷、1,1-双(4-羟基-3-甲基苯基)乙烷、1,1-双(4-羟基苯基)-1-苯基乙烷、1,1-双(4-羟基苯基)丙烷、2,2-双(4-羟基苯基)丙烷、2,2-双(4-羟基-3-甲基苯基)丙烷、2,2-双(4-羟基-3-甲基苯基)丙烷、双(4-羟基-3,5-二甲基苯基)甲烷、双(4-羟基苯基)甲烷、双(4-羟基-3-甲基苯基)甲烷、1,1-双(4-羟基苯基)环戊烷、1,1-双(4-羟基苯基)环己烷、1,1-双(4-羟基苯基)-3-甲基环己烷和9,9-双(4-羟基苯基)芴。
不特别地限定电荷传输物质,可以使用任何物质。已知的电荷传输物质的例子为吸电子物质,例如2,4,7-三硝基芴酮等芳香族硝基化合物、例如四氰基喹啉并二甲烷等氰基化合物和例如二苯酚合苯醌等醌化合物;供电子物质,例如咔唑衍生物、吲哚衍生物、咪唑衍生物、噁唑衍生物、吡唑衍生物、噻二唑衍生物和苯并呋喃衍生物等杂环化合物,苯胺衍生物、腙衍生物、芳香胺衍生物、茋衍生物、丁二烯衍生物和烯胺衍生物,以及两种或两种以上的上述化合物结合而成的化合物,和主链或侧链具有含有这些化合物的基团的聚合物,等等。在这些物质中,优选咔唑衍生物、芳香胺衍生物、茋衍生物、丁二烯衍生物和烯胺衍生物以及前述两种或两种以上的化合物结合而成的化合物。可以单独使用一种这些电荷传输物质,或者两种或两种以上任意组合使用。
电荷传输物质的优选结构的具体例子如下所示。但是,这些例子是示例性的,在不背离本发明的精神的前提下,可以使用任何已知的电荷传输物质。在下列结构式中,Me表示甲基,n-Bu表示正丁基。
化学式19
化学式20
化学式21
化学式22 可以任意地选择粘合剂树脂与电荷传输物质的比例,但是,相对于100重量份粘合剂树脂,以通常20重量份或大于20重量份的比例使用电荷传输物质。从降低残留电位的角度考虑,该比例优选为30重量份或大于30重量份,从重复使用时的稳定性和电荷迁移率的角度考虑,更优选40重量份或大于40重量份。另一方面,从感光层的热稳定性角度考虑,以通常150重量份或小于150重量份的比例使用电荷传输物质。从电荷传输材料和粘合剂树脂之间的相容性角度考虑,该比例优选为120重量份或小于120重量份,从耐印刷性的角度考虑,更优选100重量份或小于100重量份,从耐摩擦性的角度考虑,特别优选80重量份或小于80重量份。
不特别地限定电荷传输层的膜厚,但是,从寿命长和图像稳定性以及高清晰度的角度考虑,膜厚在通常5μm或大于5μm,优选10μm或大于10μm,且通常50μm或小于50μm,优选45μm或小于45μm,更优选30μm或小于30μm的范围。
(单层型感光层)正如积层型感光层的电荷传输层,为了确保膜强度,除了使用电荷产生物质和电荷传输物质外,还使用粘合剂树脂来形成单层型感光层。具体地,可以由以下方法得到单层型感光层将电荷产生物质和电荷传输物质与各种粘合剂树脂一起溶解或分散在溶剂中,从而制成涂布液,然后涂布到导电性支持体上(当底涂层存在时,涂布到底涂层上),进行干燥。
电荷传输物质和粘合剂树脂的种类及其使用比例的选择基本上与对积层型感光层的电荷传输层的解释相同。在这种含有电荷传输物质和粘合剂树脂的电荷传输介质中,进一步分散电荷产生物质。
作为电荷产生物质,可以使用上面为积层型感光层的电荷产生物质所解释的那些物质。但是,用于单层型感光层的电荷产生物质的粒径必须足够小。具体地,该粒径在通常1μm或小于1μm,优选0.5μm或小于0.5μm的范围。
如果分散在单层型感光层中的电荷产生物质的量太少,则不能得到足够的感光度,但是如果该量太大,将产生例如充电性变差和感光度降低等缺点。因此,相对于整个单层型感光层,其使用量在通常0.5重量%或高于0.5重量%,优选1重量%或高于1重量%,且通常50重量%或低于50重量%,优选20重量%或低于20重量%的范围。
单层型感光层的膜厚为通常5μm或大于5μm,优选10μm或大于10μm,且为通常100μm或小于100μm,优选50μm或小于100μm。
在单层型感光层中,粘合剂树脂和电荷产生物质的使用比率为相对于100重量份粘合剂树脂,电荷产生物质的比例在通常0.1重量份或大于0.1重量份,优选1重量份或大于1重量份,且通常30重量份或小于30重量份,优选10重量份或小于10重量份的范围。
(其它)对于积层型感光层和单层型感光层,为了改善成膜性、挠性、涂布性、耐污染性、耐气性、耐光性等的目的,感光层或构成该感光层的各层中可以含有例如已知的抗氧剂、增塑剂、紫外线吸收剂、吸电子化合物、均化剂、可见光遮光剂等添加剂。
作为例如用于电荷传输层的添加剂的例子,可以提及例如用来改进成膜性、挠性和机械强度的已知的增塑剂、交联剂、抗氧剂、稳定剂和敏化剂,以及用于改善涂布性的各种均化剂、分散辅剂等添加剂。增塑剂的例子为例如邻苯二甲酸酯、磷酸酯、环氧化合物、氯化石蜡、氯化脂肪酸酯和甲基萘等芳香族化合物,均化剂的例子包括硅油和氟类油。
并且,在积层型感光层和单层型感光层中,根据前述程序形成的感光层作为最上层即表面层。但是,在其上再形成一附加层作为表面层也是可以接受的。
例如,为了防止感光层摩损和防止或减少感光层因例如充电装置产生的放电产物等原因而劣化的目的,可以形成保护层。
通过使导电性材料包含在合适的粘合剂树脂中可以形成保护层。也可以采用共聚物,该共聚物使用具有电荷传输能力的化合物,例如特开平9-190004号公报和特开平10-252377号公报中描述的三苯基胺骨架。
作为用于保护层的导电性材料,可以使用芳香族胺化合物,例如TPD(N,N’-二苯基-N,N’-双(间甲苯基)联苯胺);和金属氧化物,例如氧化锑、氧化铟、氧化锡、二氧化钛、氧化锡-氧化锑、氧化铝和氧化锌,但是可使用的化合物不局限于上述例子。
作为用于保护层的粘合剂树脂,可以提及例如聚酰胺树脂、聚氨酯树脂、聚酯树脂、环氧树脂、聚酮树脂、聚碳酸酯树脂、聚乙烯基酮树脂、聚苯乙烯树脂、聚丙烯酰胺树脂、硅氧烷树脂等各种已知的树脂,以及例如特开平9-190004号公报和特开平10-252377号公报中描述的三苯基胺骨架等具有电荷传输能力的骨架与前述树脂的共聚物。
