在诊断测试期间将电压从用于使用的高压系统施加到燃料电池堆的装置和方法与流程

文档序号:13568917阅读:120来源:国知局
在诊断测试期间将电压从用于使用的高压系统施加到燃料电池堆的装置和方法与流程

在至少一个方面中,本发明涉及将燃料电池堆充电到用于进行诊断测试的电压的系统和方法。



背景技术:

燃料电池堆在许多应用中被用作电源。特别地,提出了用于汽车来代替内燃机的燃料电池堆。在典型的应用中,以多个单独燃料电池的阵列提供燃料电池堆以提供高水平的电力。可以具有数百个单独燃料电池的燃料电池堆的复杂性需要开发有效测试的策略和条件。

因此,需要可以将燃料电池堆保持在用于执行诊断测试的某个子集的电压下的燃料电池充电系统。



技术实现要素:

本发明通过在至少一个实施例中,提供将电力从高压电系统转移到燃料电池堆的燃料电池充电系统来解决现有技术的一个或多个问题。燃料电池充电系统包括在燃料检查堆端子之间具有第一直流(dc)电压的燃料电池堆、在不同于并通常高于燃料电池堆的第一电压的第一直流工作电压下工作的高压系统、与燃料电池堆和高压系统电连接的升压转换器、和将第二直流工作电压施加到燃料电池堆的降压电压部件。燃料电池堆电压在正常燃料电池工作期间处于(即,输出)第一电压下。在正常的燃料电池工作期间,升压转换器将电力从燃料电池堆转移到高压系统。从特征上来讲,第二直流工作电压从高压电系统的第一直流工作电压降低到低于燃料电池堆的第一电压的燃料电池堆充电电压。燃料电池充电系统也包括可工作以将控制信号发送到升压转换器和降压电压部件的fcs(燃料电池系统)控制器。本实施例使用与已经存在于系统中的标准堆叠放电电路结合的穿过标准升压转换器的开关/电阻器组合以施加并调节施加到用于诊断算法的堆叠端子的电压值。有利地,燃料电池充电系统从在升压转换器中需要额外的绝缘栅双极晶体管(igbt)模块的实施中允许以潜在降低的成本实施堆叠充电功能,以产生降压转换器来控制堆叠端子处的电压。

附图说明

图1是利用用于对燃料电池堆进行充电的开关和晶体管的燃料电池充电系统的示意图;

图2是利用降压转换器对燃料电池堆进行充电的燃料电池充电系统的示意图;以及

图3是说明图1的燃料电池充电系统的工作的流程图。

具体实施方式

现在将详细参考本发明的目前优选的组合物、实施例和方法,其构成发明人目前已知的实施本发明的最佳方式。附图不一定按比例。然而,应当理解,所公开的实施例仅仅是可以以各种和替代形式体现的本发明的实例。因此,本文公开的具体细节不被视为限制性的,而是仅作为本发明的任何方面的代表性基础和/或作为教导本领域技术人员以各种方式利用本发明的代表性基础。

除了在实例中,或者另外明确地指出,本说明书中说明材料的量或反应条件和/或使用的所有数值被理解为在描述本发明的最广泛范围时由单词“约”修饰。在所述数值限值范围内的实施通常是优选的。此外,除非明确地做出相反陈述:首字母缩略词或其它缩写的第一个定义适用于本文中相同缩写的所有后续使用,并做出必要修改后,适用于最初定义的缩写的正常语法变体;以及,除非明确地做出相反陈述,否则属性的测量是通过与相同属性先前或之后所参考的相同技术确定。

还应当理解,本发明不限于下面描述的具体实施例和方法,因为具体部件和/或条件当然可以变化。并且,本文使用的术语仅用于描述本发明的特定实施例的目的,并不期望以任何方式进行限制。

也必须注意的是,如说明书和所附权利要求中所使用的,单数形式“一”和“所述”包括多个指示物,除非上下文另有明确地指出。例如,对单数形式的部件的引述期望包括多个部件。

术语“包括”与“包含”、“具有”、“含有”或“特征在于”同义。这些术语是包含性的和开放式的,不排除额外的、未被提及的元素或方法步骤。

短语“由...组成”不包括权利要求中没有指定的任何元素、步骤或成分。当这个短语出现在权利要求主体的一个条款中,而不是紧接在序言之后,它只限制在该条款中陈述的元素;其它元素不排除在作为整体的权利要求之外。

