含有无机纤维的水力压裂支撑剂的制作方法

文档序号:3739214阅读:175来源:国知局
专利名称:含有无机纤维的水力压裂支撑剂的制作方法
技术领域
本发明涉及石油和天然气生产行业,并且更具体地说,涉及可用于在水力压裂中提高石油和天然气生产的支撑剂。最具体地说,本发明是用于制备陶粒支撑剂的组合物和制造工艺。
背景技术
对于廉价的高强度支撑剂存在需要
发明内容

本发明的目标是提供用于水力压裂的低成本支撑剂和其生产方法。—个实施方案是由基体的前体(precursor)和增强添加剂形成的陶瓷基组合物,其中增强添加剂呈多种细长无机晶体形式。组合物可呈粒状材料形式。增强添加剂可包括以下一种或一种以上天然硅灰石、硅灰石浓缩物、合成硅灰石、3 -硅灰石、顽辉石、白云石、氧化镁、硅酸镁、镁橄榄石、滑石、橄榄石、碳化硅、氮化硅、无机纤维、由金属块(s Iug )产生的纤维、可商购的无机结晶纤维、基于a -氧化铝的纤维、基于氧化铝-二氧化硅的纤维、玻璃纤维,和纤维。增强添加剂的数量通常不超过25重量百分比。基体的前体包括以下一种或一种以上粘土、高岭土、铝土矿、高岭石、氧化铝细屑、氢氧化铝、氧化铝粉末、云母、硅酸铝、富铝红柱石(mullite)、蓝晶石,和硅线石,以及这些材料的混合物。铝土矿的氧化铝含量通常在约50至约75重量百分比的范围内。增强添加剂优选包括硅灰石、硅灰石浓缩物,或合成硅灰石晶体,其长径比的范围是约3至约40,更优选约8至约20。在组合物的其它实施方案中,一种或一种以上前体可被预烧(预煅烧)。增强添加剂可添加至基体的前体中,增强添加剂的前体可添加至基体的前体中,或增强添加剂和增强添加剂的前体可一起添加至基体的前体中。组合物通常在低于约1500°C并且低于增强添加剂的熔融温度的温度下,例如在约1200与约1350°C之间的温度下烧制。本发明的另一个实施方案是制备含有陶瓷基体和增强剂的支撑剂材料的方法。所述方法包括以下步骤压碎原料组分、混合原料组分、将混合物粒化成支撑剂颗粒、干燥颗粒、烧结颗粒,和筛分颗粒以提供选定大小。在这种方法中,原料组分可包括一种或多种陶瓷基前体材料和一种或一种以上增强添加剂,或一种或多种陶瓷基前体材料和增强添加剂的一种或一种以上前体,或一种或多种陶瓷基前体材料和一种或一种以上增强添加剂和增强添加剂的一种或一种以上前体。
具体实施例方式虽然以下讨论着重于压裂,但是本发明的增强支撑剂和方法可用于压裂、砾石充填,和合并在单一操作中的压裂与砾石充填。本发明可就处理垂直井加以描述,但是同样可适用于任何定向的井。本发明可针对用于烃生产井加以描述,但是应理解本发明可用于供生产如水或二氧化碳的其它液体的井,或例如用于注入或储存井。还应理解在整个本说明书中,当浓度或数量范围被描述为适用,或合适等时,应认为已经陈述所述范围内的任何和每个浓度或数量,包括端点。此外,每个数值在第一次遇到时应认为由术语“约”修饰(除非已经明确地如此限定),然后再次遇到时不应认为如此限定,除非上下文另外陈述。例如,“I至10的范围”应认为是指明在约I与约10之间的闭联集内的每一个可能数字。换句话说,当表达某一范围时,即使仅明确认定或提到所述范围内的少许特定数据点,或甚至当未提到所述范围内的数据点时,应理解,本发明者了解并且理解所述范围内的任何和所有数据点应视为已加以规定,并且本发明者拥有整个范围和所述范围内的所有点。本文描述用于制备通常称为支撑剂的陶瓷芯块的组合物,以及其制造工艺。支撑剂的独特组成引起强度的显著增加,同时使支撑剂比重减到最少。有利的结果是由于在一定强度条件下的比重较低,产生了与常规支撑剂相比,输运性质得到改善的高强度支撑剂。这些支撑剂在高于约68. 95MPa(约10,OOOpsi)的压力下尤其适用。
