选择性电镀三维表面以产生装饰性和功能性效果的制作方法

文档序号:25541771发布日期:2021-06-18 20:38阅读:134来源:国知局
选择性电镀三维表面以产生装饰性和功能性效果的制作方法

本发明整体涉及选择性电镀三维表面以产生装饰性和功能性效果的改进方法。



背景技术:

对热塑性部件提出了多种要求,其包括但不限于耐磨且耐刮擦的表面涂层,其允许多种颜色和高颜色密度,并且还实现二维装饰和/或符号。

此外,常常期望选择性装饰三维部件,使得一些区域具有金属外表面并且其他区域具有透明表面。一个此类示例涉及“照亮才显现型(secret-until-lit)”汽车内部部件,其中可包括符号和/或文字的制品直至部件后面的照明被接通才呈现为金属饰面。透明的未电镀区域允许光透射,并且图像显现。通常,对基本上平面的塑性模制产品进行电镀,其优点在于通过从塑性模制产品的背面照射,使未电镀的部分被点亮。

一种制备“照亮才显现型”部件的方法涉及在聚碳酸酯上使用丙烯腈-丁二烯-苯乙烯(abs)的多层表面。将abs层以成像方式激光烧蚀以产生暴露的聚碳酸酯的图案化区域。然后可根据现有的在塑料上电镀的方法对其进行电镀。然而,该方法是昂贵的并且需要多个工艺步骤,既耗费时间又费力。

授予sony的日本专利公布jps61288094描述了用于电镀透光塑料板(除期望的图案之外)的方法。半透明(透明或半透明)塑料用于各种装置的显示部分,并且具有通过从反面照明而照亮未电镀的字符和图案的优点。该方法包括化学镀铜层,所述化学镀铜层被施加至基底,然后用碱溶性油墨成像。然后用镍、铬或类似金属电镀所述表面,并将其浸入到碱中以移除成像区域(即油墨和电镀金属)。然后通过化学蚀刻移除暴露的铜层。然而,该构造不能在加工期间中形成为三维形状。

授予kuiriharamekkikojo的日本专利公布jps62235495描述了涂覆有光致抗蚀剂并且随后用紫外光以成像方式固化的基底。将未固化区域溶解于显影溶液中,并且对暴露的基底进行电镀。然后第二显影平台移除紫外线固化的抗蚀剂并暴露未电镀基底。然而,该方法不会在未电镀区域中产生硬涂层,因此成品部件可能更容易被损坏。

授予mitsubishi的日本专利公布jps63182110描述了用图案化陶瓷层掩蔽的模具腔体。对金属进行过电镀以填充掩模中的间隙。然后将模塑树脂注入腔体中,并且金属图案粘附到模塑树脂上。该方法也不会在未电镀区域中产生硬涂层。

授予hao等人的美国专利公布2002/0197492(该专利的主题全文以引用方式并入本文)描述了在二维或三维塑性部件的表面上选择性电镀金属图案的方法,所述方法包括以下步骤:将金属涂层化学沉积在塑性部件的表面上,然后沉积光致抗蚀剂涂层,之后是对光致抗蚀剂涂层进行成像和显影以形成光致抗蚀剂图案。然后在剥去剩余的光致抗蚀剂和化学镀金属之前,对在显影期间移除光致抗蚀剂的区域进行电镀。然而,该方法不允许塑料部件的后续模制或热成形。

授予wollach等人的美国专利公布2007/0226994(该专利的主题全文以引用方式并入本文)描述了通过真空沉积来施加基底导电层,然后以成像方式施加电绝缘光致抗蚀剂的方法。在不具有任何光致抗蚀剂的区域上进行电镀,并且移除剩余的光致抗蚀剂并蚀刻真空沉积的基底层。然而,该方法不能与三维形状一起使用,并且不会在未电镀区域中产生硬涂层,并且成品可能更容易被损坏。

授予simmons等人的美国专利公布2009/0317609(其主题以引用方式全文并入本文)描述了通过施加钯活化剂溶液(即,通过喷墨)然后化学镀成像区域来进行成像的基底。然后固化该构造。然而,该结构受限于增强纤维树脂,并且该构造不能形成或模制以产生三维形状。也不存在硬涂层。