希望保护层的电阻值通常在109Ω·cm~1014Ω·cm的范围。如果电阻值高出前述范围,则残留电位上升,引起图像的雾化增加,但是如果电阻值低于前述范围,则发生图像模糊和图像清晰度降低。另外,保护层的构成必须基本上不妨碍图像曝光时照射的光的透过。
从降低感光体表面的摩擦阻力和防止摩损以及改进调色剂从感光体向转印带或纸等的转印效率的角度考虑,表面层可以含有一种或一种以上的例如氟树脂、硅酮树脂、聚乙烯树脂等树脂以及这些树脂的颗粒和无机化合物颗粒。或者,也可以形成含有的一种或一种以上这些树脂和颗粒的附加层作为表面层。
4-4.各层的形成方法对于每一层,可以将各个层的组分溶解或分散在溶剂或分散介质中制成涂布液,然后进行涂布并随后干燥,从而形成构成感光体的上面解释的层。不特别地限定用于该过程的溶剂或分散介质的种类及其用量,但是,考虑到各个层的目的和选择的溶剂或分散介质的特性,优选合适地调节它们,以使涂布液的固体含量和粘度等物性落在所需要的范围内。
为了形成单层型感光层和积层型感光层的电荷传输层,例如,将涂布液的固体含量调节在通常5重量%或高于5重量%,优选10重量%或高于10重量%,且通常40重量%或低于40重量%,优选35重量%或低于35重量%的范围。并且,将涂布液的粘度调节在通常10cps或高于10cps,优选50cps或高于50cps,且通常500cps或低于500cps,优选400cps或低于400cps的范围。
另一方面,为了形成积层型感光层的电荷产生层,将涂布液的固体含量调节在通常0.1重量%或高于0.1重量%,优选1重量%或高于1重量%,且通常15重量%或低于15重量%,优选10重量%或低于10重量%的范围。并且,将涂布液的粘度调节在通常0.01cps或高于0.01cps,优选0.1cps或高于0.1cps,且通常20cps或低于20cps,优选10cps或低于10cps的范围。
对用来制备涂布液的溶剂或分散介质的选择没有特别的限制。溶剂或分散介质的具体例子为醇类,例如甲醇、乙醇、丙醇和2-甲氧基乙醇;醚类,例如四氢呋喃、1,4-二氧己环和二甲氧基乙烷;酯类,例如甲酸甲酯和乙酸乙酯;酮类,例如丙酮、甲乙酮、环己酮和4-甲氧基-4-甲基-2-戊醇;芳香烃,例如苯、甲苯和二甲苯;氯化烃,例如二氯甲烷、氯仿、1,2-二氯乙烷、1,1,2-三氯乙烷、1,1,1-三氯乙烷、四氯乙烷、1,2-二氯丙烷和三氯乙烯;含氮化合物,例如正丁胺、异丙醇胺、二乙胺、三乙醇胺、乙二胺和三乙二胺;非质子极性溶剂,例如乙腈、N-甲基吡咯烷酮、N,N-二甲基甲酰胺和二甲基亚砜;等。这些溶剂可以单独使用一种,或任意组合地使用两种或两种以上所述溶剂。
可以用下列方法进行涂布液的涂布浸涂法、喷涂法、旋涂法、线性涂布法(bead coating method)、绕线棒涂布法、刮涂法、辊涂法、气刀涂布法和淋涂法以及任何其它已知的涂布方法。
在干燥过程中,优选涂布液首先在室温下干燥至可以指触,然后在通常30℃~200℃的温度范围,在静止或通风条件下加热干燥1分钟~2小时。加热温度可以保持恒定,或在干燥过程中变化。
5.成像装置接着参照表示成像装置的要部构成的图73解释使用本发明的电子照相感光体的成像装置(本发明的成像装置)的实施方案。但是,本发明的实施方案并不局限于下列解释,在不违背本发明的要旨的前提下可以可以进行任意变化。
如图73所示,成像装置的构成部件包括电子照相感光体1、充电装置2、曝光装置3和显影装置4,必要时还有转印装置5、清洁装置6和定影装置7。
不特别地限定电子照相感光体1,只要使用前述的本发明的电子照相感光体即可,但是,作为例子,图73表示在圆筒状导电性支持体的表面上形成前述感光层的鼓形感光体。沿着该电子照相感光体1的外周表面分别布置充电装置2、曝光装置3、显影装置4、转印装置5和清洁装置6。
充电装置2将给电子照相感光体1充电,并能将电子照相感光体1的表面均匀地充电至所需电位。通常使用的充电装置的例子为电晕充电装置,例如电晕管或栅式电晕管(scorotron);直接充电装置,例如,具有例如充电刷等直接充电部件的接触型充电装置,其中,给直接充电部件施加电压,然后使直接充电部件与感光体表面接触以进行充电。直接充电装置的例子包括例如充电辊和充电刷等接触充电器。作为充电装置2的例子,图73表示出辊型充电装置(充电辊)。直接充电装置可以进行伴随气体放电的充电或不伴随气体放电的注入充电。在充电时可以仅使用直流电,或使用交流电叠加在直流电上的叠加电流来施加电压。
对曝光装置3的种类没有特别的限定,只要能够对电子照相感光体1进行曝光,从而在电子照相感光体1的感光面上形成静电潜像就可以。其具体例子是卤灯、荧光灯、例如半导体激光器和He-Ne激光器等激光器、LED等。也可以使用从感光体内曝光的方法使感光体曝光。可以任意地选择用于曝光的光,其例子包括具有约780nm波长的单色光、具有约600nm~700nm的稍短波长的单色光和具有约380nm~500nm的短波长的单色光。
不特别地限定显影装置4的种类,它可以是使用例如瀑布显影、单组分绝缘调色剂显影、单组分导电调色剂显影和双组分磁刷显影等干式显影方式的任何已知的装置,或使用湿式显影方式的任何已知的装置。图73表示包含显影槽41、搅拌器42、供料辊43、显影辊44和规整部件45的显影装置4的构成,调色剂T储存在显影槽41中。另外,必要时,显影装置4可以配置补给调色剂T的补给装置(图中未表示出)。该补给装置的构成应使得能从例如瓶或盒等容器中补给调色剂T。
供料辊43由导电性海绵等组成。显影辊44包括由铁、不锈钢、铝、镍等制成的金属辊,或在所述金属辊上涂覆有例如硅酮树脂、聚氨酯树脂、氟树脂等树脂的树脂辊等。必要时,该显影辊44的表面可以事先进行平滑加工或粗糙化加工。