支撑剂是由以下的组合进行制造使用易于得到并且廉价的具有中等铝含量的铝土矿制成的陶瓷基体,和例如呈无机细长晶体(例如针形晶体、纤维、板样形状和晶须)形式的无机增强添加剂。实例为矿物实例硅灰石。在陶瓷颗粒中形成增强网状物,从而增加其强度。增强添加剂或相可添加至原材料掺合物或可在制造工艺期间原位形成。因此,形成具有与初始无机基体近似的密度的材料。优选地使用多达约15重量百分比的增强添加齐U。这种组合物和方法是设计来与通常用于中等强度支撑剂的廉价并且相对轻重量的铝土矿(例如具有约50至约75重量百分比的氧化铝含量)一起发挥作用。在材料科学中,此方法已相当广泛地用于主要由金属和聚合物制成,以及由陶瓷基体制成的复合物中。然而,在本发明中用于使陶瓷基体变坚韧的无机纤维的用途与在金属或聚合物基体中使用的纤维的用途非常不同。这一差异由所使用的基体材料的性质产生。聚合物(例如树脂)和大多数金属复合物通常利用基体材料的较低刚度和塑性变形的 能力。这一状况与增强物的较大刚度一起使得压力可通过基体转化到纤维上,并且将其非凡的机械性质赋予整个复合结构。相比之下,在本发明中,陶瓷基体复合物由非常硬的(易碎的)基体组成,在所述基体中嵌埋有硬度较小的纤维。这样一来,与传统的复合物相比,各自的作用在一定程度上是相反的。整个复合物的硬度主要由基体来控制。纤维的作用是抵消基体的脆度。纤维必须阻止裂缝在陶瓷基体中传播。若干因素起作用纤维-基体界面处的粘结强度,纤维对于裂缝的弥合,以及其对于随后脱离的抗性。纤维减少裂缝变长和裂缝加宽。在这两种情况中,界面粘结都是最重要的。本发明的优点是本发明的支撑剂可使用常规支撑剂制造材料和工艺来制造。通常,用于高应力应用的支撑剂(称为高强度支撑剂)使用高质量等级的铝土矿(例如具有高于约75重量百分比的氧化铝含量)来产生,并且在高温(例如高于约1400°C )下合成,这两种情况都导致最终产物的成本较高。本发明的复合增强支撑剂的制造成本由于较低焙烧温度和作为主要成分的中等强度铝土矿的较低成本而低于常规高强度支撑剂的制造成本。本发明的支撑剂的较高强度防止这种支撑剂在较高闭合应力下被压碎,产生高度传导性的支撑剂填料,从而可引起石油和天然气生产增加。这种材料相对于具有类似强度的其它支撑剂的较低密度有助于确保支撑剂在裂缝中输运和放置的改善。较低密度支撑剂在给定液体中具有较低沉降速率,因此可在较低粘度液体中以较低泵送速率加以泵送,或更深地泵送至裂缝中,这一情况要取决于操作者的需要。美国专利第6,753,299号教导了轻重量的可渗透性支撑剂组合物,其优选包含由占组合物的小于10重量%的量的硅灰石和滑石粉形成的粘结剂保持在一起的按重量计算相等量的未焙烧(未煅烧)铝土矿、未焙烧页岩和石英。支撑剂在1100至1200°C下加以烧制。这一组合物中的氧化铝的总含量小于25重量百分比,二氧化硅含量高于45重量百分t匕,并且硅灰石仅与滑石粉一起使用,以便在支撑剂本体中产生额外结晶相。优选支撑剂含有45重量%或更多的石英,其为主结晶相。据发明者称,添加滑石粉和硅灰石分别导致硅酸镁铁(尖晶石)和钙长石相的形成。少量长石可在中本发明的支撑剂被发现,但是其并非是所需的相。所引用参考文献的支撑剂据称具有高度浸透性和多孔性;本发明的支撑剂据信具有与常规陶粒支撑剂大约相同的孔隙率,即小于约30重量百分比。美国专利第5,120,455号所公开的支撑剂具有40至60重量百分比的氧化铝含量,36. 5至56. 5重量百分比的二氧化硅含量和多达5重量百分比的选自霞石正长岩、熔融 铝土矿尘埃、硅灰石、滑石粉和长石的压碎强度增强剂。据发明者称,压碎强度增强剂通过在烧结期间阻止方石英形成来起作用。