混合动力车辆的控制装置及控制方法

文档序号:3911547阅读:132来源:国知局
专利名称:混合动力车辆的控制装置及控制方法
技术领域
本发明涉及混合动力车辆,特别涉及在行驶用的蓄电机构(电池、电 容器等)异常时的、混合动力车辆的退避行驶和系统切断。
背景技术
搭载有传动系的车辆正在进行开发、实用化,所述传动系被称为组合 了内燃机(例如,可以考虑使用汽油发动机、柴油发动机等公知的设备) 与电动机的混合动力系统。在这样的车辆中,搭载了用于驱动行驶用的电
动机的二次电池以及变换器(inverter,逆变器)、DC/DC转换器等电力变 换用设备(PCU (Power Control Unit))等电力设备。在该二次电池中, 通过化学反应进行放电、充电,但是因为该化学反应伴随发热,所以需要 对二次电池进行冷却。此外,在变换器、DC/DC转换器中功率元件也发热, 所以需要对变换器、DC/DC转换器进行冷却。 一般来说,在电力设备中当 电流流过电力线时产生焦耳热,所以需要对电力设备进行冷却。
这样的电力设备(二次电池(蓄电池)、PCU),例如被配置在车辆后 座下部、车辆后座与行李室之间。该电力设备被配置在连结于作为空气通 路的管道的壳体内,在壳体内的电力设备的进气上游侧(也可以是下游侧) 配置有产生冷却电力设备的冷却风的冷却风扇。并且,该壳体的上游端部 与车室内连通(具体来说,通过设置于后座前方地板上的管道的p及入口、 在后杂物箱上开口的吸入口与车室内连通),所以电力设备由车室内的空气 进4亍冷却。
二次电池,例如采用镍氢电池、锂离子电池等。例如,在这样的二次 电池中,(以下的电池组(battery pack)的例子为镍氩电池的情况)每个 单电池(cell)的输出电压为1.2V左右。通过将六个单电池进行串联连接,构成了输出电压为7.2V的电池模块。二次电池,作为通过将30个~40个 电池模块进行串联连接而构成的、输出电压为216V 288V的电池组,搭 载于车辆。这样的电池组,被分割为3~5个电池单元,或搭载于车辆的地 板,或搭载于行李室的地板下。
在混合动力车辆中,除了发动机,还必须搭载这样的电力设备,所以 很难设置冷却通路而使得能够对特别是体积大的二次电池的各单电池均等 地进4于冷却。
另一方面,该二次电池,以表示剩余容量的SOC (State Of Charge, 充电状态)作为指标,4皮控制4吏得SOC保持在预定范围。在由来自二次 电池的电力驱动电动电机进行行驶的车辆中,二次电池能够输入输出的电 力较大地左右了车辆的行驶性能。作为改变二次电池能够输入输出的电力 的要因有多种,但是其中较大的要因包括电池温度。因此,管理二次电池 的温度变得重要。而且,在发生了某种异常的情况下,这样的二次电池的 温度也可能异常地变得高温。因此,监视二次电池的异常的同时使混合动 力车辆行驶。
日本特开2001 - 25103号公报公开了能够回避车辆行驶功能的降低, 同时能够确保主电池(行驶用电池)保护功能的混合动力车的驱动装置。 该公报中所公开的混合动力车的驱动装置具备发动机、主电池、能量传递 装置、控制装置、电池异常检测装置和开闭装置。所述能量传递装置控制 发动机、主电池以及车辆驱动轴之间的能量的授受,并且将发动机动力变 才奂为电力来对主电池进4于充电、且将主电池的电力变换为动力来启动发动 机;所述控制装置控制能量传递装置;所述电池异常检测装置检测主电池 的异常;所述开闭装置对主电池与能量传递装置之间的送电路径进行开闭。 控制装置的特征在于,在虽然为行驶模式期间但发动机处于停止的状态下 检测到主电池的异常的情况下,指示发动机的启动,在发动机的启动结束 后断开开闭装置来禁止主电池充放电,禁止行驶模式期间的发动机停止, 使能量传递装置在不伴随主电池的电力授受的控制模式下工作。
根据该混合动力车的驱动装置,在行驶模式下主电池中发生了异常的情况下,必定在将发动机设为动作状态之后断开主电池,所以不会发生如
下问题在发动机停止期间由于主电池异常而发生了主电池断开,所以不 能使用发动机进行行驶。
然而,上述的日本特开2001 - 25103号7>才艮中所/>开的混合动力车的 驱动装置,不管主电池中发生的异常的内容,而使混合动力车辆利用发动 机进行行驶。例如,即使禁止了主电池的充放电,也能够想象二次电池的 化学反应正在进行的情况。对于在这样的情况下混合动力车辆继续行驶的 问题,日本特开2001 - 25103号公报并没有提及。

发明内容
本发明是为了解决上述的课题而作成的,其目的在于,提供一种在行 驶用的蓄电机构中发生了异常的情况下,能够可靠地执行混合动力车辆的 退避行驶和系统切断的混合动力车辆的控制装置及控制方法。
本发明的一种方式的混合动力车辆的控制装置,所述混合动力车辆具 有内燃机和电动机作为车辆的行驶动力源,并且具有向电动机供给电力的 蓄电机构。该控制装置具备检测部、车辆控制部和禁止部,所述检测部检 测蓄电机构的异常;所述车辆控制部控制车辆,使得当检测部检测到异 常时,将蓄电机构从包括电动机的电负载电切断、且车辆不使用电动机而 使用内燃机作为行驶动力源进行行驶;所述禁止部在车辆不使用电动机而 使用内燃机进行行驶时,当进一步检测到蓄电机构的另外的异常时,禁止 车辆使用内燃机进行行驶。
根据该构成,控制装置控制车辆,使得当检测到关于向电动机供给 电力的蓄电^L构,即二次电池、电容器的异常时,将检测出该异常的蓄电 机构从包括电动机的电负载电切断,车辆不使用电动机而使用内燃机作为 行驶动力源进行行驶。这样一来,因为没有了蓄电机构的充放电电力,所 以处于不会发生因充放电引起的蓄电机构的异常。但是,尽管如此,却在 车辆不使用电动机而使用发动机进行行驶时进一步检测到蓄电机构的另外 的异常时,控制装置禁止车辆使用内燃机进行行驶。也就是说,即使在处 于由于检测出关于蓄电机构的异常而不使用蓄电机构的状态下,也发生了关于蓄电机构的另外的异常的情况,表示关于蓄电机构发生了重大的异常。 因此,控制装置禁止使用内燃机进行行驶,使该混合动力车辆停止。由此, 能够回避因为重大的异常而发生决定性的故障(不易修复的故障)。其结果
