包括优化能量回收系统的动力传动系的制作方法

文档序号:3873560阅读:216来源:国知局
专利名称:包括优化能量回收系统的动力传动系的制作方法
技术领域
本发明涉及一种装配有包括飞轮的优化能量回收系统的动力传动系。
背景技术
降低燃料消耗是许多工业的可持续性的主要支柱,对于汽车工业和机械工业这是最重要的。大量车辆(卡车、客车、乘用车等)装配有包括内燃机的动力传动系和运行车辆系统所必需的位于其他零件上的附件,所述内燃机通过传动组(例如包括离合器或变矩器,手动、自动或自动机械式变速箱,差速器,轴)驱动驱动轮。这附件中的一些通过电网络供电,所述电网络的能量来自由内燃机(ICE)驱动的发电机。在商用车辆的情况中,发动机经常是涡轮增压的柴油发动机。类似的动力传动系用于传动所有类型的机械,包括建筑设备机械。 当分析用于车辆运行的能量平衡时,存在不可降低的能量需求,该能量需求来自作为车辆固有特征的拖动阻力和滚动阻力。除此部分之外,用于驱动车辆的能量的量在制动中浪费,该能量的量来自势能动能(来自于加速时提供到车辆的能量)和势能(来自于爬坡时提供到车辆的能量)。 —些已熟知的技术能够限制这些损失的部分。例如,混合动力传动系是实现制动能量回收的已知技术。 开始时,这些技术包括混合动力动力传动系,该动力传动系装配现在已熟知的带有电化学存储器的混合动力电动车辆(HEV)。在一般水平上,HEV由将内燃机与至少一个电机和至少一个存储装置(电池、超级电容、惯性轮...)结合的动力传动系组成。这样的系统能够通过使用作为发电机的电机而在存储装置内存储制动能量的量,且然后在合适的时间使用作为马达的电机而将此能量再引导到传动系,以参与推进车辆。 混合动力电动车辆的一个有意义的布局是所谓的并联混合动力布局,其中车辆的传动组与内燃机曲轴和电机并联地机械联接(直接或通过齿轮装置、传动带联接)。在减速期间,电机用作发电机以使车辆减速,且所产生的电力存储在电池或超级电容器内。在加速期间,电机作为马达工作,且将其动力添加到内燃机,或甚至取代内燃机的动力。
混合动力动力传动系在建筑设备机械的领域中也是已知的。 作为变体,也已知使混合动力动力传动系带有机电存储装置。作为电池的替代或补充能够使用机电装置,其中能量以动能形式存储,例如存储在也称为飞轮的旋转轮内。在此方面,飞轮是专用的蓄能飞轮,它不应与内燃机飞轮混淆,所述内燃机飞轮的唯一目的是使发动机的旋转平滑。蓄能飞轮需要存储足以驱动车辆的大量能量,至少作为内燃机的补充。 在已知的布局中,飞轮机械地联结到第一电机,所述第一电机的目的是使飞轮加速或减速,以增加或减少飞轮的动能且将所述动能转化为电力。在并联HEV中,来源于飞轮的电能然后能够用在第二电机中,以驱动车辆。在减速期间,第二电机也用作发电机,以向第一电机提供电力来驱动飞轮。
与电化学电池相比,在如下情况时飞轮或许是经济的替代物 需要迅速放电和充电时; 需要长寿命周期时; 重量或体积受到限制时; 难以使用有毒或爆炸性材料时;和/或 难于进行环境控制时。 与超级电容器或电池相比,在必须支持工业电压时,飞轮或许是经济的替代物。
当需要高能容量时,飞轮必须以高速旋转而具有安全问题(例如飞轮由于惯性力而爆裂的问题)和技术问题(例如与轴承相关的问题)。在以上所述的装配有飞轮的混合动力传动系的布局中,两个电机需要设定为回收最大动力。此外,在这样的布局中,由系统回收的所有能量必须首先从机械能形式转化为电能形式,然后从电能形式转化到机械能形式以存储在飞轮内,且再次从机械能形式转化为电能形式,然后从电能形式转化为机械能形式以作为驱动动力使用。虽然电机具有固有的高效率比,但这些众多的转化必然导致能量损失。 文献US-2007/0049443公开了另一种类型的装配有能量回收系统的车辆的布局。此布局基于具有内燃机、带闭锁离合器的变矩器、自动变速箱和联接到主减速器的传动轴的常规内燃机传动系。以此为基础,蓄能飞轮通过三向动力分离传动装置联接到变速箱的输出轴,所述三向动力分离传动装置包括三个输入/输出联接器,所述输入/输出联接器中的第一个联接到飞轮,第二个联接到第一电机且第三个联接到变速箱的传动轴。