他们没有提到压碎强度增强剂必须具有某一长径t匕,熔点并且他们也没有指定组合物必须在低于压碎增强剂的熔点的温度下加以烧制。无机物硅灰石(CaO SiO2)已在生产陶瓷和玻璃陶瓷中,在形成的基体内加以合成。例如,由晶须类型的硅灰石晶体增强的显示高机械强度的玻璃陶瓷已通过使用各种废玻璃和贝壳的混合物作为起始材料的研磨和热处理工艺来加以制备。使用X射线衍射分析在玻璃基体中观察到晶须类型的¢-硅灰石晶体的形成。在将退火温度从800°C增加至900°C直至1000°C时,样品的耐压强度增加。然而,在本发明中,晶须类型的硅灰石(或类似材料)优选以备妥的形式添加至前体混合物。包含多个烧结球状芯块的增强水力压裂支撑剂由包含至少一种来自A组的组分(形成所述基体)和至少一种来自B组的组分(增强组分)的组合物来制备A 组(基体)铝土矿、高岭土、高岭石、粘土、氧化铝细屑、氢氧化铝、氧化铝粉末(处于过渡状态中)、云母、硅酸铝(例如富铝红柱石、蓝晶石和硅线石),和铝土矿(主要由一种或多种氢氧化铝材料组成的自然产生的非均质材料,加上二氧化硅(SiO2)、氧化铁(Fe2O3)、二氧化钛(TiO2)、铝硅酸盐和痕量的其它杂质的各种混合物)和这些材料的混合物。B组(增强组分)天然硅灰石、硅灰石浓缩物(经精炼以具有低杂质含量和选定长径比的浓缩物)、合成硅灰石、3 -硅灰石、顽辉石、白云石、氧化镁、硅酸镁(镁橄榄石、滑石)、橄榄石(硅酸镁和硅酸亚铁的固溶体)、碳化硅、氮化硅、无机纤维、由金属生产的金属块副产物产生的纤维、基于a -氧化铝的纤维、基于氧化铝-二氧化硅的纤维、玻璃纤维、可耐受支撑剂烧结温度的耐高温陶瓷纤维,和这些材料的混合物。任何天然或合成增强材料的主要要求是优选约3至约40、最优选约8至约20的长径比,优选小于约10重量百分比的杂质含量,和优选小于约80至IOOpm的纤维直径。许多可商购的B组成员具有在这些范围以外的性质。来自A组和B组的材料的组合允许获得具有由无机晶须、针、纤维的相和其它细长无机晶体相增强的铝土矿或氧化铝-硅酸盐基体的复合材料。增强组分优选以多达约10重量百分比的浓度添加。A组和B组的组分以一定浓度混合以使得最终产物的氧化铝含量为约60至约90重量百分比,优选约70至约78重量百分比,并且二氧化硅含量为约5至约30重量百分比,优选约15至约20重量百分比。连续纤维增强物提供强度和韧性。纤维通常更强固,并且具有比基体材料高的杨氏模量值,并且其支撑大部分的所施加的载荷。纤 维增强陶瓷和常规陶瓷的破坏机理是不同的,不同之处在于破坏对于纤维增强陶瓷不是毁灭性的,因为即使在基体破裂之后,大部分所施加载荷可继续由纤维支撑。采用复合物方法允许生产比重接近于基体(例如中等强度铝土矿)的比重但是具有较大压碎强度的支撑剂,因为增强材料以相对较低的浓度添加,并且具有类似于基体组分的密度。无机纤维增强的支撑剂材料使用常规支撑剂制造技术来制备。将至少一种来自A组的组分与至少一种来自B组的组分混合。任选地,可引入超过5重量百分比的粘结剂。粘结剂的非限制实例包括淀粉和羟丙基纤维素。粘结剂以约5至约7重量百分比,优选约3至约5重量百分比的浓度添加。混合物在高达约100°C,优选约80至约95°C的温度下干燥。在高达约1500°C的最终温度下烧制,优选在约1200至1350°C的温度范围内执行(例如在商业旋转窑中),且加热速率和在中间温度与最终温度下的停留时间经过选择来获得提供陶瓷体的最佳性质的相组成并且保持增强添加剂的晶形不改变。加热温度可不断地增加,或可停止加热并且将混合物保持在中间温度下达到选定的时间。经过选择使用的焙烧温度低于来自B组的组分的熔点,或任何相转变点。可商购的许多B组成员的熔点各不同并且在烧制时必须考虑到这一'清况。