是能够提供如下的混合动力车辆的控制装置在行驶用的蓄电机构中发生 了异常的情况下,能够可靠地执行混合动力车辆的退避行驶和系统切断。
优选的是,禁止部,当检测到与由检测部检测出的蓄电机构的异常不 同的异常、且是蓄电机构的另外的异常时,禁止车辆使用内燃机进行行驶。
根据该构成,即使处于检测到关于蓄电机构的异常而不使用蓄电机构 的状态下,蓄电机构也发生了与该检测出的异常不同的另外的异常的情况, 表示关于蓄电机构发生了重大的异常。因此,控制装置禁止车辆使用内燃 机进行行驶,使该混合动力车辆停止。由此,能够回避因为重大的异常而 产生决定性的故障(不易修复的故障)。
优选的是,禁止部,当检测到与由检测部检测出的蓄电机构的异常不 同的异常、即关于蓄电机构的温度的异常时,禁止车辆使用内燃机进行行 驶。
根据该构成,即使在处于检测到关于蓄电机构的异常而不使用蓄电机 构的状态下,蓄电机构也发生了与该检测出的异常不同的另外的温度异常 的情况,表示关于蓄电机构发生了重大的温度异常。因此,控制装置禁止 车辆使用内燃机进行行驶,使该混合动力车辆停止。由此,能够回避因为 重大的温度异常而发生决定性的事态(不能容易地修复的事态)。
优选的是,检测部检测蓄电机构的温度以外的异常。禁止部,当检测 到关于蓄电机构的温度的异常时,禁止车辆使用内燃机进行行驶。
根据该构成,即使处于检测到关于蓄电机构的温度以外的异常而不使 用蓄电机构的状态下,蓄电机构也发生了关于温度的另外的异常的情况, 表示关于蓄电机构发生了重大的温度异常。因此,控制装置,禁止车辆使 用内燃机进行行驶,使该混合动力车辆停止。由此,能够回避重大的温度 异常成为原因而发生决定性的事态(不能容易地修复的事态)。
优选的是,检测部检测关于蓄电机构的温度的异常。禁止部,当进一 步检测到关于蓄电机构的温度的另外的异常时,禁止车辆使用内燃机进行行驶。
根据该构成,即使在处于检测到关于蓄电机构的温度异常而不使用蓄 电机构的状态下,蓄电机构也发生了关于温度的另外的异常的情况,表示 关于蓄电机构发生了重大的温度异常。因此,控制装置禁止车辆使用内燃 机进行行驶,使该混合动力车辆停止。由此,能够回避因为重大的温度异 常而发生决定性的事态(不能容易地修复的事态)。
优选的是,控制装置还包括冷却控制部,所述冷却控制部控制搭载于 车辆的冷却装置,使得在车辆不使用电动机而使用内燃机作为行驶动力源 行^t时,以最大能力对蓄电机构进行冷却。
根据该构成,当检测到关于蓄电机构的异常时,将检测出该异常的蓄 电机构从包括电动机的电负载电切断,车辆不使用电动机而使用内燃机作 为行驶动力源进行行驶。此时,控制装置控制冷却装置,使得以最大能力 对蓄电机构进行冷却。这样一来,因为没有了对蓄电机构的充放电电力、 且蓄电机构以冷却装置的最大能力被冷却,所以能够得到不会发生蓄电机 构的温度异常的状态。因此,至少能够长时间进行以发动机为行驶动力源 的退避行驶。并且,即使如此地处于冷却蓄电机构的同时不使用蓄电机构 的状态,也发生了关于蓄电机构的另外的异常的情况,表示关于蓄电机构 发生了重大的温度异常。因此,控制装置禁止车辆使用内燃机进行行驶, 使该混合动力车辆停止。由此,能够回避因为重大的温度异常而发生决定 性的事态(不能容易地修复的事态)。


图1是包括本发明实施方式的控制装置的混合动力车辆整体的控制框图。
图2是表示动力分配机构的图。
图3是本发明实施方式的行驶用电池的整体立体图。
图4是由锂离子电池构成的电池组的整体立体图。
图5是图4的部分放大图。
图6是行驶用电池的控制框图。图7表示由图6的电池ECU执行的第一程序的控制结构的流程图。 图8是表示在执行图7所示的流程图的情况下的混合动力车辆的动作 的时间图。
图9表示由图6的电池ECU执行的第二程序的控制结构的流程图。 图10是表示在执行图9所示的流程图的情况下的混合动力车辆的动作 的时间图。
图11表示由图6的电池ECU执行的第三程序的控制结构的流程图。 图12是表示在执行图ll所示的流程图的情况下的混合动力车辆的动 作的时间图。
具体实施例方式
以下,参照附图对本发明的实施方式进行说明。在以下的说明中,对 相同的部件标记相同的符号。它们的名称和功能也相同。因此不重复关于 它们的详细i兌明。
参照图1,对包括本实施方式的控制装置的混合动力车辆整体的控制 框图进行说明。本发明不限定于图l所示的混合动力车辆。在本发明中, 作为动力源的内燃机(例如汽油发动机等内燃机,以下将内燃机作为发动 机进行说明)是使车辆行驶的驱动源(行驶动力源)、且H电机的驱动源 即可。而且,在本发明中,驱动源是发动机和电动发电机、且(无论4线 动机停止还是不使发动机停止)能够由电动发电机的动力进行行驶的车辆 即可,也可以是具有搭载有行驶用电池的其他方式的混合动力车辆(本发 明不限定于所谓的串联型、并联型等混合动力车辆)。
该电池是镍氢电池、锂离子电池等,其种类并未特别限定。此外,作 为蓄电才几构,也可以以电容器来代替电池。以下,以蓄电机构为电池、电 池的种类为锂离子电池来进行说明。该锂离子电池,动作电压高、单位重 量以及单位体积的能量密度高,所以能够实现轻量化、紧密化,此外,具 有没有记忆效应这样的长处。进一步对电池结构的详细说明稍后叙述。