显影辊44布置在电子照相感光体1和供料辊43之间,与电子照相感光体1和供料辊43均直接接触。供料辊43和显影辊44各自被旋转驱动装置(图中未表示出)旋转。供料辊43负载所储存的调色剂T,将其供应给显影辊44。显影辊44负载由供料辊43提供的调色剂T,使其接触电子照相感光体1的表面。
规整部件45可以形成为由硅酮树脂、聚氨酯树脂等制成的树脂刮刀;由不锈钢、铝、铜、黄铜、磷青铜等制成的金属刮刀;在所述金属刮刀上涂覆树脂的刮刀;等等。该规整部件45与显影辊44直接接触,使用弹簧等以预定的力挤压显影辊44的侧面(一般刮刀的线性负荷为5g/cm~500g/cm)。根据需要,该规整部件45也可以具备利用与调色剂T的摩擦起电而使调色剂T充电的功能。
搅拌器42分别用旋转驱动装置旋转以搅拌调色剂T,并将调色剂T转移向供料辊43。也可以配备叶片形状、尺寸等不同的多个搅拌器42。
作为调色剂,不仅可以使用经研磨的调色剂,而且可以使用由悬浮造粒、悬浮聚合、乳液聚合凝集法等得到的化学调色剂。特别是当使用化学调色剂时,优选具有约4μm~8μm的小粒径,并且可以具有从基本球形至例如土豆形或橄榄球等偏离球形的形状中的任何形状。特别是聚合调色剂具有优异的充电均匀性和转印性,因此适合于提高画质。
调色剂T的种类不局限于不仅可以使用经研磨的调色剂,而且可以使用由悬浮造粒、悬浮聚合、乳液聚合凝集法等得到的化学调色剂。当使用化学调色剂时,该化学调色剂优选具有约4μm~8μm的小粒径,并且可以具有从基本球形至例如土豆形或橄榄球等偏离球形的形状中的任何形状。特别是聚合调色剂具有优异的充电均匀性和转印性,因此适合提高画质。
对转印装置5的种类没有限制可以使用各种采用任何方法的装置,所述方法包括静电转印法,例如电晕转印、辊式转印和带式转印;压力转印法;粘合转印法。在本实施方案中,面对着电子照相感光体1布置的由转印充电器、转印辊、转印带等构成的装置作为转印装置5。该转印装置5施加极性与调色剂T的充电电位相反的预定电压(转印电压),从而将在电子照相感光体1上形成的调色剂图像转印到记录纸(格式纸、介质)P上。
不特别地限定清洁装置6,可以使用任何清洁装置,包括刷清洁器、磁刷清洁器、静电刷清洁器、磁性辊清洁器和刮刀清洁器。清洁装置6使用清洁部件刮去附着在感光体1上的残留调色剂以回收残留的调色剂。如果仅有少量的或几乎没有残留的调色剂,可以省略清洁装置6。
定影装置7包括上定影部件(定影辊)71和下定影部件(定影辊)72,加热装置73布置在定影部件71或72内。图73表示加热装置73配置在上定影部件71内的例子。作为上定影部件71和下定影部件72,可以使用任何已知的加热定影部件,包括在例如不锈钢或铝等金属管上覆盖硅橡胶的定影辊、还覆盖有特富龙(Teflon,注册商标)树脂的定影辊、定影片等。另外,各定影部件71、72的构成可以提供用于改进防粘性的例如硅油等防粘剂,也可以利用弹簧等相互施加压力。
转印到记录纸P上的调色剂在以预定温度加热的上定影部件71和下定影部件72之间通过,在通过时,调色剂被加热,使其成为熔融状态。在通过后,冷却调色剂并定影在记录纸P上。
对定影装置的种类没有特别的限制,以使用上述方法的定影装置为首,还可以设置使用热辊定影、闪光(flash)定影、烘箱定影、压力定影等任意方式的定影装置。
在上述构成的电子照相装置中,以下列方式进行图像记录。首先,使用充电装置2给感光体1的表面(感光面)充电至预定电位(例如-600V)。此时,可以使用直流电压进行充电,或者使用将交流电压叠加在直流电压上的电流进行充电。
接着,根据要记录的图像,用曝光装置3使充电的感光体1的感光面进行曝光,从而在感光面上形成静电潜像。随后,用显影装置4对在感光体1的感光面上形成的静电潜像进行显影。
在显影装置4中,用规整部件(显影刮刀)45使由供料辊43提供的调色剂T薄层化,同时经摩擦起电而具有预定极性(在本实施方案中,该极性与感光体1的充电电位相同,即负极性)。然后由显影辊44负载并转移调色剂,使其与感光体1的表面接触。
当显影辊44所负载的经充电的调色剂T接触感光体1的表面时,在感光体1的感光面上形成与静电潜像相对应的调色剂图像。然后用转印装置5将该调色剂图像转印到记录纸P上。之后由清洁装置6除去未被转印的残留在感光体1的感光面上的调色剂。
调色剂图像转印到记录纸P上之后,调色剂图像经过定影装置7热定影在记录纸P上,从而得到最终的图像。
成像装置除了具有上述构造外,还可以具有进行例如除电步骤的构造。除电步骤是通过对电子照相感光体进行曝光而除去电子照相感光体的电荷的步骤。除电装置可以是荧光灯、LED等。用于除电步骤的光的曝光能量常常是曝光光强度的3倍或更高。
并且,成像装置的构造还可以进行变化。例如,可以是能进行例如预曝光步骤或辅助充电步骤等步骤的构造、能进行胶印的构造以及能使用多种调色剂的全色串联型构造。
并且,也可以将电子照相感光体1与充电装置2、曝光装置3、显影装置4、转印装置5、清洁装置6和定影装置7中的任一种、两种或多种组合形成一体型盒(此后也称为“电子照相感光体盒”),并使该电子照相感光体盒可以安装在例如复印机或激光打印机等电子照相装置的主体上或从所述主体上拆卸下来。根据这种实施方案,例如,当电子照相感光体1或其它部件劣化时,可以将该电子照相感光体盒从成像装置的主体上拆卸下来,并将其它新的电子照相感光体盒安装在成像装置的主体上,因此,成像装置容易进行维护和管理。
到此,已经参照具体实施方案详细地解释了本发明,但是本领域的技术人员清楚,在不脱离本发明的目的和范围的前提下,可以进行各种变化。
本发明以2004年3月4日提交的特愿2004-60851号说明书、2004年3月9日提交的特愿2004-66071号说明书和2005年3月4日提交的特愿2005-60785号说明书为基础,这里以参考的方式引入其全部内容。
实施例参照下述实施例和比较例更详细地解释本发明。为了详细地解释本发明而提及这些实施例,但是本发明不局限于下列实施例,只要不违背本发明的精神即可。顺便提及,在下列合成例和实施例中,“份”是指“重量份”。