三向动力分离传动装置实施为行星齿轮装置。系统进一步包括第二电机,该第二电机直接与发动机输出轴联接。基本上,第一电机和行星齿轮装置形成飞轮与传动轴之间的连续可变的传动装置,该传动装置由第一 电机电控。 与以上所述的常规布局相比,文献US-2007/0049443的布局是更有利的,因为通过飞轮回收的能量的一部分仅机械地传递,这具有高的效率比。然而,此布局具有一些缺点。如能够从文献US-2007/0049443中的图2的示图最好地可见,在车辆加速或减速期间,飞轮的速度(对应于其"充能状态")严重地取决于车速。为使飞轮保持在一定的速度下,或使飞轮处于所述速度,第一电机在扩展的速度范围内恒定地运行。第一电机仅对一个限定车辆速度处于静止,在此时刻回收的能量完全机械地转化。对于任何其他的速度,能量的部分电转化,且车辆速度与限定的速度越不同,则电部分越重要。在传动装置输出轴上带有三向动力分离传动的此布局也导致将相对大的转矩值通过回收系统转化,该回收系统因此需要随之确定尺寸。 因此,本发明的一个目的是提供一种用于装配有具有飞轮的优化能量回收系统的动力传动系的新布局,使得动力传动系的尺寸能够降低,使得动力传动系能够更好地整合在车辆或机械上,且使得动力传动系能够具有更好的效率比。

发明内容
为实现以上所陈述的目的,本发明的一个实施例提供了一种动力传动系,该动力传动系包括 可变传动比传动装置,该可变传动比传动装置具有联接到发动机的输入轴和联接到从动单元的输出轴, 三向动力分离传动装置,该三向动力分离传动装置包括三个输入/输出联接器, 所述三个输入/输出联接器中的第一个联接到飞轮,且第二个联接到电机,
其特征在于,三向动力分离传动装置的第三输入/输出联接器机械联接到发动机 和可变传动比传动装置的输入轴。


从如下参考附图的详细描述最好地理解本发明,其中
图1是本发明的第一实施例的示意性功能图; 图2至图4是类似于图1的图,分别示出本发明的第二、第三和第四实施例;
图5和图6分别是图1的第一实施例的第一和第二可能的结构实施方式的示意 图; 图7和图8分别是图2的第二实施例的第一和第二可能的结构实施方式的示意 图; 图9是图3的第三实施例的可能的结构实施方式的示意图; 图10是示出关联行星齿轮装置中的三个输入/输出联接器的速度关系的速度 图; 图lla和图lib分别是速度图和功能图,示出能够对飞轮充能的特定使用配置的 各速度和动力流; 图12a和图12b分别是速度图和功能图,示出能够对飞轮充能的另一个使用配置 的各速度和动力流; 图13a和图13b分别是速度图和功能图,示出能够对飞轮放能的特定使用配置的 各速度和动力流; 图14a和图14b分别是速度图和功能图,示出能够对飞轮放能的另一个使用配置 的各速度和动力流; 图15和图16分别是图2的第二实施例的其他可能的结构实施方式的示意图;并 且 图17是图3的第三实施例的其他可能的结构实施方式的示意图。
具体实施例方式
图1中示出了根据本发明的动力传动系10的主要元件,此动力传动系合并在车辆 内用于推进车辆。 然而,应注意的是,根据本发明的动力传动系也可使用在其他方面,例如使用在建 筑设备机械领域内,包括装载机、挖掘机等。在这样的情况中,从动单元可以不是(或不仅 是)车辆轴,而且也可以是用于液压动力回路的液压泵。 动力传动系10首先包括发动机12。虽然本发明可实施在发动机是电动发动机的 动力传动系内,但在下文中将更特定地考虑其中发动机是内燃机的情况。对于商用车辆,特 别是卡车和客车,发动机能够是涡轮增压活塞式柴油发动机。发动机12具有输出轴14,该 输出轴14联接到可变传动比传动装置18的输入轴16,该传动装置18在示出的例子中是常
6规的非连续传动比机械变速箱。此机械变速箱可以是自动机械式变速箱,即其中档位选择 不是手动地完成,而是通过执行机构完成。变速箱也可以是非连续传动比自动变速箱。在 特定的情况中,可将可变传动比传动装置实施为连续可变传动装置(CVT)。