混合动力车辆包括发动机120和电动发电机(MG) 140。以下,为了便于说明,将电动发电机140表示为电动发电机140A(或者MG( 2 )140A) 和电动发电机140B (或者MG (1) 140B),但是根据混合动力车辆的行 驶状态,电动发电机140A作为发电机工作,电动发电机140B作为电动机 工作。在该电动发电机作为发电机工作的情况下进行再生制动。在电动发 电机作为发电机工作时,车辆的运动能被变换为电能,使车辆减速。
混合动力车辆,除此之外还包括减速器180;动力分配机构(例如, 后述的行星齿轮机构)200;行驶用电池220;变换器(inverter,逆变器) 240;电池控制单元(以下,称为电池ECU (Electronic Control Unit ))260; 发动机ECU280; MG_ECU300;和BTV^ECU320等。所述减速器180,将 由发动机120、电动发电机140产生的动力传递到驱动轮160,或者将驱动 轮160的驱动传递到发动机120、电动发电机140;所述动力分配机构200, 将发动机120产生的动力分配到驱动轮160和电动发电机140B ( MG (1) 140B)这两条路径;所述行马史用电池220,纟皮充电用于驱动电动发电才几140 的电力;所述变换器240,对行马史用电池220的直流与电动发电才几140A( MG (2) 140A)和电动发电才几140B (MG (1) 140B )的交流进4亍变换的同时 进行电流控制;所述电池ECU260,对行驶用电池220的充放电状态(例 如,SOC)进行管理控制;所述发动机ECU280,控制发动机120的动作 状态;所述MGJECU300 ,根据混合动力车辆的状态来控制电动发电机140 以及电池ECU260、变换器240等;所述HV—ECU320,对电池ECU260、 发动机ECU280和MG一ECU300等相互地进行管理控制,控制混合动力系 统整体,使得混合动力车辆能够以最高效的方式运行。SOC通过电流累计 测定、开路电压(OCV (Open Circuit Voltage))测定来算出。
在本实施方式中,在行驶用电池220与变换器240之间设置有升压转 换器242。这是因为行驶用电池220的额定电压比电机140A (MG (2) 140A)、电动发电机140B (MG (1) 140B)的额定电压低,在将电力从行 驶用电池220供给到电动发电机140A ( MG ( 2 ) 140A )、电动发电机140B (MG (1) 140B)时,由升压转换器242对电力进行升压。
在图1中,分别构成各ECU,但是也可以构成为将两个以上的ECU统合后的ECU(例如,图1中,如虚线所示,将MG—ECU300和HV—ECU320 统合后的ECU是其中 一例)。
作为动力分配才几构200,为了将发动才几120的动力分配为驱动轮160 和电动发电才几140B( MG( 1) 140B )这两方,4吏用行星齿轮才几构(planetary gear)。通过控制电动发电机140B ( MG (1) 140B )的转速,由此动力分 配机构200也作为无级变速器发挥作用。发动机120的旋转力被输入到行 星架(C),然后由太阳轮(S)传递到电动发电机140B (MG (1) 140B), 由齿圈(R)传递到电动发电机140A (MG (2) 140A)和输出轴(驱动 轮160侧)。在使旋转中的发动机120停止时,因为发动机120正在旋转, 所以其旋转的运动能由电动发电机140B (MG (1) 140B)变换为电能, 使发动机120的转速降低。
在搭载了如图l所示的混合动力系统的混合动力车辆中,关于车辆的 状态当预先确定的条件成立时,BTV^ECU320经由电动发电机140A ( MG (2) 140A)和发动机ECU280来控制发动机120,使得仅使用电动发电 机140的电动发电机140A (MG (2) 140A)进行混合动力车辆的行驶。 例如,预先确定的条件是行驶用电池220的SOC为预先确定的值以上这 样的条件等。这样一来,在发动时、低速行驶时等发动机120的效率不良 的情况下,能够^f又使用电动发电机140A (MG (2) 140A)进行混合动力 车辆的行驶。其结果是能够使电池220的SOC降低(能够在之后车辆停 止时对fr驶用电池220进行充电)。
此外,在通常行驶时,通过例如动力分配机构200将发动机120的动 力分为两条路径。由两条分配路径的一方的动力直接驱动驱动轮160。由 另一方的动力驱动电动发电机140B (MG (1) 140B),电动发电才几140B (MG(1)140B)进行发电。通过此时产生的电力,电动发电机140A(MG (2) 140A)进行驱动轮160的辅助驱动。此外,在高速行驶时,通过进 一步将来自行驶用电池220的电力供给到电动发电机140A (MG (2) 140A), 4吏电动发电才几140A (MG (2) 140A)的输出增大,电动发电才几 140A ( MG (2 ) 140A)对驱动轮160追加驱动轮。另一方面,在减速时,随驱动轮160从动的电动发电机140A (MG (2) 140A )作为发电机工作, 由此进行再生发电。回收的电力被储存于行驶用电池220。在行驶用电池 220的充电量降低而特别需要充电的情况下,发动机120的输出增加。由 此,增加由电动发电机140B (MG (1) 140B)产生的发电量,使对行驶 用电池220的充电量增加。
此外,行驶用电池220的目标SOC通常被设定在60 %左右,使得任 何时候进行再生都能够回收能量。此外,关于SOC的上限值和下限值, 为了抑制行驶用电池220的电池的劣化,例如将上P艮值设为80%左右,将 下限值i殳为30 %左右,HV一ECU320经由MG_ECU300控制由电动发电^L 140进行的发电、再生、电机输出,使得SOC不超出上P艮值和下限值。在 此列举出的值是一个例子而不是特别限定的值。
