一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法与流程

文档序号:18416211发布日期:2019-08-13 19:27阅读:166来源:国知局

本发明涉及建筑材料技术领域,属于盐渍地区抗化学侵蚀型混凝土表层强化剂,特别是一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法。



背景技术:

我国西北地区大量分布着盐渍土和富含卤水的盐湖,温差较大、环境恶劣,使得该地区的桥涵基础、地下管线等混凝土设施的腐蚀现象严重而普遍。如何防止盐渍地区混凝土自身腐蚀和混凝土中钢筋腐蚀,延长混凝土结构的服役寿命,成为当前提高盐渍地区混凝土工程耐久性是一个急需解决的问题。

众所周知,提高混凝土抗盐侵蚀破坏的主要方法有:(1)使用不同类型、粒径的矿物掺合料和化学外加剂提高混凝土的密实度,并且可降低易受到盐侵蚀影响的水化产物;(2)通过化学外加剂抑制盐侵蚀产物的形成;(3)在混凝土表面涂刷抗盐侵蚀的保护涂层,避免外界盐离子渗透到混凝土内部。

目前,混凝土抗盐侵蚀材料的研究国内外已有报道。如专利《高效抗硫酸盐侵蚀混凝土添加剂及其制备方法》(cn106542762a)中公布了使用钡盐、煅烧硅藻土、硅灰以及减水剂等材料混合制备而成的一种抗硫酸盐侵蚀的混凝土添加剂;专利《混凝土抗硫酸盐腐蚀选择性结晶抑制剂及其制备方法》(cn103641355a)中公布了以天冬氨酸、甲基丙烯酸、2-丙烯酰胺基-2-甲基丙磺酸、亚硫酸钠或硫酸亚铁等组份为主的混凝土膨胀性硫酸盐产物抑制剂;专利《混凝土抗硫酸盐复合涂料》(cn1847332)中公布了以苯丙乳液、聚二甲基硅氧烷、气相二氧化硅构成a组份,以抗硫酸盐水泥、sio2、caco3、滑石粉等材料构成b组份,将a、b组份按比例混合后即可得到提高混凝土结构的安全性和耐久性的混凝土抗硫酸盐复合涂料。

造成混凝土过早劣化的主要因素除了硫酸盐侵蚀破坏之外,氯盐侵蚀引起混凝土中钢筋锈蚀,进而导致钢筋混凝土结构劣化也是重要的因素之一。我国西部盐渍地区土壤中氯离子、硫酸根离子等腐蚀离子的含量超过《工业建筑防腐蚀设计规范》(gb50046-2008)所规定严重侵蚀含量,对混凝土耐久性和安全性的构成很大威胁。因此,提高西部盐渍地区混凝土抗化学侵蚀性能需充分考虑多种腐蚀离子的耦合作用下的侵蚀破坏能力。盐渍地区侵蚀破坏混凝土材料的有害离子一般是由外部逐渐侵入内部,因此,混凝土表层结构的性能将密切关系着混凝土浇筑成型后的力学性能和耐久性。



技术实现要素:

本发明的目的在于提供一种盐渍地区抗化学侵蚀型混凝土表层强化剂,可以提高混凝土抗化学侵蚀的性能,提高混凝土表层密实度,提高混凝土的强度,可以提高混凝土抗有害离子的渗透性,提高浇注成型后混凝土的力学性能和耐久性。

本发明的另一个目的是提供一种盐渍地区抗化学侵蚀型混凝土表层强化剂的制备方法。

本发明的目的是这样实现的:一种盐渍地区抗化学侵蚀型混凝土表层强化剂,其组分及含量为高分子聚合物预聚体10%-30%、表层强化组分1%-8%、渗透性组分1%-6%、阴离子吸附材料1%-10%,余量为水,所有百分数为质量百分数。

其中各组分的优选含量质量百分比为高分子聚合物预聚体15%-20%、表层强化组分5%-8%、渗透性组分3%-5%、阴离子吸附材料5%-8%,余量为水。

一种盐渍地区抗化学侵蚀型混凝土表层强化剂的制备方法,表层强化组分为纳米二氧化硅溶胶或纳米硅酸钠或水性耐盐雾纳米二氧化硅溶胶;渗透性组分为顺丁烯二酸或反丁烯二酸或草酰乙酸或2-羟基丁二酸;阴离子吸附材料为偏高岭土或煅烧水滑石或蛭石。