在示出的例子中,发动机输出轴14通过第一离合器20和第二离合器22联接到变 速箱输入轴16,两个离合器通过中间轴24联接。在某些情况中,例如如果变速箱具有空档 位置,则这两个离合器的一个能够省却。在此情况中,中间轴24将简单地与发动机输出轴 14或变速箱输入轴16成为单体,这取决于剩下哪个离合器。在自动变速箱的情况中,离合 器的至少一个可通过变矩器替代。 变速箱18具有联接到从动单元25的输出轴,该从动单元25例如包括传动轴 (propeller shaft) 26、差速器28、和驱动驱动车轴的两个车轮32的两个驱动轴30。从动 单元可以根据车辆而有所不同,例如具有若干传动车轴。 包括发动机12、离合器(多个离合器)20、22、变速箱18和从动单元25的以上所 述的部件能够考虑为形成根据本发明的动力传动系的主传动系。 根据本发明的一个特征,动力传动系10装配有能量回收系统,所述能量回收系统 包括含有三个输入/输出联接器的三向动力分离传动装置34。此类型的装置是常规差速 器,但在示出的例子中,此装置实施为行星齿轮装置34。这样的齿轮装置包括太阳轮37、与 太阳轮同轴的齿圈41、和与太阳轮和齿圈同轴的行星架43,其中太阳轮、齿圈和行星架相 互可围绕其共同的轴线旋转,且其中所述行星架43携带可旋转的行星轮45,所述行星轮45 与太阳轮37和齿圈41都啮合。太阳轮、齿圈和行星架的每个能够考虑为行星齿轮装置的 一个输入/输出。在这样的齿轮中,三个输入/输出的速度相互关联,其方式将在下文中解 释。 根据本发明的一个实施例,三向动力分离传动装置34的第一输入/输出联接器36 机械联接到飞轮38,第二输入/输出40机械联接到第一电机42,且第三输入/输出44机 械联接到发动机12且联接到变速箱18的输入轴。能量回收系统能够基本上包括行星齿轮 装置34、飞轮38和第一电机42。 应注意的是,本发明能够实施为使太阳轮、齿圈或行星架中的任一个作为动力分 离传动装置的第一、第二、第三输入/输出。然而,最少对于商用车辆动力传动系,有利的布 局能够实现为使飞轮联接到行星齿轮装置的太阳轮,发动机联接到行星架且第一电机联接 到齿圈。 如从图1中可见,动力分离传动装置34联接到中间轴24,所述中间轴24在两个 离合器之间延伸。因此,当第一离合器20接合时,动力分离装置(通过传动装置)直接联 接到发动机输出轴14,且当第二离合器22接合时,动力分离装置直接联接到变速箱输入轴 16。换言之,如果考虑沿主传动系从发动机10到车轮32的动力流动的下游的一般情况,动 力分离传动装置34机械地联接到可变传动比传动装置18上游的主传动系。
如上所述,飞轮38是蓄能飞轮,这不应与发动机飞轮混淆。的确,至少在活塞式内 燃机的情况中,发动机包括其自有飞轮(在图中未示出),该飞轮专用于尽管活塞式发动机 所固有的不连续运行也实现平滑的发动机旋转。计算显示,对于专用于中型卡车的动力传 动系,希望蓄能飞轮可存储的能量的范围在100至300瓦时(WattXhours)的量级。进一 步的计算显示,这可以通过直径小于500mm、重量大致在50至150公斤且可旋转直至4500
7至9000rpms的钢盘实现。这样的飞轮可具有大致在30至100mm范围内的轴向厚度,且具 有大致在1500至5000kg*m2范围内的转动惯量。在任何情况中,蓄能飞轮38能够与发动 机飞轮通过如下事实区分,即蓄能飞轮38的转速不是发动机12的转速的线性函数。
第一电机电连接到动力控制单元48,其目的是管理电机42内的电能。动力控制单 元48电连接到电网络50,该电网络50具有存储单元52(具有电池、超级电容器等形式)、 和被动电气附件54(典型地为仅消耗来自动力单元的电能的车辆电气系统)。电网络50也 可以包括主动电负荷56,例如直接或间接机械联接到动力分离装置34的输入/输出的一个 的电机。电网络也能够包括电阻器53(电阻器53能够装配有冷却系统),以消耗在一定运 行模式中由第一电机所产生的过多的电能,在所述运行模式中电存储单元52充满,且其他 的电消耗器不能使用产生的所有电力。 —个或数个电控制器单元(未示出)管理所有部件,以使得部件如期望那样运行。