因此,可以看出,本领域仍然需要一种选择性电镀塑性基底以产生三维形状(包括适合用作“照亮才显现型”部件的三维形状)的改进方法。

还将有利的是,提供在未电镀区域中包括硬涂覆外表面的选择性电镀部件,以提供改善的耐久性。

膜嵌入注塑(fim)是模具内装饰(imd)的一种形式,其允许在模制工艺期间将标签和图形施加到塑性部件。fim使得部件能够集成到单个单元中以形成具有耐刮擦硬涂层的产品,该产品也是极其耐久的。其可用于多种应用中,但通常与汽车内部和手持式电子器件相关联。

在典型的fim工艺中,成品装饰部件可通过在注塑工艺期间将装饰的、重新成形的和修剪的半成品膜产品插入模具中来制备。以这种方式,可产生具有复杂弯曲的部件,所述部件具有符号、透光设计和多色二维装饰,并且同时在每次注塑之间具有简单的装饰变化。

fim允许人们以目标方式设计热塑性部件的外观。不仅可选择性设置装饰(例如,单色、多色、一体化符号、透光设计等),而且还可选择性设置表面压痕(例如,光泽的、结构化的、无光泽的等)和高光泽度。

因此,fim的强度包括产生复杂形状的装饰性表面的能力和改变装饰的极度灵活性。



技术实现要素:

本发明的目的是提供选择性电镀三维表面的方法。

本发明的另一个目的是提供选择性电镀三维非导电基底的方法。

本发明的另一个目的是提供选择性电镀三维聚碳酸酯基底的方法。

本发明的又一个目的是提供选择性电镀具有硬涂层的三维聚碳酸酯基底以提供增加的耐久性的方法。

本发明的又一个目的是提供制备“照亮才显现”部件的改进的方法。

为此,在一个实施方案中,本发明整体涉及一种形成选择性电镀的三维热塑性部件的方法,该方法包括以下步骤:

a)提供未固化聚碳酸酯膜的膜,其中未固化聚碳酸酯膜包括在其第一表面上的硬涂覆层;

b)通过将催化剂以期望的图案沉积在聚碳酸酯膜的第一表面上来选择性催化该聚碳酸酯膜;

c)热成形聚碳酸酯膜以形成三维聚碳酸酯膜;

d)通过用紫外线照射硬涂覆的聚碳酸酯膜来对该膜进行紫外线固化;

e)活化该选择性催化的硬涂覆聚碳酸酯膜;以及

g)在硬涂覆聚碳酸酯膜的催化部分上电镀金属层,其中电镀金属仅沉积在硬涂覆聚碳酸酯膜的催化部分上。

附图说明

图1示出了在完整电镀工艺之后根据实施例1的工艺制备的样品部件的视图,其中电镀金属的网格型图案可见。

图2示出了当用白光从后面照明时与图1相同的样品部件的视图。

图3示出了在完整电镀工艺之后根据实施例2的工艺制备的样品部件的视图,其中电镀金属的网格型图案可见。

图4示出了当用白光从后面照明时与图3相同的部件的视图。

具体实施方式

如本文所用,除非上下文另有明确说明,否则“一个”、“一种”和“该”均指单数和复数指代。

如本文所用,术语“约”是指可测量的值,诸如参数、量、持续时间等,并且旨在包括相对于具体所述值的+/-15%或更小的变化、优选地+/-10%或更小的变化、更优选地+/-5%或更少的变化、甚至更优选地+/-1%或更少的变化,还更优选为+/-0.1%或更少的变化,只要此类变化适合于在本文所述的发明中执行。此外,还应当理解,修饰语“约”所指的值本身在本文中具体公开。

如本文所用,为了便于描述,使用诸如“在…下面”、“在…下方”、“下部”、“之上”、“上部”等空间相对术语来描述一个元素或特征结构与另一个或多个元素或特征结构的关系,如图中所示。空间相对术语可旨在涵盖除了图中所示的取向之外的装置在使用或操作中的不同取向。例如,如果图中的装置被翻转,则被描述为在其他元件或特征结构“下方”或“下面”的元件将被取向为在其他元件或特征结构“上方”。因此,示例性术语“下方”可涵盖上方和下方的两个取向。该装置可以其他方式取向(旋转90度或处于其他取向),并且相应地解释本文所用的空间相对描述符。还应当理解,术语“前”和“后”并非旨在进行限制,并且旨在在适当的情况下可互换。