I.酞菁化合物的合成<合成例1(α型氧钛氧基酞菁结晶的合成)>
以特开平2-308863号公报中的“实施例1”所描述的方法的相同程序制备α型氧钛氧基酞菁。得到的α型氧钛氧基酞菁的粉末X射线衍射图表示在图1中。
<合成例2(氯镓酞菁结晶的合成)>
以与特开平6-73303号公报中的实施例1相同的程序制备氯镓酞菁。得到的氯镓酞菁的粉末X射线衍射图表示在图2中。
<合成例3(氯铟酞菁结晶的合成)>
将50份邻苯二甲腈和23.7份三氯化铟加在250份α-氯萘中,在200℃下反应13小时,然后趁热过滤产物,用N-甲基吡咯烷酮、甲醇、甲苯和水洗涤。然后干燥得到的湿饼,制得27份氯铟酞菁(产率42%)。得到的氯铟酞菁的粉末X射线衍射图表示在图3中。
<合成例4(四氟氧钛氧基酞菁结晶的合成)>
将17.5份4-氟邻苯二甲腈和6份四氯化钛加在130份α-氯萘中,在200℃下反应4小时,然后趁热过滤产物,用N-甲基吡咯烷酮、甲醇、甲苯和水洗涤。然后干燥得到的湿饼,制得8.0份四氟氧钛氧基酞菁结晶(产率40%)。得到的四氟氧钛氧基酞菁结晶的粉末X射线衍射图表示在图4中。
<合成例5(四氟氯镓酞菁结晶的合成)>
将26.7份4-氟邻苯二甲腈和7.5份三氯化镓加在100份α-氯萘中,在210℃下反应8.5小时,然后趁热过滤产物,用N-甲基吡咯烷酮、甲醇、甲苯和水洗涤。然后干燥得到的湿饼,制得19.2份四氟氯镓酞菁结晶(产率61%)。得到的四氟氯镓酞菁结晶的粉末X射线衍射图表示在图5中。
<合成例6(四氟氯铟酞菁结晶的合成)>
将22.6份4-氟邻苯二甲腈和8份三氯化铟加在70份α-氯萘中,在200℃下反应11小时,然后趁热过滤产物,用N-甲基吡咯烷酮、甲醇、甲苯和水洗涤。然后干燥得到的湿饼,制得14.2份四氟氯铟酞菁结晶(产率59%)。得到的四氟氯铟酞菁结晶的粉末X射线衍射图表示在图6中。
<合成例7(β型氧钛氧基酞菁结晶的合成)>
以与特开昭62-67094号公报中的制备例1相同的程序制备β型氧钛氧基酞菁。得到的β型氧钛氧基酞菁的粉末X射线衍射图表示在图7中。
<合成例8(使用二氢吲哚和Ti(OBu)4作原料的β型氧钛氧基酞菁结晶的合成)>
将50.8份1,3-二亚氨基异二氢吲哚和35.8份四丁氧基钛加在455份邻二氯苯中,在140℃下反应4小时,然后趁热过滤产物,依次用N-甲基-2-吡咯烷酮、甲醇、甲苯和水洗涤。然后将得到的湿饼在真空加热干燥器中干燥。对干燥得到的产物粗氧钛氧基酞菁进行干磨处理,制成无定形氧钛氧基酞菁,然后再依次用N-甲基-2-吡咯烷酮、水和甲醇洗涤,从而得到37.8份氧钛氧基酞菁(产率76%)。得到的氧钛氧基酞菁的粉末X射线衍射图表示在图8中。
<氧钛氧基酞菁的Cl取代物含量的测定>
对于合成例1、7和8中合成的氧钛氧基酞菁,根据下列程序基于质谱(mass spectrum)的谱强度比测定氯化的氧钛氧基酞菁在各合成例中得到的氧钛氧基酞菁中的比例。
1.样品制备将0.50份氧钛氧基酞菁与30份玻璃珠(直径1.0~1.4)和10份环己酮一起放在50mL玻璃容器中,使用涂料振动器分散处理3小时,从而制成氧钛氧基酞菁的分散液。将1μL得到的分散液放在20mL取样瓶中,加入5mL氯仿。然后将产物超声波分散1小时,从而制得测定用的10ppm分散液。
2.测定质谱测定条件测定装置JMS-700/MStation,由JEOL公司生产测定模式DCI(-)反应气异丁烷(离子化室的压力1×10-5托)灯丝速率0→0.90A(1A/min)加速电压8.0KV质量分析能力2000扫描方法MF-Linear
扫描范围500~680整个质量范围的扫描时间0.8秒循环时间0.5秒(扫描时间0.05秒,等待时间0.45秒)将1μL的“1.样品制备”中制备的测定用分散液涂布在DCI探针的灯丝上,在前述条件下进行质谱测定。基于所得到的质谱,使用对应于氯化的氧钛氧基酞菁的分子离子的m/z610和对应于未取代的氧钛氧基酞菁的分子离子的m/z576的离子色谱来计算峰面积的比(“610”峰面积/“576”峰面积),以此作为谱强度比。
3.测定结果对于合成例1、7和8得到的每种氧钛氧基酞菁,进行“1.样品制备”和“2.测定”中解释的程序,结果如下合成例1谱强度比=0.058合成例7谱强度比=0.054合成例8谱强度比=0.001(低于检测的下限)对于合成例8合成的氧钛氧基酞菁,测定结果(谱强度比=0.001)低于测定装置的检测的下限。由于合成例8没有使用产生Cl取代物所需要的任何氯源作原料,所以可以推测不存在Cl取代物。
II.酞菁组合物的制备使用下面解释的制备方法得到46种酞菁组合物作为本发明的实施例(制备例1~46)和11种酞菁组合物作为比较例(比较制备例1~11)。在以下制备方法的解释中,合成例用符号A、B表示,各处理时间用L、M、N表示,重量份用W、X、Y表示,容量用Z表示,制备得到的粉末X射线衍射图用数字表示制备例的这些符号和数字表示在表3和表4中,比较制备例的符号和数字表示在表5中。在表3~5中,THF表示四氢呋喃,NMP表示N-甲基吡咯烷酮,MEK表示甲乙酮,DMF表示二甲基甲酰胺。
将W份合成例A得到的酞菁结晶(对于制备例1~46,未取代的酞菁结晶)、X份合成例B得到的酞菁结晶(对于制备例1~46,取代的酞菁结晶)与Y份直径为0.4mm~0.6mm的玻璃珠一起装在聚合物瓶中,然后使用染料分散试验机(涂料振动器)进行研磨处理L小时(机械微细化步骤)。在室温下将得到的玻璃珠与酞菁组合物的混合物与直径为0.4mm~0.6mm的玻璃珠一起在溶剂C(Z ml)中搅拌M小时。搅拌后,将得到的组合物与玻璃珠分离,将该组合物在有机溶剂中搅拌N小时,接着过滤和干燥,从而得到目的酞菁组合物。分别对得到的酞菁组合物进行X射线衍射光谱测定(参见图9~65)。X射线衍射光谱测定条件如下。
粉末X射线衍射装置PANalytical PW1700X射线管Cu扫描轴θ/2θ测定范围3.0°~40.0°扫描速率3.0°/分钟表3