第一电机42能够作为马达或发电机运行,且在其两个旋转方向上运行。电机42 能够为动力分离装置24的第二输入/输出40在两个方向上提供转矩,即阻力转矩或驱动 转矩。因此,电机42将从电网络获取电流或向网络提供电流。计算显示,合适的电机的额 定功率可为20至80kWh。 如在图1上可见,能够提供制动器46,以与第一电机42 —起在动力分离装置34的 第二输入/输出40上起作用。这样的制动器能够是任何类型的制动器。在机械用于向动 力分离单元提供阻力转矩的一些情况中,该制动器将用于补充或替代第一电机。使用这样 的制动器,能够使用更小的第一电机42,而仍产生本发明的大体上相同的有利结果。在所述 的例子中,制动器与第一电机并联安装,例如通过适合于在制动器的最佳运行速度范围内 驱动制动器的齿轮系安装。如果制动器和第一电机具有相同的运行速度范围,则制动器也 可以简单串联地安装在动力分离装置与第一电机之间的轴上。 飞轮38、第一电机42和发动机12的每个能够通过传动装置、例如通过形成减速齿 轮装置的两个啮合齿轮联接到动力分离装置34的相应的输入/输出。如将在下文中可见, 传动装置可以是另外的用作减速齿轮装置的行星齿轮装置、传动带和带轮传动装置等。优 选地,这些传动装置是机械装置,它们给出了输入与输出之间的角速度比。这些传动装置能 够具有离合器,以将输入和输出分离。 在图1中示出的本发明的此第一实施例中,动力传动系IO不具有主动载荷。如将 可见,用于使第一电机42运行的所有能量来自电存储器52。因此必须调节动力传动系10, 以降低电存储器的额定值(具有电容和充电/放电功率的形式),这通过正确地选择传动装 置和行星齿轮装置34的特征实现。 根据本发明的动力传动系IO具有不同的运行模式,其中的一些在下文中参考图 10至图14b描述。 图10、11a、12a、13a、14a基于行星齿轮装置的常规的速度图。在示出的例子中,曾 提到太阳轮37联接到飞轮38,齿圈41联接到第一电机42且行星架43联接到发动机12。 在这样的速度图上,三个垂直的轴线S、 C、 R分别表示太阳轮37、行星架43和齿圈41相对 于由水平轴线所表示的0值的转速。当然,速度能够根据这些部件的每个的旋转方向而具 有正负。特别地,齿圈和太阳轮能够在相同或相反的方向上旋转,这取决于行星架的转速。 在这样的图中,轴线S、C、R分开,使得轴线S和C之间的距离与C和R之间的距离之比与齿圈直径与太阳轮直径之比成比例。在这样的情况中,三个部件的转速相互相关,使得它们在 其各轴线上的代表性位置对齐。换言之,使用这样的图,可通过知道两个部件的速度而知道 另一个部件的速度。 在图10中示出这样的情况,即其中从以实线示出的运行初始位置,第一电机42不 提供转矩。曾提到,在行星齿轮装置34中,施加在三个输入/输出上的转矩原理上如同在 杠杆上平衡。 在这样的情况中,行星架速度(即发动机速度且因此车辆速度)的任何增大将简 单地导致联接到齿圈的电机速度的增大,而(联接到太阳轮)的飞轮保持其先前速度。因 此,无动力传递到电网络50或从电网络传递,且无动力传递到飞轮38或从飞轮38传递。无 转矩通过动力分离装置34传输,且发动机12将所有能量提供为驱动车辆传动装置。
在图lla和12a中示出发生再生制动的两种情况。这示出在简化的功能图llb和 12b上(功能图llb和12b分别对应于图lla和图12a的速度图),其中通过箭头表示主传 动系能够提供动力到动力分离装置34。此动力使车辆减速,而不使用车辆主制动器。本文 中将使用如下规则,即由主传动系施加到动力分离装置34的转矩为正,并通过速度图上向 上的箭头表示。图llb中表示了系统内相应的动力流动。在此情况中,能够控制第一电机 42,以促使动力分离装置34将一些动力通过其第三输入/输出输送到飞轮38,以增大飞轮 的速度,因此将此传递的动力转化为以机械形式存储的能量。因此,如在图lla中可见,第 一电机42能够控制成在动力分离装置34上施加一定的转矩。