将高分子聚合物、表面强化组分、渗透性组分、阴离子吸附材料和水混匀;将混合后的溶液加热至35℃±2℃,并且用搅拌装置搅拌60min,得到的粘度值为100mpa.s~3000mpa.s的胶状溶液后,冷却至室温即可。

高分子聚合物预聚体为水性聚氨酯预聚体,其制备方法有如下步骤:先将多元醇在60℃-130℃下脱水,在氮气保护氛围下向脱水后的多元醇中加入异氰酸酯,两者的质量比为2.4-6:1,在45℃-95℃加热搅拌30min-90min后,滴加入20g-40g的3-(2,4-二羟基苯)丙酸或2,2-二羟甲基丙酸或3-(4-甲氧基苯基)丙酸后,乳化30min-60min,再加入15g-40g胺类或醇类或醇胺类水溶液,继续反应60min-150min即可。

多元醇为聚乙二醇或聚丙二醇;异氰酸酯为二苯基甲烷二异氰酸酯或异氟尔酮二异氰酸酯或2,4-甲苯二异氰酸酯或3-(2,4-二羟基苯)丙酸或2,2-二羟甲基丙酸或3-(4-甲氧基苯基)丙酸;胺类为三乙烯二胺或乙二胺或三乙胺或二乙胺或二丁基二月桂酸锡或ξ-己内酰胺;醇类为可商购的乙二醇、丙三醇、二甘醇、异丙醇;醇胺类有机物为甲基二乙醇胺或二乙醇胺或三乙醇胺或异丙醇胺。

余量为水是余量为去离子水。

本发明中使用高分子聚合物预聚体为水性聚氨酯预聚体,其合成步骤为:先将多元醇在60℃-130℃下脱水,再与异氰酸酯在氮气氛围下45℃-95℃加热搅拌30min-90min,滴加一定质量的诸如3-(2,4-二羟基苯)丙酸、2,2-二羟甲基丙酸或3-(4-甲氧基苯基)丙酸后乳化30min-60min,再加入胺类、醇类或醇胺类水溶液,继续反应60min-150min,参照《胶黏剂黏度的测定》(gb/t2794-2013)单圆筒旋转黏度计法,使用ndj-8s数字旋转粘度计测试所合成的水性聚氨酯预聚体粘度,所测粘度要求控制在100mpa.s-3000mpa.s,将体系降温至室温。

本发明实现了高分子聚合物预聚体涂层外涂隔离有害离子侵入,以能与混凝土胶凝材料水化产物反应的表层强化组份和渗透性组份来加强混凝土结构表层密实度,并以阴离子吸附材料进一步对侵入混凝土表层的有害离子进行吸附固定,降低了混凝土有害离子对混凝土结构的破坏。

本发明以高分子聚合物预聚体涂层外涂隔离有害离子侵入,以能与混凝土胶凝材料水化产物反应的表层强化组份和渗透性组份来加强混凝土结构表层密实度,并以阴离子吸附材料进一步对侵入混凝土表层的有害离子进行吸附固定,来降低混凝土有害离子对混凝土结构的破坏。

本发明提高了混凝土抗化学侵蚀的性能,提高了混凝土表层密实度,提高了混凝土的强度,提高了混凝土抗有害离子的渗透性,提高了浇注成型后混凝土的力学性能和耐久性。

具体实施方式

实施例1,一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法,具体步骤如下:在干燥氮气保护氛围下,将称量好的一定量聚丙二醇500g加入洁净干燥的1000ml四口烧瓶中,搅拌、加热至70℃±2℃,用真空泵回流脱水60min,将脱水后的聚丙二醇降温至50℃±2℃,在氮气保护氛围下按聚丙二醇ppg:二苯基甲烷二异氰酸酯(mdi)=6:1(质量比)的比例加入相应量的mdi,再缓慢升温至75℃左右,保温并匀速搅拌60min后,按2,2-二羟甲基丙酸:三乙胺=3:1(质量比)的比例缓慢滴加30g-50g,继续反应60min-150min,直到得到澄清的溶液后冷却至室温即可;将20%反应制得的预聚体、6%的水性耐盐雾纳米二氧化硅溶胶、3%的反丁烯二酸、5%的煅烧纳米水滑石加入66%的去离子水中,将混合后的溶液加热至35℃±2℃并用常规搅拌装置搅拌60min,得到的粘度值为1000mpa.s-2000mpa.s的胶状溶液后冷却至室温即可。