如本文所用,术语“包括和/或包含”指定所述的特征结构、整数、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征结构、整数、步骤、操作、元件、部件和/或其组的存在或添加。

本发明的发明人已发现,可对膜嵌入注塑工艺进行修改和改进,以形成选择性电镀的三维部件,该三维部件包括耐刮擦、耐冲击的硬涂层,并且适用于以有效的方式制备照亮才显现型部件或其他类似部件。本文所述的方法提供三维部件的选择性装饰,使得一些区域具有金属外表面,然而其他区域具有硬涂覆透明表面。在一个实施方案中,部件的外表面看起来是金属饰面,直至部件后面的照明被接通。然后,透明的未电镀区域将允许光透射,并且图像将显现。

在一个实施方案中,本发明整体涉及一种形成选择性电镀的三维热塑性部件的方法,该方法包括以下步骤:

a)提供未固化聚碳酸酯膜的膜,其中未固化聚碳酸酯膜包括在其第一表面上的硬涂覆层;

b)通过将催化剂以期望的图案沉积在聚碳酸酯膜的第一表面上来选择性催化该聚碳酸酯膜;

c)热成形聚碳酸酯膜以形成三维聚碳酸酯膜;

d)通过用紫外线照射硬涂覆的聚碳酸酯膜来对该膜进行紫外线固化;

e)活化该选择性催化的硬涂覆聚碳酸酯膜;以及

f)在硬涂覆聚碳酸酯膜的催化部分上电镀金属层,其中电镀金属仅沉积在该硬涂覆聚碳酸酯膜的催化部分上。

在一个实施方案中,三维热塑性部件包括聚碳酸酯膜或层,该聚碳酸酯膜或层被热模制并形成以制备三维聚碳酸酯部件。在一个实施方案中,聚碳酸酯膜或层为透明的、半透明(semi-transparent)或半透明(translucent)中的至少一种。如本文所述,在一个实施方案中,对聚碳酸酯部件进行加工,以在三维聚碳酸酯部件中制备“照亮才显现型”图案、符号、图标或图形,该图案、符号、图标或图形可从部件的背面照明,使得被照明时未电镀的部分点亮。

此外,应当注意,虽然本发明被描述为涉及硬涂覆聚碳酸酯膜,但能够用于塑料上电镀工艺中并且可热成形的其他热塑性材料也可用于本发明的实践中以制备三维热塑性部件,所述三维热塑性部件具有根据本文所述的步骤加工的硬涂覆层。

硬涂覆聚碳酸酯膜的厚度优选地介于约50μ和约500μ之间,更优选地介于约100μ和约300μ之间,这部分地取决于所使用的模制工艺以及期望的成品的构型和属性。所谓“硬涂覆”是指涂层为耐磨的、耐刮擦的、耐溶剂的和耐久的中的至少一种。

硬涂覆聚碳酸酯膜还必须适用于热成形。如本文所述,硬涂覆聚碳酸酯膜经受各种工艺步骤并且因此必须能够经受热成形而不在热成形过程中破裂或断裂。

一种合适的硬涂覆聚碳酸酯膜可以商品名xtraformtmmhcl购自macdermidenthoneinc.。xtraformtmmhcl是可以180μ和250μ厚度获得的可成形硬涂覆聚碳酸酯膜,其中在硬涂覆侧具有有光泽饰面并且具有哑光的第二表面。在硬涂覆表面上提供保护性层合物以在运输期间保护该膜。