参照图2,进一步对动力分配机构200进行+兌明。动力分配4几构200 由行星齿轮构成,所述行星齿轮包括太阳轮(S) 202 (以下,简单记为 太阳轮202);小齿轮204;行星架(C ) 206 (以下,简单记为行星架206); 和齿圏(R) 208 (以下,简单记为齿圏208)。
小齿轮204与太阳轮202和齿圏208啮合。行星架206以小齿轮204 能够自转的方式而支撑小齿轮204。太阳轮202连结于MG (1) 140B的 旋转轴。行星架206连结于发动机120的曲轴。齿圏208连结于MG (2) 140A的i走转轴和减速器180。
发动机120、 MG (1) 140B以及MG (2) 140A经由由行星齿轮构成 的动力分配机构200而连结,由此,发动机120、 MG (1) 140B以及MG (2) 140A的转速在列线图中成为以直线连接的关系。
参照图3,对图1的行驶用电池220进行说明。构成该行驶用电池220 的电池的种类,如上所述是锂离子电池。
图3所示的行驶用电池220,例如被设置在车辆的座席、行李室板下 (地板上)。行驶用电池220包括电池组罩220A、接线盒(junction block) 220B、锂离子电池(电池组)220C、电动电池冷却风扇220D和电池 ECU260。接线盒220B是锂离子电池220C经由DC/DC转换器、变换器与电动 发电机等连接的布线的连接部,不仅是电线的连接,有时也具有电线的分 支等功能。
锂离子电池220C, 一般来说,正极使用钴系锂、镍系锂、锰酸锂这样 的含锂化合物,负极使用不含锂的碳材料,电解液使用将锂盐溶于有机溶 剂后的物质,将锂作为离子来使用。特别地,在正极使用了镍系锂的电池, 能够实现高温下的长寿命,并且还能够通过抑制电解液与电极的界面上的 劣化反应来实现低温下的高输出和长寿命。这样的锂离子电池220C,因为 动作电压高,单位重量以及单位体积的能量密度高,所以容易实现轻量化、 紧密化。
电动电池冷却风扇220D,在锂离子电池220C高温时,对锂离子电池 220C进行冷却。锂离子电池220C在常温附近发挥最高性能。因此,当由 电池温度传感器测定的温度高于预先确定的阈值时,为了确保电池性能, 由电动电池冷却风扇220D对锂离子电池220C进4亍冷却。电动电池冷却风 扇220D将车室内空气作为冷却介质来对锂离子电池220C进行冷却。通过 控制电动机的转速,能够改变电动电池冷却风扇220D的能力。
电池ECU260进行锂离子电池220C的充》文电管理和异常处理。为了 将锂离子电池220的SOC设为适当的值,电池ECU260执行SOC管理控 制、SOC均等化管理控制、电池温度控制。
SOC管理控制是根据车辆的行驶状态来管理锂离子电池220C的SOC 的控制。在SOC管理控制中,例如以能够利用由电动发电^L在再生制动 时发电产生的电力进行充电的方式(即以使得不变为满充电状态的方式) 来管理SOC。
SOC均等化管理控制是在多个单电池(battery cell)作为一组电池组 而使用的情况下,〗吏各单电池的SOC均等化的控制。通过使各单电池的 SOC均等化,作为集合电池的电池组的SOC的使用幅度变为最大限,蓄 电量得到有效地使用。因此,在SOC均等化管理控制中,当各单电池的 SOC出现不均时,通过配合SOC最低的单电池而使其他的单电池放电来进行均等化。
锂离子电池220C在常温附近发挥最高性能。在电池温度控制中,当 锂离子电池220C的温度上升时,使用电动电池冷却风扇220D,对锂离子 电池220C进行冷却,使得电池温度下降至最适合的温度。
图4表示锂离子电池220C的内部结构。如图4所示,该锂离子电池 220C是将各个输出电压约3 ~ 4V的单电池串联连接56个(在此,14个x 4个)而成的。单电池的形状并不限定于方形,也可以是圆筒形,也可以 是其他的形状。而且,构成电池组的单电池的个数也未限定。
图5表示图4的锂离子电池220C中的由4个单电池构成的电池模块 400的内部结构。电池模块不限定于由4个单电池构成。如图5所示,电 池模块400例如被构成为串联连接单电池410、 420、 430、 440这四个单电 池。在本发明中,构成电池模块的单电池的个数可以是l个,也可以是如 此的4个或者4个以上的多个。这个才艮据构成电池组的单电池的个数、构 成电池组的列数和每列的单电池数等而改变。
在单电池410、 420、 430、 440的上表面设置有正极或负极的端子412、 414、 422、 424、 432、 434、 442、 444,使用该端子将4个单电池串联连接。
此外,在单电池410、 420、 430、 440的上表面设置有安全阀416、 426、 436、 446。这样的安全阀416、 426、 436、 446,当在异常的状态下使用锂 离子电池时排出内部产生的气体。例如,存在当电池变为异常的状态时(以 大电流放电、或者过充电时),在电池的内部产生气体,电池的内压异常地 变高的情况。当变为该状态时,安全阀开阀,气体被排出,防止由于内压 而破坏电池壳体。
为了在电池温度上升到异常的高温时切断电流,锂离子电池内置有温 度开关(温度熔断器)。为了正确地检测电池温度,温度开关被配设为与电 池接触。将温度开关设为温度熔断器,因为该温度熔断器与电池串联连接, 所以当电池温度高得异常时,温度熔断器断开而切断电流。当电池温度下 降时温度熔断器变为接通,再次变为能够使用的状态。该温度开关被设置 于各单电池,温度开关被构成为例如当单电池的温度变为85。C时将接通信号发送到电池ECU260。