根据电机42的旋转方向(相 反的情况在图lla、图12a和图llb、图12b中示出),将电机42控制为发电机(其中电机42 从动力分离装置34获取机械动力,如在图lib中示出,此动力转化为电力且提供到电网络 50),或控制为马达(其中电机42将机械动力提供到动力分离装置34,如在图12b中示出, 此动力由电网络50提供),以在两种情况中在动力分离装置上施加转矩,该转矩根据以上 规则为负(见图lla和图12a)。以此,由飞轮38将负转矩施加在动力分离装置34上,这意 味着相反地由动力分离装置34将正转矩施加到飞轮38。因此,假定飞轮38最初在正方向 上旋转,这意味着飞轮将加速且甚至存储由主传动系回收的一些另外的能量。如可见那样, 能量回收系统同时机械和电地运行,且回收的能量因此通过两个形式进行机械和电传递与 存储。 回收的能量与供给动力分离装置和电网络所需的能量之间的平衡能够通过选择 合适的行星齿轮装置传动比来调节。此能量平衡能够进一步通过换档策略调节。例如,在 自动或自动机械式变速箱的情况中,变速箱上游速度能够在制动期间增大且在车辆发动期 间减小,以最大化由第一电机再生的电能。 应注意到的是,当动力分离装置34的第二输入/输出40(即,在此例子中为齿圈 41)上需要阻力转矩时,第一电机42能够被制动器46补充或替代,以提供此转矩。这在多 种运行情况中是希望的。当电机42可用作发电机时,这例如在电池52充满而使得不能再 充更多的电力的情况中是有意义的。在任何情况中,制动器46的存在能够帮助降低电机的 额定值,因为阻力转矩的至少部分能够通过制动器46提供,这当然可以导致使用更便宜、 更轻量且体积更小的电机和电能存储系统。 由制动器供给的额外的转矩能够使得内燃机在车辆静止时或在车辆以飞轮模式 运行时启动。当在车辆静止时发动内燃机时,第一离合器能够闭合而无能量损失(只要无
9转矩施加在制动器或第一电机上,则行星架将停止)。利用制动器施加转矩将发动内燃机。 通过避免内燃机连接到变速箱时在第一离合器内实际发生的能量损失来补偿制动器内的 能量损失。当车辆以飞轮模式运行时,当发动内燃机且使其速度与变速箱输入速度同步时, 由制动器供给的另外的转矩避免从动单元上的转矩损失。这改进了驾驶舒适性。此外,制 动器适合于在飞轮放能时启动飞轮。在这样的情况中,来自传动系和/或发动机的所有能 量能够传递到飞轮,因为动力分离装置的第二输入/输出通过制动器锁定,所以无动力发 送到此输入/输出。 为从飞轮38获得能量,必须通过在飞轮38的轴上施加阻力转矩而使飞轮38减 速,其中相反地,飞轮38将在动力分离装置的第一输入/输出36上施加驱动转矩。如上所 述,这能够通过正确地控制第一电机42(和/或制动器46,如果制动器46存在)而实现。
这样的情况在图13b和图14b(分别对应于图13a和图14a的速度图)的简化功 能图中示出,其中通过箭头表示飞轮38可提供动力到动力分离装置34。此转矩是飞轮减速 度的对应物。使用如下规则,即由飞轮38施加到动力分离装置34的转矩为正,这通过速度 图中向上的箭头表示。当然,目的是使得由飞轮38提供的能量的至少一部分输送到车辆的 车轮。因此,如图13a中可见,第一电机42需要控制成将一定的转矩施加在动力分离装置 34上。根据电机的旋转方向(相反的情况在图13a、图14a、图13b、图14b中示出),将电 机42控制为发电机(其中电机42从动力分离装置34获取机械动力,如在图14b中示出, 此动力转化为电力且提供到电网络50),或控制为马达(其中电机42将机械动力提供到动 力分离装置34,如在图13b中示出,此动力由电网络50提供),以在两种情况中在动力分离 装置34上施加转矩,根据以上规则该转矩为正。以此,由主传动系将负转矩施加在动力分 离装置34上,这意味着相反地,由动力分离装置34将正转矩施加到飞轮38。因此,假定主 传动系最初在正方向上旋转,这意味着主传动系将趋向于加速且甚至从一些回收的能量收 益。如再次可见,能量回收系统同时机械且电地运行,且回收的能量因此通过两个形式进行 机械和电传递与存储。 