任选地,但优选地,聚碳酸酯膜的第二表面(即,与硬涂层相对的侧面)可用彩色油墨装饰、印刷或以其他方式涂覆,以便使成品表现出期望的颜色、图案或饰面。

因此,在一个实施方案中,可将澄清透明的或彩色透明或半透明的油墨或树脂印刷或以其他方式施加到聚碳酸酯基底的第二表面以形成选择性着色和/或不透明设计。例如,黄色透明或半透明油墨可以选择性方式(即条纹)印刷在基底的第二表面上,从而当聚碳酸酯基底从后面点亮时,当透过基底的前表面观察时,形成装饰的、印刷的和/或图案化的外观。在供选择的替代方案中,可将不透明的油墨诸如黑色或深色的彩色油墨选择性印刷在基底的第二表面上,以便当所述部件从后面点亮时,可从聚碳酸酯部件的前表面看见期望的图形设计或图标。这些技术也可彼此组合使用。例如,可丝网印刷或以其他方式图案化黑色或其他深色的彩色油墨以在聚碳酸酯基底的第二表面上形成一个或多个图像,然后可将一种或多种透明或半透明的彩色油墨施加在一个或多个表面上。在另一个实施方案中,将均匀的透明或半透明彩色油墨层均匀地施加在整个第二表面上,或基本上整个第二表面上,或施加在第二表面的所选部分上,然后将黑色或深色的彩色油墨以图案形式模版印刷或以其他方式施加到透明或半透明彩色油墨的顶部上。

如本文所述,用催化活化剂活化热塑性膜的第一侧面(即,具有硬涂层的热塑性膜的侧面),所述热塑性膜可为硬涂覆聚碳酸酯膜。在一个实施方案中,催化活化剂为电镀催化剂,其以期望的图案印刷或以其他方式施加到硬涂覆聚碳酸酯膜,并且使其干燥。

可将电镀催化剂丝网印刷到硬涂覆聚碳酸酯膜上以形成期望的图案。其他印刷方法,包括但不限于凹版印刷、平版印刷和柔性版印刷,也可用于以期望的图案在基底上印刷电镀催化剂。典型的催化剂组分包括例如钯、金、银、锡、镍、钌、铂和铑。一种合适的可印刷电镀催化剂包括钯盐在可热固化或可紫外线固化的粘结剂中的分散体。

高度期望电镀催化剂为可紫外线固化和成形的制剂。一种此类电镀催化剂包括催化油墨,诸如授予crouse的美国专利7,255,782中所述,该专利的主题全文以引用方式并入本文。

在热成形之前,聚碳酸酯膜是预干燥的,因为其具有以高速率吸收水分的趋势。捕集的水分形成高于约120℃的蒸气,并且蒸气膨胀在片材中形成气泡。预干燥的持续时间部分地取决于由片材所吸收的湿度的量及其厚度,并且可由本领域的技术人员容易地确定。在一个实施方案中,在介于约90℃和约135℃之间的温度下,更优选地在约115℃和约125℃的温度下,将聚碳酸酯膜置于除湿空气循环烘箱中用于预干燥。此外,聚碳酸酯片材在从预干燥烘箱中取出时立即开始吸收水分,并且吸收速率取决于环境露点。为此,将聚碳酸酯膜立即转移到成形机。

热成形可在中温至高温下进行,这取决于所用的成形方法的类型。聚碳酸酯在较高温度下变得更具柔性,并且温度为通常接近或超过玻璃化转变温度的温度。在一个实施方案中,温度为高于玻璃化转变温度(即约150℃)并且低于熔融温度(即约267℃)的温度。在另一个实施方案中,温度为介于约110℃和约130℃之间的中等温度。

可使用各种热成形工艺,包括例如高压热成形和真空热成形。在真空成形中,将膜加热至高于其玻璃化转变温度,并且使用真空泵以在膜下方形成低压区域,从而允许外部气压将膜推过该形式。

在高压成形中,在高压(至多约300巴)下将热空气施加到膜。因为基底经受此类高压连同相比于真空成形相对较少的热,所以膜可在低于其软化温度下形成,这可改善印刷到形式的对准。高压热成形在例如授予niebling等人的美国专利5,217,563和5,108,530中有所描述,所述专利中的每一个的主题均全文以引用方式并入本文。

当聚碳酸酯片材达到其成形温度时,出现均匀的“松垂”。松垂的量取决于片材的尺寸和厚度。热成形形成具有硬涂覆前表面的期望的三维形状。最佳加热时间和温度取决于多个因素,其包括但不限于片材的厚度、所用模具的类型以及所需的拉伸程度。