而且,测定行驶用电池220的电池组温度的温度传感器被设置在例如 行驶用电池220的温度环境最不优选的位置(例如,冷却风的流动不良的 位置、以及/或者冷却风的温度高的位置)。
图6表示由电池ECU260控制的行驶用电池220的控制框图。如图6 所示,向电池ECU260中,从检测锂离子电池220C的电流值(向锂离子 电池220C充电的充电电流值和从锂离子电池220C放电的放电电流值)的 电流传感器610输入电池电流值,从检测锂离子电池220C的电压值的电 压传感器612输入电池电压值,从检测锂离子电池220C的电池组温度的 温度传感器620输入电池温度TBP,从电池熔断器632输入熔断器断开信 号,从温度开关622 (在本实施方式中为56个)输入当锂离子电池220C 的各单电池的温度TBS超过设定温度(85°C )时变为接通的信号。根据这 些信号,电池ECU260检测行驶用电池220的异常,作为诊断(Diagnosis ) 而存储于ECU内的存储器等。
从电池ECU260,向电动电池冷却风扇220D输出工作指令信号,向 系统主继电器(SMR) 640输出SMR接通信号以及SMR断开信号。
而且,该混合动力车辆还具备祠服插头630,在车辆的维护时,通过 机械地拔下该伺服插头630,使行驶用电池220C与各电力设备变为非电连 接的状态。
此外,在电池ECU260上连接有用于将表示锂离子电池220C处于异 常状态的信号输出到其他的ECU (例如HV—ECU320、发动机ECU280) 的信号线。
控制4荅载有具有如此的结构的行驶用电池220C的混合动力车辆的、 本实施方式的控制装置,其特征在于当检测到电池的异常时,将混合动 力车辆的行驶移向无电池(battery-less)行驶(仅使用发动机120进行行 驶)、且当发生更严重的(危急的)电池异常时,断开系统使混合动力车辆 停止。这样的控制,能够由将数字电路、模拟电路的结构作为主体的硬件 来实现,也能够由将包含于ECU的CPU和存储器、以及从存储器中读出并由CPU执行的程序作为主体的软件来实现。 一般来说,在由硬件实现
控制的情况下在动作速度方面有利,在由软件实现控制的情况下在设计变 更方面有利。以下,对由软件实现控制装置的情况进行说明。存储有这样 的程序的存储介质也是本发明的一种方式。
参照图7,对由本实施方式的控制装置、即电池ECU260执行的第一 程序的控制结构进行说明。该程序按预先确定的循环时间反复执行。而且, 图7所示的流程图将在系统启动后开始的情况作为前提,示出直到混合动 力车辆的系统切断为止的流程。
在步骤(以下,将步骤记为S ) 1000中,电池ECU260监视行驶用电 池220。作为此时的监^L项目的一例,包括锂离子电池的劣化状态;SOC 的降低状态;尽管SOC为控制下限值以下但进行了放电的状态;电池熔 断器632的状态;检测出容许值以上的大充放电电流值的状态;监视单元 自身(这里可以包括电池ECU260)异常的状态;SOC超过控制上限值的 状态等。
在S1100中,电池ECU260判断是否检测出电池异常。在此时的异常 中不包括电池温度异常。当电池ECU260检测到电池异常时(S1100中 "是"),处理移向S1200。如果不是这样(S1100中"否),则处理返回到 S1000,电池ECU260监视行驶用电池220。如果考虑该程序为子程序,则 在S1100中"否"的情况下,整体的处理也可以返回到主程序。进而,电 池ECU260,在检测出电池异常的情况下,存储关于电池异常的诊断。
在S1200中,电池ECU260向SMR640输出指令信号,使得SMR640 从接通切换到断开。在S1300中,电池ECU260将移向无电池行驶(仅4吏 用发动机120进行行驶)的指令信号发送到HV_ECU320。在S1400中, 电池ECU260向电动电池冷却风扇220D输出指令信号,j吏得以最大能力 (最大风量)对O驶用电池220进行冷却。
在S1500中,电池ECU260监视行驶用电池温度。此时,电池ECU260 基于电池组温度TBP或者单电池温度TBS ( N) (N = 1 ~ 56 )来监视行驶 用电池温度。在S1600中,电池ECU260判断是否检测出电池温度异常。例如,若 电池组温度TBP高于卯'C,或者单电池温度TBS (N) (N = l~56)高于 85°C,则电池ECU260判断为检测出电池温度异常。当电池ECU260检测 到电池温度异常时(S1600中"是"),处理移向S1700。如果不是这样(S1600 中"否,,),则处理返回到S1500,电池ECU260监视行驶用电池220的温 度。如果考虑该程序为子程序,则在S1600中"否,,的情况下,整体的处 理也可以返回到主程序。
在S1700中,电池ECU260将系统关闭指令信号发送到HV_ECU320。
参照图8,对基于以上的结构以及流程图的、搭载有由本实施方式的 控制装置(ECU)控制的行驶用电池220的混合动力车辆的动作进行说明。
混合动力车辆的驾驶者,进行系统启动要求(例如,在踏下制动踏板 的状态下按下动力(POWER)开关(开关的名称是一个例子)),由此, SMR640变为电连接的状态,并且混合动力车辆的状态从系统关闭的状态 移向系统开启的状态,该混合动力车辆变为能够行驶的状态。
在系统开启的状态下,监视行驶用电池220。检测出电池温度异常以 外的某些电池异常(例如锂离子电池的劣化异常)(S1100中"是")。该时 间为图8的时刻t (1)。
SMR640从接通状态切换到断开状态(S1200),移向无电池行驶(仅 使用发动机120进行行驶)的指令信号被输出到HV—ECU320 ( S1300 )。 HV—ECU320向发动机ECU230输出指令信号,使得若发动才几120正停止 则开始工作。由此,混合动力车辆的行驶移向无电池行驶(仅使用发动机 120进行行驶)。该时间为图8的时刻t (2 )。