表4

表5

III.电子照相感光体的特性评价<实施例1>
使用表面上形成有铝汽相沉积层(70nm厚)的双轴拉伸的聚对苯二甲酸乙二醇酯树脂膜(75μm厚)作为导电性支持体。使用绕线棒涂布器,以使得干燥后的膜厚为1.25μm的方式,将用于底涂层的分散液涂布在支持体的汽相沉积层上并干燥,从而形成底涂层。
将平均一次粒径为40nm的金红石型二氧化钛(“TTO55N”,由石原产业社生产)与占该二氧化钛3重量%的甲基二甲氧基硅烷(“TSL8117”,由Toshiba Silicones Co.生产)装在高速流动型搅拌混合器(“SMG300”,由Kawata Co.,Ltd.生产)中,以34.5m/秒的旋转圆周速度高速混合。使用球磨机将得到的经表面处理的二氧化钛分散在甲醇/1-丙醇的混合溶剂中,制成经疏水化处理的二氧化钛的分散浆体。将所述分散浆体和甲醇/1-丙醇/甲苯的混合溶剂加到ε-己内酰胺[由下式(A)表示的化合物]/双(4-氨基-3-甲基环己基)甲烷[由下式(B)表示的化合物]/六亚甲基二胺[由下式(C)表示的化合物]/十亚甲基二羧酸[由下式(D)表示的化合物]/十八亚甲基二羧酸[由下式(E)表示的化合物]以75%/9.5%/3%/9.5%/3%的组成摩尔比的聚酰胺共聚物的颗粒中。搅拌下加热该混合物直到聚酰胺颗粒溶解,进行超声波分散处理,从而制备用于底涂层的分散液,在该分散液中,甲醇/1-丙醇/甲苯的重量比为7/1/2,疏水化的二氧化钛/聚酰胺共聚物的重量比为3/1,固体含量为18.0%。
化学式23 另外,在4份制备例1中得到的作为电荷产生物质的酞菁组合物中,加入30份的4-甲基-4-甲氧基-2-戊醇和270份1,2-二甲氧基乙烷,使用砂磨机研磨2小时,由此进行微颗粒化处理。接着,将作为粘合剂树脂的1份聚乙烯醇缩丁醛(“Denka Butyral#6000C”,由电气化学工业社生产)和1份苯氧基树脂(“PKHH”,由Union Carbide Corp.生产)加到产物中,然后用砂磨机再研磨1小时,这样制得用于电荷产生层的涂布液。以使得干燥后的膜厚为0.4μm的方式,用绕线棒涂布器将用于电荷产生层的涂布液涂布到导电性支持体上的底涂层上并干燥,这样形成电荷产生层。
另外,使用的电荷传输物质为50重量份的根据特开2002-80432号公报的实施例1合成的由下列结构式(13)表示的化合物。使用的粘合剂树脂是100重量份含有下列组分的聚碳酸酯51摩尔%由下列结构式(14)表示的其芳香族二元醇组分为2,2-双(4-羟基-3-甲基苯基)丙烷的重复单元;和49摩尔%由结构式(15)表示的其芳香族二元醇组分为1,1-双(4-羟基苯基)-1-苯基乙烷的重复单元,所述聚碳酸酯具有源自对叔丁基苯酚的末端结构。使用的均化剂为0.03重量份硅油。将这些电荷传输物质、粘合剂树脂和均化剂溶解在640重量份的四氢呋喃/甲苯(重量比为8/2)的混合溶剂中,从而制备用于电荷传输层的涂布液。以使得干燥后的膜厚为25μm的方式,使用膜涂布器将用于电荷传输层的涂布液涂布到电荷产生层上,然后干燥,以形成电荷传输层,这样制得积层型电子照相感光体。
化学式24 化学式25 化学式26 用感光体评价仪(Cynthia 55,由Gentec Co.生产)以静止模式测定所得到的感光体的电子照相特性。
首先,在暗处,采用栅式电晕管(scorotron)充电器,使电子照相感光体以恒定速度(125mm/秒)通过放电的充电器下方,使得电子照相感光体的表面电位为约-700V,从而使电子照相感光体充电,测定其充电电压,记为初始充电电压V0(-V)。然后放置2.5秒,测定电位降DD(V),记为暗衰减。接着,用0.1μW/cm2强度的780nm的单色光照射,得到当感光体表面的电位从-550V降低到-275V时所消耗的曝光能量,记为半衰减曝光能量E1/2(μJ/cm2),并得到照射10秒后的电位,记为残留电位Vr(-V)。结果表示在表6中。
<实施例2~46>
以实施例1的相同方式,制备电子照相感光体,不同的是分别使用制备例2~46得到的酞菁组合物作为电荷产生物质来代替制备例1得到的酞菁组合物。对得到的感光体进行初始充电电压V0(-V)、电位降DD(V)、半衰减曝光能量E1/2(μJ/cm2)和残留电位Vr(-V)的测定。结果表示在表6~12中。
<比较例1~11>
以实施例1的相同方式,制备电子照相感光体,不同的是分别使用比较制备例1~11得到的酞菁组合物作为电荷产生物质来代替制备例1得到的酞菁组合物。对得到的感光体进行初始充电电压V0(-V)、电位降DD(V)、半衰减曝光能量E1/2(μJ/cm2)和残留电位Vr(-V)的测定。结果表示在表6~12中。
表6表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有α型或β型钛氧基酞菁(合成例1、7)和四氟氯镓酞菁(合成例5)。
表6