在热成形为所需的形状之后,将三维产品紫外线固化以提供最大的耐刮擦性和耐化学品性。

在一个实施方案中,任选地但优选地,可将热成形和紫外线固化的三维部件置于注塑工具中并且用热塑性树脂重新注入以形成成品热成形和模塑的三维部件。热塑性树脂可与热塑性膜中所用的树脂相同或不同。在一个优选的实施方案中,热塑性膜和热塑性树脂均包含聚碳酸酯。然而,其他类似的热塑性材料也可用于本发明的方法中,并且本发明不限于聚碳酸酯。

三维聚碳酸酯部件选择性电镀有金属电镀层。电镀金属仅沉积在存在印刷催化剂的区域上。待电镀的金属可选自例如铜、锌、镍、前述的合金、以及前述中一种或多种的组合。在本文所述的方法中,也可电镀其他合适的金属。

此外,还应注意,电镀可为多层工艺,其包括可通过化学镀、电解电镀或前述的组合施加的一层或多层电镀金属。适用于本发明的一种此类电镀方法在例如授予crouse的美国专利7,255,782中有所描述,该专利的主题全文以引用方式并入本文。

这些镀槽通常包含待以溶解于水性溶液中的盐的形式沉积的金属以及金属盐的还原剂。金属化步骤可包括化学涂覆和/或电解涂覆以获得期望的金属饰面。可通过化学电镀沉积的典型金属包括铜、镍或包含磷和/或硼的镍合金。

在一个实施方案中,电镀工艺包括将化学镀金属诸如铜沉积至介于约10微米和约75微米之间、更优选地介于约20微米和约35微米之间的深度,然后将电解金属诸如铜沉积至介于约1微米至约10微米之间、更优选地介于约3微米和约8微米之间的深度。此后,将部件在介于约150℃和约220℃之间的温度下热固化。最后,用一层铜电解电镀部件,之后是用一层镍电解电镀部件,然后用一层铬电解电镀部件。这些层中的每一个优选地具有介于约10微米和约50微米之间、更优选地介于约20微米和约35微米之间的厚度。

在一个实施方案中,合适的工艺步骤顺序如下:

1)提供在其第一表面上具有硬涂覆层的未固化聚碳酸酯膜的膜;

2)在聚碳酸酯膜的第二表面(即,没有硬涂层的表面)上印刷期望的颜色、图案、金属样饰面等;

3)通过在聚碳酸酯膜的第一表面上以期望的图案印刷(即,通过丝网印刷、凹版印刷、平版印刷、柔性版印刷等)可印刷的催化剂来选择性催化聚碳酸酯膜;

4)使所述聚碳酸酯膜热成形以形成三维部件,其中所述硬涂覆层在外表面上;

5)通过用紫外线照射硬涂覆聚碳酸酯膜来对该膜进行紫外线固化;

6)将所述硬涂覆聚碳酸酯膜模制成期望的三维形状;

7)活化该选择性催化的硬涂覆聚碳酸酯膜;

8)在所述硬涂覆聚碳酸酯膜的所述催化部分上化学镀铜或其他化学镀金属的晶种层,其中所述电镀金属仅沉积在所述硬涂覆聚碳酸酯膜的所述催化部分上;

9)在所述化学镀金属沉积物的顶部上方电解电镀金属层,其中所述电解电镀金属可以举例且非限制的方式选自铜、铜合金、锌、锌合金、镍、镍合金、铁、铅合金或其他类似金属;

10)焙烧成品;以及

11)如果需要,通过电解电镀施加附加的金属电镀层。

本文所述的方法可用于制备三维聚碳酸酯部件,该部件选择性“装饰”有金属特征结构,但还包括疏水性硬涂覆耐刮擦表面。

上述一系列步骤用于制备具有良好耐久性并且是耐磨、耐刮擦和耐溶剂中的至少一者的选择性装饰的成形硬涂覆热塑性部件。这些三维部件可以从后面点亮,使得三维部件的透明部分在点亮时显现图像(即,形成“照亮才显现型”三维部件)。