此时,因为SMR640为非电连接的状态,所以不能使用来自行驶用电 池220的电力,但是用于使发动机120工作的电力(例如,用于使各ECU 工作的电力、用于使启动器(starter)工作的电力、供给到火花塞的电力、 用于使电动电池冷却风扇220D工作的电力)从未图示的辅机电池供给。
向电动电池冷却风扇220D输出指令信号,以最大能力(最大风量) 对行驶用电池220进行冷却。这样在行驶用电池220电断开的状态下,该混合动力车辆使用发动机120的动力继续行驶。行驶用电池220不进行充 ;改电,而由电动电池冷却风扇220D最大限地进4亍冷却。因此,通常,行 驶用电池220的温度不会上升。
因为行驶用电池220处于电断开的状态、且处于不进行充放电的状态, 所以也不应该发生锂离子电池内的化学反应。但是,尽管这样,通过监视 行驶用电池220的温度异常(S1500),检测到电池温度异常(S1600)。该 时间为图8的时刻t (3)。此时,若电池组温度TBP高于90°C,或者/以 及单电池温度TBS (N) (N = l~56)其中之一高于85°C,则检测到电池 温度异常。
如此,尽管行驶用电池220被电断开而混合动力车辆仅使用发动机120 进行行驶、且以最大限对行驶用电池220进行冷却,却检测出行驶用电池 220的温度异常,这表示在行驶用电池220中发生了严重的(危急的)电 池异常。因此,该混合动力车辆的系统被设为关闭(S1700)。该时间为图 8的时刻tU)。由此,该混合动力车辆变为不能行驶状态。还优选,在时 刻t (3)和时刻t (4)之间设置延迟时间,使得具有驾驶者能够将该混合 动力车辆停止在安全的场所的时间上的富裕。
如上所述,才艮据本实施方式的控制装置,在混合动力系统处于工作的 状态下,当检测到电池异常时,将混合动力车辆的行驶移向无电池行驶。 当在这种状态下检测到电池温度异常时,控制装置将混合动力系统设为关 闭,可靠地停止混合动力车辆的行驶。由此,能够回避电池异常发展为更 重大的事态。
在图8的时刻t (2)到时刻t (3)之间,即使检测到与在时刻t (1) 检测出的电池异常不同的电池异常(温度以外的异常),也不关闭系统。 <第一变形例>
以下,使用图9和图10,对本实施方式的第一变形例进行说明。第一 变形例的混合动力车辆具有与图1~图6所示的结构相同的结构。因此, 对图1~图6的说明在此不进行重复。
参照图9,对由本变形例的控制装置、即电池ECU260执行的第二程序的控制结构进行说明。该程序在按预先确定的循环时间反复执行这一点
上与上述的实施方式相同。此外,图9所示的流程图在将在系统启动后开 始的情况作为前提,示出直到混合动力车辆的系统切断为止的流程这一点 上与上述的实施方式相同。而且,图9所示的流程图与图7所示的流程图, 对相同的处理标记相同的步骤序号。这些处理的内容相同。因此,不重复 对这些处理的详细i兑明。
如图9所示,该变形例的控制装置即电池ECU260,首先执行图7的 S1500和S1600的处理,并且执^f亍与S1100的处理不同的S2000的处理。 S2000以外的处理,只是处理的顺序不同,所以在此不重复说明。
在S2000中,电池ECU260判断是否检测出电池异常。在此时的异常 中包括S1000的异常监视项目、即锂离子电池的劣化状态;SOC的降低状 态;尽管SOC为控制下限值以下但进行了放电的状态;电池熔断器632 的状态;检测出容许值以上的大充放电电流值的状态;监视单元自身(这 里可以包括电池ECU260)异常的状态;SOC超过控制上限值的状态,除 此之外还包括在S1600中检测出的温度异常以外的电池温度异常。例如, 当在S1600中电池ECU260检测出电池組温度TBP的异常时,在S2000 中检测出的异常中包括单电池温度TBS (N) (N = l~56)的异常(可以 确定地记载,反之亦然)。当电池ECU260检测到电池异常时(S2000中
"是"),处理移向S1700。如果不是这样(S2000中"否"),处理返回到 SIOOO,电池ECU260监视行驶用电池220。而且,电池ECU260,在检测 出电池异常的情况下,存储关于电池异常的诊断。
参照图10,对基于以上的结构以及流程图的、搭载有由本实施方式的 控制装置(ECU )控制的行驶用电池220的混合动力车辆的动作进行说明。 在图IO的说明中,不重复对与图8的说明相同的动作的说明。
该混合动力车辆在系统开启的状态下,监视行驶用电池220的温度
(S1500)。检测到电池温度异常(S1600中"是,,)。该时间为图10的时刻 t(5)。此时,若电池组温度TBP高于90°C,或者单电池温度TBS (N)
(N-l~56)其中之一高于85。C,则检测到电池温度异常。SMR640从接通状态切换到断开状态(S1200),移向无电池行驶(仅 使用发动机120进行行驶)的指令信号被输出到HV—ECU320 ( S1300 )。 HV一ECU320向发动机ECU280输出指令信号,使得如果发动机120正停 止则开始工作。由此,混合动力车辆的行驶移向无电池行驶(仅使用发动 机120进行行驶)。该时间为图10的时刻t ( 6 )。
向电动电池冷却风扇220D输出指令信号,以最大能力(最大风量) 对行驶用电池220进行冷却。如此在行驶用电池220处于电断开的状态下, 该混合动力车辆利用发动机120的动力继续行驶。行驶用电池220不进行 充放电,而由电动电池冷却风扇220D最大限地进行冷却。因此,通常来 说,行驶用电池220的温度不会上升。