在冷却之后,将支撑剂筛分至不同的大小。任选地,至少一种在油田中使用的聚合物/金属/无机/复合物涂料(可固化或预固化)可通过本领域普通技术人员已知的任何方法来涂覆至支撑剂表面上。如果涂布支撑剂,那么可首先涂覆任选的中间涂料以增加外涂层与支撑剂的粘附强度。低密度使得本发明的支撑剂尤其适用于减水阻处理(slick water treatment),在所述减水阻处理中,支撑剂输运通常造成尤其严重问题。应当指出的是,在粒化工艺中,通常添加2至3重量百分比的增塑剂,例如高岭土(如果还不存在)或膨润土。研究不同温度下的增强添加剂的影响,并且发现1450°C是所研究的铝土矿组合物的最佳温度。在实验室中,烧制在电气马弗炉中完成;在商业旋转窑中,焙烧温度可较低。本发明可通过以下实例来进一步理解。实施例I :将具有约68至72重量百分比的氧化铝含量的铝土矿研磨至约15微米大小,然后与5重量百分比的天然硅灰石(具有约15的长径比,4. 5的莫氏硬度、2. 9的比重,和1540°C的熔点)和5重量百分比的高岭土混合;然后混合物通过干式方法来粒化。在若干实验中,所得颗粒在约150至200°C下干燥,筛选成不同粒度级并且在约1200至1400°C的温度下烧制。结果,形成通过硅灰石针形晶体增强的氧化铝-硅酸盐基体。使由这种组合物制成的A20/40筛目(420至840微米)大小支撑剂在680atm(68. 95MPa) (10,OOOpsi)下进行压碎测试,并且细屑产量低于4重量百分比。
实施例2 使具有约68至72重量百分比的氧化铝含量的铝土矿在1200°C下预烧并且研磨至约15微米大小;其然后与3重量百分比的天然硅灰石(具有约10的长径比的颗粒)混合并且将混合物通过干式方法来粒化。所得颗粒在10(TC下干燥,筛选成不同粒度级,并且在1350°C的温度下烧制。结果,形成通过硅灰石针形晶体来增强的氧化铝-硅酸盐基体支撑齐U。使根据本发明制成的30/50筛目(297至590微米)大小支撑剂在850atm(86. 18MPa)(12,500psi)下进行压碎测试并且产生仅3重量百分比的细屑。实施例3 将具有约60至70重量百分比的氧化铝含量的铝土矿研磨至约15微米,并且随后与5重量百分比的2SiC和IMgO的掺合物混合,并且将整个混合物通过湿式方法来粒化。将所得颗粒干燥,筛选成不同粒度级并且在1400°C的温度下烧制。结果,产生据信含有在热处理期间形成的增强顽辉石(MgSiO3)相的氧化铝-硅酸盐基体支撑剂。顽辉石通常具有约2. I的长径比、5. 5的莫氏硬度、3. 2的比重,和1540°C的熔点。 以下实验在没有粒化阶段的情况下执行;实验对于圆柱形样品(对于未加工(未烧制)的样品,直径=长度=16_)来进行。在每一种情况下,基础物质通过将铝土矿与高岭土在球磨机中干式研磨至少4小时,随后通过150筛目(100微米)筛进行压制来制备。将不同量的增强添加剂添加至这一基础物质。通过将占物质的约10重量百分比浓度的5重量百分比的淀粉溶液添加至基础物质,将淀粉用作粘结剂。样品通过在30atm下等静压制来形成。将样品在60至70°C的温度下放置于干燥窑中2至3小时(直到物质恒定为止)。然后样品在电窑中、在约1300至1450°C的温度下烧制。实施例4 研究顽辉石作为增强添加剂的影响。添加理论计算量的碳化硅和磁铁矿以形成5%顽辉石增强相。将这一添加剂引入具有68. 42%的富铝红柱石含量和31. 58%的氧化铝含量的高岭土与铝土矿的混合物中(标准中等强度支撑剂(ISP)铝土矿)。(富铝红柱石是可通过具有二氧化硅和氧化铝的矿物的高温相互作用来形成的铝矽酸盐材料(3Al203-2Si02)。)