图2中示出本发明的第二实施例,所述第二实施例基本上与第一实施例相同,不 同在于另外的电机58,所述电机58通过带有恒定传动比的机械传动装置(未示出)机械地 联接到发动机输出轴14(或换言之与变速箱输入轴16联接)。此第二电机58基本上是牵 引马达,该牵引马达与发动机12—起形成混合动力并联牵引动力单元,其中发动机和马达 可一起或独立地驱动车辆。第二电机58电联接到电网络50,使得该电机能够从网络获取电 流或向网络提供电流。因此,当第一电单元42作为发电机运行时,第二电机50能够从电存 储单元52或从第一电单元42获取电流。相反地,第二电机58也能够作为发电机运行,且 提供电流以将其存储在电存储单元52内,或当第一电单元42作为马达运行时将其使用在 第一电单元42内。 第二电机允许飞轮和电池之间的能量传递,以单独地管理二者的充能状态(SOC)。 另外,第二电机58能够在可以从主传动系中机械地获取能量的一些运行情况中辅助第一 电机42提供动力,使得能够优化电池的尺寸。第二电机58也能够设定为提供能量的大部 分,以运行第一电机42,使得电池的大小能够被最小化。极端情况中,电池可以简单地被取 消。 在用于驱动中型卡车的情况中,这样的第二电机的功率额定值可以大致为20至80kWh。 图3中示出了本发明的第三实施例,所述第三实施例类似于第二实施例,不同在 于提供了第三电机60 (取代实施例2的第二电机),所述第三电机60通过带有恒定传动 比的机械传动装置机械联接到飞轮38 (或换言之与动力分离装置34的第一输入/输出联 接)。此第三电机60当然电连接到电网络50,使得第三电机60能够从网络获取能量或向 网络提供能量,这取决于第三电机60以马达还是发电机来运行。因此,第三电机60能够从 电存储单元52获取电流(或当第一电单元42作为发电机运行时从第一电单元42获取电 流),以使飞轮38加速。相反地,第三电机当作为马达运行而从从飞轮38获取其能量时,第 三电机也能够作为发电机运行提供电流以将其存储在电存储单元52内。
如在第二实施例中,第三电机60能够用于将能量从一个存储装置传递到另一个 存储装置,以独立地管理存储装置的充能状态。第三电机60也能够帮助电池通过使用来自 飞轮38的能量的量来运行第一电机。最后,第三电机60能够设定为提供能量的大部分,以 运行第一电机42,使得电池的大小能够被最小化。 图4中示出的第四实施例是第二实施例和第三实施例的简单的组合,带有如上所 述的第二电机58和第三电机60。此实施例具有如下优点,即允许最优且灵活地管理能量回 收,从而优化能量的使用和存储。此实施例实现将能量的部分以电模式传递到飞轮或从飞 轮传来。 在所有以上的情况中,最优的是具有动力分离装置34,所述动力分离装置34联接 到可变传动比传动装置18 "上游"的主传动系。的确,这样的传动装置18对于给定的发动 机动力输出用于使可用于从动单元的转矩倍增,这简单地通过降低转速来实现。因此,一般 地,如果动力分离装置34联接到变速箱"上游"而非下游,则将通过动力分离装置34传递 的转矩值将降低。这又允许使用更小、更轻和更便宜的动力分离装置的部件。
动力分离装置也联接到变速箱18的上游,其第二输入/输出40维持在不太大 的转速范围。的确,如果发动机是用于商用卡车的柴油发动机,则发动机将大致在600至 2400rpm之间运行,这代表最小和最大转速之间相距四倍。在变速箱18下游,这样的倍数可 以更大。由此,必须考虑到电机必须具有甚至更宽的运行范围,因为电机必须随主传动系的 速度以及飞轮38的速度而根据速度图改变,以实现动力分离效果。因此,第一电机42必须 能够在宽范围内运行,且当然关心的是最小化运行范围,使得能够使用更廉价的机械。主要 益处是在电机的最佳效率点附近运行电机。 图5至图9非常示意性地示出了根据本发明如何能够将能量回收系统在结构上整 合在动力传动系内。 在图5中示出图1的第一功能实施例的一个可能的结构实施例。从图中可见,能量 回收系统的行星齿轮装置34、飞轮38和第一电机42都同轴地安装在发动机输出轴14上, 且因此能够包括在共同的壳体62内,所述壳体62能够仅是提供在常规的活塞式发动机上 的常规发动机飞轮和离合器壳体的放大。因此,能量回收系统能够非常紧密地组装,而不改 变动力传动系相对于常规车辆的总体布局。唯一的修改基本上是发动机长度的大致15至 30厘米的略微增加。除此之外,唯一的大体积附加元件是电存储装置,它能够布置在车辆上 任何部分处。在此实施例中,可见飞轮38通过辅助行星齿轮装置64联接到行星齿轮装置 的太阳轮,发动机输出轴14直接联接到行星架43,且第一电机42直接联接到齿圈41。实际上,在此第一实施例中,齿圈41与第一电机的转子制成整体或至少接附到所述转子。