实施例2,一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法,具体步骤如下:在干燥氮气保护氛围下,将称量好的一定量聚乙二醇500g加入洁净干燥的1000ml四口烧瓶中,搅拌、加热至80℃±2℃,用真空泵回流脱水60min。将脱水后的聚乙二醇降温至50℃±2℃,继续在氮气保护氛围下按聚乙二醇peg:2,4-甲苯二异氰酸酯(tdi)=5:1(质量比)的比例加入相应量的tdi,再缓慢升温至70℃左右,保温并匀速搅拌60min后,滴加20g-40g的3-(2,4-二羟基苯)丙酸,在60℃左右反应至异氰酸酯基团达到理论值,降温至40℃滴加20g-40g的二乙胺中和后持续乳化60min-150min即可;将30%反应制得的预聚体、8%的水性耐盐雾纳米二氧化硅溶胶、5%的反丁烯二酸、8%的煅烧纳米水滑石加入49%的去离子水中,将混合后的溶液加热至35℃±2℃并用常规搅拌装置搅拌60min,得到的粘度值为700mpa.s~1500mpa.s的胶状溶液后冷却至室温即可。

实施例3,一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法,具体步骤如下:在干燥氮气保护氛围下,将称量好的一定量聚乙二醇500g加入洁净干燥的1000ml四口烧瓶中,搅拌、加热至80℃±2℃,用真空泵回流脱水60min。将脱水后的聚乙二醇降温至50℃±2℃,继续在氮气保护氛围下按聚乙二醇peg:异氟尔酮二异氰酸酯(ipdi)=5.5:1(质量比)的比例加入相应量的ipdi,再缓慢升温至80℃左右,保温并匀速搅拌30min后,滴加20g-40g的二羟基甲丙酸,在60℃左右反应至异氰酸酯基团达到理论值,降温至40℃滴加15g-30g的甲基二乙醇胺中和后持续乳化60min-150min即可;将17%反应制得的预聚体、8%的水性耐盐雾纳米二氧化硅溶胶、4%的反丁烯二酸、5%的煅烧纳米水滑石和2%的偏高岭土土加入64%的去离子水中,将混合后的溶液加热至35℃±2℃并用常规搅拌装置搅拌60min,得到的粘度值为500mpa.s-1000mpa.s的胶状溶液后冷却至室温即可。

实施例4,一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法,具体步骤如下:在干燥氮气保护氛围下,将称量好的一定量聚丙二醇500g加入洁净干燥的1000ml四口烧瓶中,搅拌、加热至70℃±2℃,用真空泵回流脱水60min。将脱水后的聚丙二醇降温至50℃±2℃,在氮气保护氛围下按聚丙二醇ppg:二苯基甲烷二异氰酸酯(mdi)=3:1(质量比)的比例加入相应量的mdi,再缓慢升温至80℃左右,保温并匀速搅拌60min后,滴加20g-40g的二羟基甲丙酸,降温至40℃滴加20g~40g的甲基二乙醇胺中和后持续乳化60min-150min即可;将10%反应制得的预聚体、4%的水性耐盐雾纳米二氧化硅溶胶、2%的反丁烯二酸、5%的煅烧纳米水滑石和3%的偏高岭土加入76%的去离子水中,将混合后的溶液加热至35℃±2℃并用常规搅拌装置搅拌60min,得到的粘度值为1500mpa.s-2500mpa.s的胶状溶液后冷却至室温即可。

实施例5,一种盐渍地区抗化学侵蚀型混凝土表层强化剂及其制备方法,具体步骤如下:在干燥氮气保护氛围下,将称量好的一定量聚丙二醇500g加入洁净干燥的1000ml四口烧瓶中,搅拌、加热至70℃±2℃,用真空泵回流脱水60min。将脱水后的聚丙二醇降温至50℃±2℃,继续在氮气保护氛围下按聚丙二醇ppg:二苯基甲烷二异氰酸酯(mdi)=2.4:1(质量比)的比例加入相应量的mdi,再缓慢升温至70℃左右,保温并匀速搅拌60min后,滴加20g-40g的二羟基甲丙酸,降温至40℃滴加20g-40g的二乙胺中和后持续乳化60min-150min即可;将25%反应制得的预聚体、6%的水性耐盐雾纳米二氧化硅溶胶、5%的反丁烯二酸、6%的煅烧纳米水滑石和2%的煅烧蛭石加入56%的去离子水中,将混合后的溶液加热至35℃±2℃并用常规搅拌装置搅拌60min,得到的粘度值为1500mpa.s-2500mpa.s的胶状溶液后冷却至室温即可。