现在将结合以下非限制性示例来描述本发明:

实施例1:

通过在整个片材上施加均匀的透明绿色油墨层(noriphan669,proell,germany),将xtraformtmg2502l涂覆的聚碳酸酯膜的305×458mm片材丝网印刷在第二(未涂覆)表面上。然后施加包含文本图案的模版,使得可以成像方式施加第二黑色油墨层(noriphanhtr953,proell,germany)以在绿色油墨层的顶部上形成文本短语。根据制造商的建议,用10%noriphanm201retarder(proell,germany)和5%noriphanf013稀释剂(proell,germany)稀释每种油墨。通过以1m/分钟的带速度在80℃下使膜通过trumax红外传送带系统(natgraphltd,nottingham,uk)并持续2分钟来干燥每个油墨层。

然后将印刷的膜翻转,并且将第二丝网印刷模版施加至包含点图案的第一表面。这用于使用购自macdermidenthoneelectronicsolutions(waterbury,ct,usa)的催化油墨–microcat,将图案丝网印刷到第一表面上。microcat油墨包含两部分(部分a和部分b),它们需要在印刷之前以98:2的部分a:部分b的比率预混合。在microcat印刷之后,使膜通过trumax红外干燥机3次,每次通过包括以1m/分钟的带速度在80℃下2分钟。然后使用配备有成形工具的clarke725flb真空成形机(crclarke,ammanford,uk)以使用200℃的工具温度和10秒的成形时间使膜变形,将经印刷和干燥的膜成形为3d形状。在成形工具旁边形成具有彩色油墨层的膜,使得具有microcat印刷的表面远离工具。在形成之后,在fusiondrse-120传送装置(uviosystems,thatcham,uk)上将膜紫外线固化至2j/cm2的剂量。

将制备的膜电镀以在仅存在来自丝网印刷步骤的microcat的区域中沉积金属。电镀工艺包括以下步骤:

图1示出了在完全电镀工艺之后获得的样品,其中电镀金属的网格型图案可见。

图2示出了当用白光从后面照明时的相同部件,其示出了显现的图形图像。

实施例2:

通过模版施加黑色油墨层(noriphanhtr953),将xtraformtmg2502l涂覆的聚碳酸酯膜的305×458mm片材丝网印刷在第二(未涂覆)表面上,所述模板已经在三个区域中图案化以形成图像。然后将彩色油墨块–一个透明红色(noriphan372,proell,germany)、一个透明蓝色(noriphan566,proell,germany)且一个透明绿色(noriphan669)印刷在黑色油墨的顶部上,将一种颜色的油墨施加到图案化黑色区域中的每一个上。根据制造商的建议,用10%noriphanm201retarder(proell,germany)和5%noriphanf013稀释剂(proell,germany)稀释每种油墨。通过以1m/分钟的带速度在80℃下使膜通过trumax红外传送带系统(natgraphltd,nottingham,uk)并持续2分钟来干燥每个油墨层。然后以与实施例1相同的方式进行进一步加工,其包括印刷microcat点图案、真空成形、紫外线固化和后续的电镀步骤。图3示出了在完全电镀工艺之后获得的样品,其中电镀金属的网格型图案可见。图4示出了当用白光从后面照明时的相同部件,其示出了显现的图形图像。

本发明描述了一种制备三维热塑性部件的解决方案,所述三维热塑性部件选择性装饰有金属特征结构,但也包括疏水性硬涂覆耐刮擦和耐磨表面。

本发明与所有类型的印刷(丝网印刷、喷墨印刷等)相容。此外,涂层可从第一表面、第二表面或所述两者固化。同样,化学镀和/或电解电镀可在成形和模制步骤之后进行。如本文所述,成品可选择性电镀在第一表面上并且在第二表面上装饰颜色(即,油墨)。该方法不涉及任何蚀刻,因此使形貌特征最小化。本文所述的方法还与任何水性电镀化学相容。

最后,还应当理解,以下权利要求旨在涵盖本文所述的本发明的所有一般特征和特定的特征以及在语言上可能落入它们之间的本发明的范围的所有陈述。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1