表7表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有α型钛氧基酞菁(合成例1)和四氟氯铟酞菁(合成例6)。
表7

表8表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯镓酞菁(合成例2)和四氟氧钛氧基酞菁(合成例4)。
表8

表9表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯镓酞菁(合成例2)和四氟氯铟酞菁(合成例6)。
表9

表10表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯铟酞菁(合成例3)和四氟氧钛氧基酞菁(合成例4)。
表10

表11表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯镓酞菁(合成例2)和四氟氯镓酞菁(合成例5)。
表11

表12表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯铟酞菁(合成例3)和四氟氯铟酞菁(合成例6)。
表12

从表6~12所示的结果明显看出,已经明确,与比较例1~11的酞菁结晶和酞菁组合物相比,实施例1~46的酞菁组合物具有优异的光衰减特性。因此,可以确认,本发明的酞菁组合物用作电子照相感光体的电荷产生物质时,具有优异的电子照相感光体特性。
IV.环境依赖性的评价<实施例47>
在温度25℃和湿度50%的环境条件下,将实施例2得到的电子照相感光体安装在根据电子写真协会标准生产的电子照相性能评价仪{“MoreBases and Applications of Electrophotography technology”,由电子写真学会编,由Corona Publishing Co.,Ltd.出版,第404~405页}上,充电至初始表面电位为-700V,然后使用卤素灯光通过干涉滤光器而产生的780nm的单色光作曝光光,使用660nm的LED光作为除电光,进行由充电、曝光、电位测定和除电组成的循环,从而进行电特性评价。在评价时,测定表面电位达到-350V所需要的曝光光的照射能量(μJ/cm2)作为感光度(25℃/50%)。
接着,在环境条件改变为温度5℃和湿度10%之后,根据前述测定方法进行测定,得到环境条件改变后的感光度(5℃/10%)。根据下列数学式(8)计算在感光体使用环境下的感光度波动率(%)。感光度(25℃/50%)、环境条件变化后的感光度(5℃/10%)和感光度波动率(%)的值表示在表13中。
感光度波动率(%)=感光度(25℃/50%)/感光度(5℃/10%)×100<实施例48~58>
以实施例47的相同方式,测定感光度(25℃/50%)、环境条件变化后的感光度(5℃/10%)和感光度波动率(%)的值,不同的是,分别使用实施例6、10、11、12、16、23、37、40、41、43和45得到的电子照相感光体代替实施例2得到的电子照相感光体。结果表示在表13~20中。
<比较例12~18>
以实施例47的相同方式,测定感光度(25℃/50%)、环境条件变化后的感光度(5℃/10%)和感光度波动率(%)的值,不同的是,分别使用比较例3、4、7、8、9、10和11得到的电子照相感光体代替实施例2得到的电子照相感光体。结果表示在表13~20中。
表13表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有α型钛氧基酞菁(合成例1)和四氟氯镓酞菁(合成例5)。
表13

表14表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有β型钛氧基酞菁(合成例7)和四氟氯镓酞菁(合成例5)。
表14

表15表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有α型钛氧基酞菁(合成例1)和四氟氯铟酞菁(合到的电子照相感光体含有α型钛氧基酞菁(合成例1)和四氟氯铟酞菁(合成例6)。
表15

表16表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯镓酞菁(合成例2)和四氟氧钛氧基酞菁(合成例4)。
表16

表17表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯镓酞菁(合成例2)和四氟氯铟酞菁(合成例6)。
表17

表18表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯铟酞菁(合成例3)和四氟氧钛氧基酞菁(合成例4)。
表18

表19表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯镓酞菁(合成例2)和四氟氯镓酞菁(合成例5)。
表19

表20表示一些实施例和对应的比较例的结果,在这些实施例中,得到的电子照相感光体含有氯铟酞菁(合成例3)和四氟氯铟酞菁(合成例6)。
表20

从表13~20所示的结果看到,不管使用环境如何变化,与比较例4、7、8、9、10和11生产的电子照相感光体相比,实施例2、6、10、11、12、16、23、37、40、41、43和45生产的电子照相感光体都表现出十分稳定的感光度。因此,可以确认本发明的酞菁组合物表现出比常规的酞菁组合物低的环境依赖性。
由上述实施例的结果明显看到,本发明的酞菁组合物具有优异的光衰减特性,使用这些酞菁组合物的电子照相感光体具有优异的环境依赖性。
本发明的酞菁组合物还具有不对环境产生负荷就可以制备的优点。
V.图像评价<实施例59>
以使得干燥后的膜厚对应着0.4g/m2(约0.4μm)的方式,将实施例7得到的用于电荷产生层的涂布液浸涂在直径3.0cm、长28.5cm和壁厚1.0mm和表面进行了阳极氧化和密封处理的铝圆筒表面上,这样形成电荷产生层。以使得干燥后的膜厚为26μm的方式,将实施例1得到的用于电荷传输层的涂布液浸涂在前述电荷产生层上,这样形成电荷传输层,从而生产出鼓型电子照相感光体。
<比较例19>
使用图66所示的相对于CuKα特性X射线(波长1.541)在27.2°的布喇格角(2θ±0.2°)处表现出主衍射峰的氧钛氧基酞菁代替实施例1的酞菁组合物。根据与实施例1中解释的用于电荷产生层的涂布液的生产方法相同的操作,得到用于电荷产生层的涂布液。该涂布液与比较例1得到的用于电荷产生层的涂布液等量混合,以使得干燥后的膜厚对应着0.4g/m2(约0.4μm)的方式,将该混合物浸涂在直径3.0cm、长28.5cm和壁厚1.0mm和表面进行了阳极氧化和密封处理的铝圆筒表面上,这样形成电荷产生层。随后以使得干燥后的膜厚为26μm的方式,将实施例1得到的用于电荷传输层的涂布液浸涂在前述电荷产生层上,这样形成电荷传输层,从而生产出鼓型电子照相感光体。
<鼓评价>
将前述实施例59和比较例20各自生产的电子照相感光体安装在根据电子写真协会标准生产的电子照相性能评价仪{“More Bases andApplications of Electrophotography technology”,由电子写真学会编,由Corona Publishing Co.,Ltd.出版,第404~405页}上。根据下列程序进行由充电、曝光、电位测定和除电组成的循环,评价其电特性。
在环境为温度25℃和湿度50%的试验室中,给感光体充电,使得初始表面电位变为-700V,用卤素灯光通过干涉滤光器而产生的780nm的单色光照射。测定表面电位变为-350V所需要的照射能量(半衰减曝光能量)作为感光度(E1/2;单位为“μJ/cm2”)。另外,在1.2μJ/cm2下曝光100毫秒之后,测定曝光后表面电位(V1;单位为“-V”)。
测定结果表示在表21中。
表21