图6中示出了图1的第一功能性实施例的另一个可能的结构实施例。与图6的情 况相比,飞轮、行星齿轮装置和辅助行星齿轮装置64简单地视为轴向反向,其中飞轮38在 壳体62的发动机侧上而非壳体的变速箱侧上。更重要地,第一电机42不再整合在壳体62 内。现在,第一电机42设定为与飞轮轴线平行,且通过啮合机构66联接到动力分离装置34 的齿圈41。此布局允许使用直径更小的第一电机42。 图7中示出图2的第二功能性实施例的一个可能的结构实施例。此实施例直接从 图5中导出,其中第二电机58也整合在相同的壳体62内。此第二电机的转子直接联接到 发动机输出轴。在图中,第二电机示出处在壳体的发动机侧上、在发动机与回收系统之间, 但它也可以位于能量的其他侧上。 图8中示出了图2的第二功能性实施例的另一个可能的结构实施例,图中示出了 与图7的实施例相同的差异,而与图6和图5的实施例之间的差异不同,即图8的实施例是 不同轴的布置在外侧的小直径第一电机42,所述第一电机42通过齿轮装置66联接到行星 齿轮装置的齿圈41。 图9中示出图3的第三功能性实施例的一个可能的结构实施例。此实施例直接从 图5的实施例导出,不同在于可见第三电机60与飞轮38 —起联接在行星齿轮装置64的相 同的轴上,而不存在第二电机。 图15和图16示出了图2的第二功能性实施例的另一个替代实施例,其中作为将 动力分离装置整合在飞轮壳体内的替代,将动力分离装置布置在壳体的外侧在平行轴线 上。在这两个实施例中,动力分离装置34的齿圈41直接联接到第一电机42的转子,所述 第一电机42在此为小直径电机,如在图8的实施例中所示。动力分离装置34和第一电机 42在此共轴。动力分离装置的行星架43通过啮合的齿轮68 (在此情况中,该齿轮68整合 在飞轮壳体62内)机械联接到飞轮38,且太阳轮37通过另一组啮合的齿轮70 (在此情况 中,该齿轮70布置在飞轮壳体的外侧)与发动机12的输出轴14联接。
在图15的实施例中,第二电机58与输出轴14同轴,第二电机58的转子直接联接 到输出轴14上,且第二电机58位于飞轮壳体62内。 在图16的实施例中,第二电机58位于飞轮壳体的外侧。第二电机58实际上是小 直径电机,与第一电机且与动力分离装置同轴。第二电机的转子直接联接到将太阳轮37联 接到一组啮合的齿轮70的轴,使得第二电机机械联接到输出轴14。 图17中示出了图3的第三功能性实施例的替代的结构实施例。此实施例在动力分 离装置和第一电机方面具有与图15的实施例相同的布局。此实施例不具有第二电机(但 当然可以提供第二电机),但具有第三电机60。第三电机60是小直径电机且处于飞轮壳体 62的外侧,并且不与输出轴14或动力分离装置34同轴。实际上,第三电机也通过一组啮合 的齿轮联接到飞轮38。
权利要求
动力传动系,包括可变传动比传动装置(18),所述可变传动比传动装置(18)具有联接到发动机(12)的输入轴(16)和联接到从动单元(25)的输出轴;三向动力分离传动装置(34),所述三向动力分离传动装置(34)包括三个输入/输出联接器(36、40、44),所述三个输入/输出联接器中的第一输入/输出联接器联接到飞轮(38),并且所述三个输入/输出联接器中的第二输入/输出联接器联接到电机(42),其特征在于,所述三向动力分离传动装置(34)的第三输入/输出联接器机械联接到所述发动机(12)和所述可变传动比传动装置(18)的所述输入轴(16)。