表I示出顽辉石添加剂对于用于生产ISP的典型铝土矿/高岭土混合物(80重量百分比的如上所述ISP等级铝土矿和20重量百分比的高岭土)的性质的影响。在这种情况下,高岭土用作增塑剂。添加形成5重量百分比的顽辉石的混合物导致压缩应力增加大约一倍。注意本实施例中使用两种类型的ISP等级铝土矿,一种为未加工的,并且一种在1200°C下预烧4小时以消除所有游离和结合水以及有机杂质。将铝土矿/高岭土混合物的样品在1350°C下烧制。应还注意在下表中示出的闭合压力只为了比较参考而给出,并且显示松散材料的性质,但是不能用作颗粒支撑剂强度的直接值。将采用双向载荷来压碎圆柱形样品。所有实验重复进行三次。表I
权利要求
1.一种包含陶瓷基体和增强添加剂的组合物,所述陶瓷基体由所述基体的前体形成,其中所述增强添加剂呈众多细长无机晶体形式。
2.根据权利要求I所述的组合物,其呈粒状材料形式。
3.根据权利要求I所述的组合物,其中所述增强添加剂包括以下一种或一种以上:天然硅灰石、硅灰石浓缩物、合成硅灰石、3 -硅灰石、顽辉石、白云石、氧化镁、硅酸镁、镁橄榄石、滑石、橄榄石、碳化硅、氮化硅、无机纤维、由金属块产生的纤维、可商购的无机结晶纤维、基于a -氧化铝的纤维、基于氧化铝-二氧化硅的纤维、玻璃纤维和纤维。
4.根据权利要求I所述的组合物,其中增强添加剂的量不超出25重量百分比。
5.根据权利要求I所述的组合物、其中所述基体的前体包括以下一种或一种以上粘土、闻岭土、招土矿、闻岭石、氧化招细屑、氣氧化招、氧化招粉末、z 母、娃酸招、富招红柱石、蓝晶石和硅线石及其混合物。
6.根据权利要求5所述的组合物,其中所述铝土矿的所述氧化铝含量的范围是约50至约75重量百分比。
7.根据权利要求5所述的组合物,其中将一种或一种以上前体预烧。
8.根据权利要求I所述的组合物,其中将所述增强添加剂添加至所述基体的所述前体。
9.根据权利要求I所述的组合物,其中所述增强添加剂的前体被添加至所述基体的所述前体。
10.根据权利要求I所述的组合物,其中将增强添加剂和增强添加剂的前体一起添加至所述基体的所述前体。
11.根据权利要求I所述的组合物,其中所述增强添加剂包括硅灰石、硅灰石浓缩物,或合成硅灰石晶体,其长径比的范围是约3至约40。
12.根据权利要求I所述的组合物,其中所述组合物在低于约1500°C并且在所述增强添加剂的熔融温度以下烧制。
13.根据权利要求12所述的组合物,其中所述组合物在约1200与约1350°C之间的温度下烧制。
14.一种制备包含陶瓷基体和增强剂的支撑剂材料的方法,其包括以下步骤压碎原料组分、混合原料组分、将所述混合物粒化成支撑剂颗粒、干燥所述颗粒、烧结所述颗粒和筛分所述颗粒以提供所选定大小。
15.根据权利要求14所述的方法,其中所述原料组分包含一种或多种陶瓷基前体材料和增强添加剂。
16.根据权利要求14所述的方法,其中所述原料组分包含一种或多种陶瓷基前体材料和增强添加剂的一种或一种以上前体。
全文摘要
本发明涉及石油和天然气生产行业,并且更具体地说,涉及可用于在水力压裂中提高石油和天然气生产的支撑剂。最具体地说,本发明是用于制备陶粒支撑剂的组合物和制造工艺所述陶粒支撑剂为由基体的前体和增强添加剂形成的陶瓷基组合物,其中所述增强添加剂呈众多细长无机晶体形式;或一种或一种以上前体可被预烧(预煅烧)。
文档编号C09K8/80GK102753648SQ200980163222
公开日2012年10月24日 申请日期2009年12月30日 优先权日2009年12月30日
发明者Z·Y·优索娃 申请人:普拉德研究及开发股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1