相关实验及结果:

1、实施例1-5的抗化学侵蚀型混凝土表层强化剂,进行混凝土强度、抗硫酸盐侵蚀、抗氯离子渗透及抗气体渗性能的对比实验,测试方法如下:试验中将所制备的抗化学侵蚀型混凝土表层强化剂分两次喷涂于拆模后试件的表面,两次喷涂的间隔时间为60-90分钟。喷涂后试件参照《普通混凝土力学性能试验方法标准》(gb/t50081-2016)进行养护,至各规定龄期后进行相应试验测试,抗化学侵蚀型混凝土表层强化剂抗硫酸盐性能试验参照《混凝土抗硫酸类侵蚀防腐剂》(jc/t1011-2006)中所提及的实验方法进行测定,通过测试抗蚀系数、抗压强度比进行评定,抗化学侵蚀型混凝土表层强化剂抗氯离子侵蚀性能试验参照美国astm c1202电量法所提及的实验方法进行测定,通过测试一定时间下通过混凝土的电量值得大小来评定抗氯离子侵蚀性能,抗化学侵蚀型混凝土表层强化剂对混凝土表层气体渗透性能的影响测试试验参照《水运工程混凝土试验规程》(jtj270-1998)中混凝土透气性试验进行,试验过程中所涉及混凝土试件的力学性能试验参照《普通混凝土力学性能试验方法标准》(gb/t50081-2016)中所提及的实验方法进行测定。实验结果见表1、表2、表3。

表1各实施例混凝土强度实验结果

由表1实验结果可见:本发明的混凝土表层强化剂对不同龄期混凝土的抗压强度均由一定的增强效应。这种增强效应对于今后混凝土抗化学侵蚀性能的提高是有助益的。本发明的混凝土表层强化剂通过高分子聚合物预聚体组份成膜封堵混凝土表面,活性组份纳米二氧化硅溶胶以及渗透性组份均能深入混凝土内部与水泥水化产物相结合,使得混凝土表层密实度提高,也就增加了混凝土的强度。

2、抗化学侵蚀型混凝土表层强化剂的抗硫酸盐侵蚀性能测试按照《混凝土抗硫酸类侵蚀防腐剂》(jct1011-2006)中规定的要求和试验方法进行测定,其中水泥采用的是符合gb8076-2008的山东鲁城水泥有限公司生产的基准水泥,标准砂采用厦门艾思欧标准砂有限公司生产的标准砂,试验用水为自来水,采用的侵蚀溶液为5%na2so4溶液,其相关性能测试结果如表2所示:

表2各实施例抗硫酸盐侵蚀性能实验结果

才由表2实验结果可见:本发明实施例1-5的混凝土表层强化剂能够有效提高混凝土在硫酸盐侵蚀作用下的抗蚀系数,并对不同龄期的抗压强度比具有良好的增加。将本发明的混凝土表层强化剂喷涂或涂刷在混凝土表层,除了组成中的高分子预聚体组份、活性二氧化硅溶胶以及渗透性组份从外部阻挡了硫酸盐离子等有害介质的侵入,本发明中的阴离子吸附材料也能对硫酸盐离子进行吸附固定,有助于提高混凝土的抗硫酸盐侵蚀性能。

3、抗化学侵蚀型混凝土表层强化剂的抗氯离子侵蚀性能测试参照美国astm c1202电量法中规定的要求和试验方法进行测定,气体渗透性能的影响测试试验采用autoclam渗透性测试仪参照《水运工程混凝土试验规程》(jtj270-1998)中混凝土透气性试验进行,其相关性能测试结果如表3所示:

表3各实施例混凝土抗氯离子渗透和气体渗性能实验结果

由表3实验结果可见:本发明的混凝土表层强化剂有效降低了混凝土的氯离子电通量值,各龄期的气体透气性指数和28d混凝土气体渗透系数也显著减小。气体渗透系数的降低和透气性指数的下降表明混凝土表层的密实度有显著的提高,而氯离子电通量的下降表明混凝土表层强化剂喷涂或涂刷在混凝土表层后能够有效提高混凝土的抗氯离子渗透性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1