2. 根据权利要求l所述的动力传动系,其特征在于,所述动力分离传动装置(34)是行 星齿轮装置,所述行星齿轮装置包括太阳轮(37)、与所述太阳轮同轴的齿圈(41)以及与所 述太阳轮和齿圈同轴的行星架(43),其中所述太阳轮、所述齿圈和所述行星架相互间可围 绕其共同的轴线旋转,并且其中所述行星架携带可旋转的行星轮(45),所述行星轮(45)与 太阳轮和齿圈均啮合。
3. 根据权利要求1或2所述的动力传动系,其特征在于,所述飞轮(38)通过减速齿轮 装置联接到所述动力分离传动装置(34)的第一输入。
4. 根据权利要求3所述的动力传动系,其特征在于,所述减速齿轮装置包括另外的行 星齿轮装置(64)。
5. 根据任一前述权利要求所述的动力传动系,其特征在于,所述第一电机(42)电连接 到电气附件(54、56)和/或电存储装置(52)和/或电阻器(53)。
6. 根据任一前述权利要求所述的动力传动系,其特征在于,所述动力传动系进一步包 括机械联接到所述从动单元(25)的第二电机(58)。
7. 根据权利要求6所述的动力传动系,其特征在于,所述第二电机(58)机械联接到所 述可变传动比传动装置(18)的输入(16)。
8. 根据任一前述权利要求所述的动力传动系,其特征在于,所述可变传动比传动装置 (18)是非连续传动比变速箱(18)。
9. 根据权利要求8所述的动力传动系,其特征在于,所述非连续传动比变速箱是机械 或自动变速箱。
10. 根据权利要求8所述的动力传动系,其特征在于,所述非连续传动比变速箱是自动 机械式变速箱。
11. 根据任一前述权利要求所述的动力传动系,其特征在于,所述发动机(12)通过至 少一个离合器机构(20、22)联接到所述可变传动比传动装置(18)的输入。
12. 根据任一前述权利要求所述的动力传动系,其特征在于,所述动力传动系包括机械 联接到所述飞轮(38)的第三电机(60)。
13. 根据任一前述权利要求所述的动力传动系,其特征在于,所述飞轮(38)和所述三 向动力分离传动装置(34)同轴地整合在固定于所述发动机(12)上的壳体(62)内。
14. 根据权利要求13所述的动力传动系,其特征在于,所述第一电机(42)同轴地安装 在所述壳体(62)内。
15. 根据权利要求13所述的动力传动系,其特征在于,所述第一电机(42)与所述飞轮 (38)的轴线平行地安装。
16. 根据组合到权利要求6或7之一的权利要求13至15的任何一项所述的动力传动 系,其特征在于,所述第二电机(58)同轴地安装在所述壳体(62)内。
17. 根据结合权利要求2的任一前述权利要求所述的动力传动系,其特征在于,所述飞 轮(38)联接到所述行星齿轮装置(34)的所述太阳轮(37),所述发动机(12)联接到所述行 星架(43),并且所述第一电机(42)联接到所述齿圈(41)。
18. 根据任一前述权利要求所述的动力传动系,其特征在于,制动器(46)与所述第一 电机(42)并联或串联地联接到所述三向动力分离装置的所述第二输入/输出联接器(40)。
全文摘要
本发明涉及一种动力传动系,该动力传动系包括可变传动比传动装置(18),该可变传动比传动装置(18)具有联接到发动机(12)的输入轴(16)和联接到从动单元(25)的输出轴;三向动力分离传动装置(34),该三向动力分离传动装置(34)包括三个输入/输出联接器(36、40、44),所述三个输入/输出联接器中的第一输入/输出联接器联接到飞轮(38),并且所述三个输入/输出联接器中的第二输入/输出联接器联接到电机(42),其特征在于,该三向动力分离传动装置(34)的第三输入/输出联接器机械联接到发动机(12)和可变传动比传动装置(18)的输入轴(16)。
文档编号B60K6/365GK101743140SQ200780053692
公开日2010年6月16日 申请日期2007年7月17日 优先权日2007年7月17日
发明者托马斯·贾斯汀, 樊尚·萨特 申请人:雷诺卡车公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1