因为行驶用电池220处于电断开的状态、且处于不进行充放电的状态, 所以也不应该发生锂离子电池内的化学反应。但是,尽管这样,通过行驶 用电池220的异常监视(S1000 ),检测到包括在S1600中检测出的温度异 常以外的电池温度异常的电池异常(S2000)。该时间为图IO的时刻t(7)。
如此,尽管行驶用电池220被电断开而混合动力车辆仅使用发动机120 进行行驶、且以最大限对行驶用电池220进行冷却,却检测出行驶用电池 220的温度异常,这表示在行驶用电池220中发生了严重的(危急的)电 池异常。因此,该混合动力车辆的系统被设为关闭(S1700)。该时间为图 10的时刻t(8)。由此,该混合动力车辆变为不能行驶状态。
如以上所述,根据本实施方式的控制装置,在混合动力系统处于工作 的状态下,当检测到电池温度异常时,将混合动力车辆的行驶移向无电池 行驶。当在这种状态下还检测到电池异常时,控制装置将混合动力系统设 为关闭,可靠地停止混合动力车辆的行驶。由此,能够回避电池异常发展 为更重大的事态。
<第二变形例>
以下,使用图11和图12,对本实施方式的第二变形例进行说明。第 二变形例的混合动力车辆具有与图1~图6所示的结构相同的结构。因此, 对图1 ~图6的说明在此不进行重复。参照图ll,对由本变形例的控制装置、即电池ECU260执行的第三程 序的控制结构进行说明。该程序在按预先确定的循环时间反复执行这一点 上与上述的实施方式、第一变形例相同。此外,图ll所示的流程图在将在 系统启动后开始的情况作为前提,示出直到混合动力车辆的系统切断为止 的流程这一点上与上述的实施方式、第一变形例相同。而且,图ll所示的 流程图与图7或图9所示的流程图,对相同的处理标记相同的步骤序号。 这些处理的内容相同。因此,不重复对这些处理的详细说明。
如图11所示,该变形例的控制装置、即电池ECU260,执行与图9的 S2000不同的S3000的处理。S3000以外的处理,与图9相同,所以在此 不重复说明。
在S3000中,电池ECU260判断是否检测出电池异常高温。例如,若 电池组温度TBP变为94°C ~95°C (该温度是一个例子),则电池ECU260 检测到电池异常高温。若电池ECU260检测到电池异常高温(S3000中 "是,,),则处理移向S1700。如果不是这样(S3000中"否"),则处理返 回到SIOOO,电池ECl^60监视行驶用电池220。而且,电池ECU260,在 检测出电池异常高温的情况下,存储关于电池异常高温的诊断。
参照图12,对基于以上的结构以及流程图的、搭载有由本实施方式的 控制装置(ECU )控制的行驶用电池220的混合动力车辆的动作进行说明。 在图12的i兌明中,不重复对与图8或图10的说明相同的动作的说明。
该混合动力车辆在系统开启的状态下,监视行驶用电池220的温度 (S1500)。检测到电池温度异常(S1600中"是,,)。该时间为图12的时刻 t(9)。此时,若电池组温度TBP高于卯。C,或者单电池温度TBS (N) (N = l~56)其中之一高于85。C,则检测到电池温度异常。
SMR640从接通状态切换到断开状态(S1200),移向无电池行驶(仅 使用发动机120进行行驶)的指令信号被输出到HV—ECU320 ( S1300 )。 HV_ECU320向发动机ECU280输出指令信号,使得如果发动机120正停 止则开始工作。由此,混合动力车辆的行马史移向无电池行驶(仅使用发动 机120进行行驶)。该时间为图10的时刻t (10)。向电动电池冷却风扇220D输出指令信号,以最大能力(最大风量) 对行驶用电池220进行冷却。如此在行驶用电池220处于电断开的状态下, 该混合动力车辆利用发动机120的动力继续行驶。行驶用电池220不进行 充放电,而由电动电池冷却风扇220D最大限地进行冷却。因此,通常来 说,行驶用电池220的温度不会上升。
因为行驶用电池220处于电断开的状态、且处于不进行充放电的状态, 所以也不应该发生锂离子电池内的化学反应。但是,尽管这样,通过行驶 用电池220的异常监视(SIOOO),检测到电池温度的异常高温(S3000)。 该时间为图12的时刻t (11)。
如此,尽管行驶用电池220被电断开而混合动力车辆仅使用发动机120 进行行驶、且以最大限对行驶用电池220进行冷却,却检测出行驶用电池 220的温度的异常高温,这表示在行驶用电池220中发生了严重的(危急 的)电池异常。因此,该混合动力车辆的系统被设为关闭(S1700)。该时 间为图12的时刻t (12)。由此,该混合动力车辆变为不能行驶状态。
如以上所述,才艮据本实施方式的控制装置,在混合动力系统处于工作 的状态下,当检测到电池温度异常时,将混合动力车辆的行驶移向无电池 行驶。当在这种状态下还检测到电池异常高温时,控制装置将混合动力系 统设为关闭,可靠地停止混合动力车辆的行驶。由此,能够回避电池异常 发展为更重大的事态。
应该认为,本次所公开的实施方式在所有的方面都是例示而不是限制 性的内容。本发明的范围不是由上述的说明而是由权利要求表示,包括与 权利要求等同的意思以及范围内的所有的变更。
权利要求
1.一种混合动力车辆的控制装置,所述混合动力车辆具有内燃机和电动机作为车辆的行驶动力源,并且具有向所述电动机供给电力的蓄电机构,该控制装置具备检测部,其检测所述蓄电机构的异常;车辆控制部,其控制所述车辆,使得当所述检测部检测到异常时,将所述蓄电机构从包括所述电动机的电负载电切断、且所述车辆不使用所述电动机而使用所述内燃机作为所述行驶动力源进行行驶;以及禁止部,其在所述车辆不使用所述电动机而使用所述内燃机进行行驶时,当进一步检测到所述蓄电机构的另外的异常时,禁止所述车辆使用所述内燃机进行行驶。