从表21所示的评价结果明显看到,实施例59和比较例19具有同等的电子照相感光体特性。
<图像评价结果>
将实施例59和比较例29各自得到的电子照相感光体安装在市售的4循环型彩色激光打印机(LP2000C,由Seiko Epson Corp.生产)的鼓盒上,使用品红色调色剂进行图像评价,在所述评价中,电子照相感光体的第一循环为文字图案,电子照相感光体的第二及后续循环为半色调,从而形成用于重影评价的图像。
结果,当使用实施例59生产的电子照相感光体时,得到没有重影的良好图像,但是,当使用比较例19生产的电子照相感光体时,作为图像缺陷出现正重影。
从图像评价结果明显看到,使用本发明的酞菁组合物可以提供能形成良好的图像而没有重影现象发生的盒和成像装置。
<制备例47>
混合16份4-氟邻苯二甲腈、5份三氯化镓和95.5份α-氯萘,在氮气气氛中在200℃下反应15小时。在反应后,过滤出沉淀的固体,在室温条件下将该固体与46.5份N-甲基吡咯烷酮混合,然后过滤,进行该洗涤过程两次。接着,依次使用35.6份甲醇、45份水和35.6份甲醇作溶剂重复类似的洗涤过程,接着干燥,这样得到表现出图67所示的粉末X射线谱图的化合物。
在下列条件下进行粉末X射线衍射。
粉末X射线衍射装置PANalytical PW 1700X射线管Cu管电压40kV管电流30mA扫描轴θ/2θ测定范围(2θ)3.0°~40.0°测定模式连续读取范围0.05°扫描速率3.0°/minDS1°SS1°RS0.20mm作为所得到的化合物的质谱分析(DCI方法)的结果,在688和690处测得分子离子峰(负离子)。Ga同位素的图案也清晰地表明得到的化合物是四氟氯镓酞菁。在下列条件下进行质谱测定。
测定方法MALDI-TOF-MS测定测定仪器Voyger Elite-DE,由Applied Biosystems Co.生产测定条件检测离子负离子测定模式反射模式施加的电压20kV基质无得到的化合物的IR谱图表示在图68中。
<制备例48>
将5份由制备例47得到的四氟氯镓酞菁和150份直径约1mm的球形玻璃珠的混合物装在容积为250ml的聚乙烯瓶中,使得所占空间约为容积的一半,使用涂料分散试验仪(涂料振动器)进行振动处理20小时,从而进行无定形化。处理之后,将固体与玻璃珠分离。将固体在甲醇中搅拌30分钟,接着过滤,干燥,这样得到表现出图69所示的粉末X射线谱图的四氟氯镓酞菁。
<制备例49>
将8份根据特开平2-308863号公报的实施例1中的[I.钛氧基酞菁的制备]部分中所描述的方法制备的α型氧钛酞菁、2份由制备例47得到的四氟氯镓酞菁和400份直径约1mm的玻璃珠的混合物装在容积为250ml的聚乙烯瓶中,使得所占空间约为容积的一半,使用涂料分散试验仪(涂料振动器)进行振动处理20小时,从而进行无定形化。处理之后,将10份得到的酞菁组合物与80.5份甲乙酮混合,搅拌4小时,之后分离玻璃珠,对酞菁组合物进行过滤和干燥,这样得到表现出图70所示的粉末X射线谱图的酞菁组合物。
<制备例50>
进行制备例49的相同程序,不同的是使用8份根据特开平5-098181号公报中合成例和同一公报中实施例1所描述的方法生产的氯镓酞菁(不同的是使用1-氯萘作为合成用溶剂)代替制备例49中使用的8份α型氧钛酞菁,在使用涂料分散试验仪(涂料振动器)的处理之后,使用89份四氢呋喃代替甲乙酮,得到表现出图71所示的粉末X射线谱图的酞菁组合物。
<比较制备例12>
根据特开平2-289658号公报中实施例2所描述的方法,处理由比较制备例1生产的α型氧钛酞菁,得到具有图72所示的粉末X射线谱图的D型氧钛酞菁。
<实施例60>
混合4份由制备例47生产的四氟氯镓酞菁、30份4-甲基-4-甲氧基-2-戊酮和270份1,2-二甲氧基乙烷,使用砂磨机分散处理2小时,在得到的分散液中加入1份聚乙烯醇缩丁醛和1份苯氧基树脂(PKHH,由Union Carbide Co.生产),然后使用砂磨机再分散处理1小时,这样得到颜料分散液。
在表面上形成有70nm厚的铝汽相沉积层的75μm厚的双轴拉伸的聚对苯二甲酸乙二醇酯树脂膜的导电性支持体上,使用绕线棒涂布器涂布该分散液,使得干燥后的膜厚为0.4μm,然后干燥,从而形成电荷产生层。
在该电荷产生层上,涂布由下面所示的50份根据特开2002-80432号公报中实施例1所述的方法生产的电荷传输物质、100份下面所示的聚碳酸酯树脂、400份四氢呋喃和100份甲苯所形成的混合溶液,使得干燥后的膜厚为20μm,形成电荷传输层,这样生产出电子照相感光体A1。
化学式27 电荷传输物质化学式28 聚碳酸酯树脂<实施例61>
进行与实施例60相同的程序,不同的是使用制备例48得到的四氟氯镓酞菁代替实施例60中使用的四氟氯镓酞菁,这样生产出电子照相感光体A2。
<实施例62>
进行与实施例60相同的程序,不同的是使用制备例49得到的酞菁组合物代替实施例60中使用的四氟氯镓酞菁,这样生产出电子照相感光体A3。
<实施例63>
进行与实施例60相同的程序,不同的是使用制备例50得到的酞菁组合物代替实施例60中使用的四氟氯镓酞菁,这样生产出电子照相感光体A4。
<比较例20>
进行与实施例60相同的程序,不同的是使用比较制备例12得到的氧钛酞菁代替实施例60中使用的四氟氯镓酞菁,这样生产出比较感光体B1。
测定实施例和比较例生产的感光体的电特性相对于使用环境波动的变化。使用根据电子写真协会测定标准生产的电子照相性能评价仪{“More Bases and Applications of Electrophotography technology”,由电子写真学会编,由Corona Publishing Co.,Ltd.出版,第404~405页}。将上述感光体贴在铝鼓上,制成圆筒形,确保铝鼓和感光体的铝基材之间导通。以恒定的旋转数旋转该鼓,同时根据充电、曝光、电位测定和除电的循环进行电特性评价试验。此时,将初始表面电位调节在-700V,曝光和除电分别使用780nm和660nm的单色光。在曝光后,作为感光体的表面电位对曝光量的依赖性的指标,测定表面电位达到-350V所需要的曝光量(此后也称为半衰减曝光量或E1/2)和表面电位达到-140V(初始充电电位的1/5)所需要的曝光量(此后也称为E1/5),基于表示这些值随环境波动的程度的波动率进行评价。从曝光到电位测定所用的时间为100毫秒。
在温度25℃和相对湿度50%的环境(此后也称为N环境)和温度5℃和相对湿度10%的环境(此后也称为L环境)中进行测定。表22表示L环境中的感光度(半衰减曝光量)相对于N环境中的感光度的波动比ΔE1/2(%)和L环境中的E1/5相对于N环境中的E1/5的波动比ΔE1/5(%)。据说波动比的值越小,感光体越不易受环境影响,表现出更稳定的特性。根据下式计算ΔE1/2和ΔE1/5的值。
ΔE1/2100×[1-{(L环境的E1/2)/(N环境的E1/2)}]的绝对值ΔE1/5100×[1-{(L环境的E1/5)/(N环境的E1/5)}]的绝对值表22