2. 根据权利要求l所述的混合动力车辆的控制装置,其中, 所述禁止部,当检测到与由所述检测部检测出的所述蓄电机构的异常不同的异常时,禁止所述车辆使用所述内燃机进行行驶。
3. 根据权利要求l所述的混合动力车辆的控制装置,其中, 所述禁止部,当检测到与由所述检测部检测出的所述蓄电机构的异常不同的异常、且是关于所述蓄电机构的温度的异常时,禁止所述车辆使用 所述内燃机进行行驶。
4. 根据权利要求l所述的混合动力车辆的控制装置,其中, 所述检测部检测所述蓄电机构的温度以外的异常,所述禁止部,当检测到关于所述蓄电机构的温度的异常时,禁止所述 车辆使用所述内燃机进行行驶。
5. 根据权利要求l所述的混合动力车辆的控制装置,其中, 所述检测部检测关于所述蓄电机构的温度的异常,所述禁止部,当进一步检测到关于所述蓄电机构的温度的另外的异常 时,禁止所述车辆4吏用所述内燃机进行行驶。
6. 根据权利要求l所述的混合动力车辆的控制装置,其中, 所述蓄电机构由搭载于所述车辆的冷却装置进行冷却,所述控制装置还具备冷却控制部,所述冷却控制部控制所述冷却装置,驶时,以最大能力、对所述蓄电机构进行冷却:'';'';'、
7. —种混合动力车辆的控制装置,所述混合动力车辆具有内燃机和电动机作为车辆的行驶动力源,并且具有向所述电动机供给电力的蓄电机构,该控制装置具备检测单元,其用于检测所述蓄电机构的异常;控制单元,其用于控制所述车辆,使得当所述检测单元检测到异常 时,将所述蓄电机构从包括所述电动机的电负载电切断、且所述车辆不使禁止单元,其用于在所述车辆不使用所述电动机而使用所述内燃机行 驶时,当进一步检测到所述蓄电机构的另外的异常时,禁止所述车辆使用 所述内燃机进行行驶。
8. 根据权利要求7所述的混合动力车辆的控制装置,其中, 所述禁止单元包括如下单元当检测到与由所述检测单元检测出的所述蓄电机构的异常不同的异常时,禁止所述车辆4吏用所述内燃机进行行驶。
9. 根据权利要求7所述的混合动力车辆的控制装置,其中, 所述禁止单元包括如下单元当检测到与由所述检测单元检测出的所述蓄电机构的异常不同的异常、且是关于所述蓄电机构的温度的异常时, 禁止所述车辆使用所述内燃机进行行驶。
10. 根据权利要求7所述的混合动力车辆的控制装置,其中, 所述检测单元包括用于检测所述蓄电机构的温度以外的异常的单元, 所述禁止单元包括如下单元当检测到关于所述蓄电机构的温度的异常时,禁止所述车辆使用所述内燃机进行行驶。
11. 根据权利要求7所述的混合动力车辆的控制装置,其中, 所述检测单元包括用于检测关于所述蓄电机构的温度的异常的单元, 所述禁止单元包括如下单元当进一步检测到关于所述蓄电机构的温度的另外的异常时,禁止所述车辆使用所述内燃机进行行驶。
12. 根据权利要求7所述的混合动力车辆的控制装置,其中,所述蓄电机构由搭载于所述车辆的冷却装置进行冷却,所述控制装置还具备如下单元其用于控制所述冷却装置,使得在所最大能力、对所述蓄电机构进行冷却:'';'一'l '''
13. —种混合动力车辆的控制方法,所述混合动力车辆具有内燃机和 电动机作为车辆的行驶动力源,并且具有向所述电动机供给电力的蓄电机 构,该控制方法包括检测所述蓄电机构的异常的检测步骤;控制所述车辆,使得当在所述检测步骤中检测到异常时,将所述蓄 电机构从包括所述电动机的电负栽电切断、且所述车辆不使用所述电动机 而使用所述内燃机作为所述行驶动力源进行行驶的控制步骤;以及在所述车辆不使用所述电动机而使用所述内燃机行驶时,当进一步检 测到所述蓄电机构的另外的异常时,禁止所述车辆使用所述内燃机进行行 驶的禁止步骤。
14. 根据权利要求13所述的混合动力车辆的控制方法,其中, 所述禁止步骤包括如下步骤当检测到与在所述检测步骤中检测出的所述蓄电机构的异常不同的异常时,禁止所述车辆使用所述内燃机进行行 驶。
15. 根据权利要求13所述的混合动力车辆的控制方法,其中, 所述禁止步骤包括如下步骤当检测到与在所述检测步骤中检测出的所述蓄电机构的异常不同的异常、且是关于所述蓄电机构的温度的异常时, 禁止所述车辆使用所述内燃机进行行驶。
16. 根据权利要求13所述的混合动力车辆的控制方法,其中, 所述检测步骤包括检测所述蓄电机构的温度以外的异常的步骤, 所述禁止步骤包括如下步骤当检测到关于所述蓄电机构的温度的异常时,禁止所述车辆^f吏用所述内燃机进行行驶。
17. 根据权利要求13所述的混合动力车辆的控制方法,其中, 所述检测步骤包括检测关于所述蓄电机构的温度的异常的步骤, 所述禁止步骤包括如下步骤当进一步检测到关于所述蓄电机构的温度的另外的异常时,禁止所述车辆使用所述内燃机进行行驶。
18.根据权利要求13所述的混合动力车辆的控制方法,其中, 所述蓄电机构由搭载于所述车辆的冷却装置进行冷却, 所述控制方法还包括如下步骤控制所述冷却装置,使得在所述车辆以最大能力对所述蓄电机构进行冷却,
全文摘要
本发明中的电池ECU260,当检测到行驶用电池220的温度以外的异常时(S1100中“是”),将系统主继电器640断开并移向无电池行驶,另一方面,使用电池冷却风扇220D来冷却行驶用电池220(S1200~S1400)。尽管这样,当行驶用电池220的温度存在异常时(S1600中“是”),输出系统关闭指令信号(S1700),将混合动力车辆设为不能行驶。由此,即使在行驶用电池220中发生了异常的情况下,也能够可靠地执行混合动力车辆的退避行驶和系统切断。
文档编号B60W10/06GK101641247SQ20088000988
公开日2010年2月3日 申请日期2008年2月29日 优先权日2007年3月28日
发明者中川宇彦, 有留浩治 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1