从表22所示的结果清晰地看到,尽管使用环境发生变化,但本发明的电子照相感光体的电特性波动小,电特性的平衡良好。因此,甚至在重复使用时,当周围的温度或湿度波动时,它们作为感光体的特性也仅仅表现出小的波动,可以合适地用于电子照相感光体。
工业实用性本发明可以在需要电子照相感光体的任何领域进行实施,适合用于各种电子照相装置,例如复印机、打印机、传真机、印刷机等。
权利要求
1.一种酞菁组合物,其中同时包含通式(1)表示的至少一种酞菁化合物和通式(2)表示的至少一种酞菁化合物化学式1 化学式2 在上述通式(1)和(2)中,M1表示能键合到酞菁上的至少一个任意原子或原子团,M2表示能键合到酞菁上的周期表第二周期和第二周期以下周期的原子或含有周期表第二周期和第二周期以下周期的原子的原子团,M1和M2的种类不同,X1~X4各自独立地表示卤原子,和a、b、c和d各自独立地表示0~4的整数,而且满足a+b+c+d≥1。
2.如权利要求1所述的酞菁组合物,其中所述酞菁组合物具有共结晶性结构。
3.如权利要求2所述的酞菁组合物,其中所述酞菁组合物通过机械的无定形化步骤进行制备。
4.一种酞菁组合物,其中同时包含通式(3)表示的至少一种酞菁化合物和通式(4)表示的至少一种酞菁化合物化学式3 化学式4 在上述通式(3)和(4)中,M3和M4各自表示选自长周期型周期表的第13族的原子,M3和M4是同种原子,X5~X8各自独立地表示卤原子,Y1表示能键合到M3上的一价键合基团,Y2表示能键合到M4上的一价键合基团,至少Y1或Y2之一是卤原子,和e、f、g和h各自独立地表示0~4的整数,而且满足e+f+g+h≥1。
5.如权利要求4所述的酞菁组合物,其中所述酞菁组合物具有共结晶性结构。
6.如权利要求5所述的酞菁组合物,其中所述酞菁组合物通过机械的无定形化步骤进行制备。
7.一种光电导材料,其中包含权利要求1~6中任一项所述的酞菁组合物。
8.一种电子照相感光体,该电子照相感光体包含导电性支持体和在所述支持体上形成的感光层,其中,所述感光层中含有权利要求1~6中任一项所述的酞菁组合物。
9.一种电子照相感光体,该电子照相感光体包含导电性支持体和在所述支持体上形成的感光层,其中,所述感光层含有以下通式(5)表示的氟代镓酞菁化合物化学式5 在通式(5)中,X表示卤原子,和k、l和m各自表示取代基氟原子的数目,且各自独立地表示0~4的整数。
10.一种电子照相感光体盒,所述电子照相感光体盒包括权利要求8所述的电子照相感光体;和下列至少一个部件给所述电子照相感光体充电的充电部件,使充电的所述电子照相感光体曝光以形成静电潜像的曝光部件,和使在所述电子照相感光体上形成的静电潜像显影的显影部件。
11.一种电子照相感光体盒,所述电子照相感光体盒包括权利要求9所述的电子照相感光体;和下列至少一个部件给所述电子照相感光体充电的充电部件,使充电的所述电子照相感光体曝光以形成静电潜像的曝光部件,和使在所述电子照相感光体上形成的静电潜像显影的显影部件。
12.一种成像装置,所述成像装置包括权利要求8所述的电子照相感光体;给所述电子照相感光体充电的充电部件;使充电的所述电子照相感光体曝光以形成静电潜像的曝光部件;和使在所述电子照相感光体上形成的静电潜像显影的显影部件。
13.一种成像装置,所述成像装置包括权利要求9所述的电子照相感光体;给所述电子照相感光体充电的充电部件;使充电的所述电子照相感光体曝光以形成静电潜像的曝光部件;和使在所述电子照相感光体上形成的静电潜像显影的显影部件。
全文摘要
本发明提供具有高的感光度和低的环境依赖性的酞菁组合物和使用该酞菁组合物的光电导材料、电子照相感光体、电子照相感光体盒和成像装置。所述组合物同时包含通式(1)表示的至少一种酞菁化合物和通式(2)表示的至少一种酞菁化合物。M
文档编号C09B67/22GK1926198SQ20058000678
公开日2007年3月7日 申请日期2005年3月4日 优先权日2004年3月4日
发明者和田光央, 井田和孝, 藤井章照 申请人:三菱化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1