短语“基本上由...组成”将权利要求的范围限于指定的材料或步骤,加上不会对所要求保护的主题的基本和新颖特征产生实质影响的那些。

可以替代地使用术语“包括”、“由...组成”和“基本上由...组成”。使用这三个术语中的一个时,目前公开和要求保护的主题可以包括使用其它两个术语中任一个。

参考图1,提供了从高电将电压施加到燃料电池堆的系统的示意图。燃料电池充电系统10包括燃料电池组12,其包括多个单独的燃料电池。燃料电池堆12的特征在于电压端子14、16之间的燃料电池堆电压。在正常燃料电池工作期间,燃料电池堆电压处于输出到负载的第一电压下。在典型的汽车应用中,燃料电池堆包括20至350个(或更多个)单独的燃料电池,每个燃料电池在每个燃料电池约0.6至1.22伏特的电压下工作。因此,燃料电池堆电压可以在12与430伏特之间。升压转换器20与燃料电池堆12和高压系统22电连接。高压系统22在第一直流工作电压下工作。高压系统22的第一直流工作电压高于由燃料电池堆12输出的第一电压。升压转换器20在燃料电池工作期间将电力从燃料电池堆12转移到高压系统22。在一个改进中,高压系统22向其中并入燃料电池充电系统10和燃料电池组12的车辆提供电压。通常,高压系统22包括高压电池24。堆叠充电部件26以时间控制的方式将第二直流工作电压施加到电压输出端子14、16之间的燃料电池堆12。在图1所示的变型中,堆叠充电部件26利用电阻器28和开关30来实现降低施加到燃料电池堆12的端子14和16的电压。从特征上来讲,第二直流工作电压从高压系统22的第一直流工作电压逐步降低到低于正常工作期间输出的燃料电池堆12的第一电压的充电电压。

燃料电池系统10也包括堆叠放电电路32,用于在其它工作模式期间通过电阻能量放电来降低燃料电池堆的电压。为此,堆叠放电电路32包括电阻器34和开关36。开关30允许燃料电池堆与高压系统之间的电路连接。电阻器28被设置大小以限制电流到燃料电池堆的浪涌并控制通过端子14、16的电压上升率。最初使用堆叠放电电路32来降低具有上限电压和下限电压的预定电压窗内的电压。在一个改进中,预定电压窗为10至30伏特。在进一步的改进中,上限电压为25至50伏特以及下限电压为15至25伏特。然后如果电平降低,使用堆叠充电部件26将电压提升。

仍然参考图1,升压转换器20通常是燃料电池系统中使用的标准升压以提供从燃料电池堆到高压系统的电力。升压转换器20包括经由栅极控制器44控制晶体管42的微处理器40。升压转换器通过开关42、感应器48、二极管50、二极管52和电容器54完成对高压系统的功率转移。升压转换器的功能是将输入电压增加到更高的输出电平。这通过晶体管42的脉宽调制控制来实现。在晶体管42导通(ton)的时间期间,来自燃料电池堆系统的电流流过电感器48和晶体管42。能量通过线56返回到燃料电池堆,从而产生存储在电感器48中的能量以及穿过电感器48的电压上升。当晶体管42转变时,存储在电感器48中的能量导致电流流向输出负载(即,高压系统22),并且升压转换器20的输出处的电压是通过电感器的电压和堆叠电压的和,其高于来自燃料电池堆的初始输入电压。在正常燃料电池应用中,升压转换器微处理器40通过调节占空比来控制堆叠平均输出电流(升压输入电流)。

燃料电池系统10也包括fcs控制器60。fcs控制器60用于控制升压转换器20和堆叠放电电路32。对此,术语“可工作”意味着fcs控制器60向被控制的设备发出控制信号和/或指令以执行某一功能或者返回来自传感器的测量值。例如,在fcs控制器60的工作期间,fcs控制器向升压转换器20的微处理器40发出控制信号。堆叠fcs控制器60的这些功能是许多现有技术系统的标准。然而,在本实施例中,fcs控制器60也通过启用和禁用来自高压系统22的燃料电池堆12的充电来控制堆叠充电部件26。特别地,当在诊断模式工作期间将第二直流工作电压施加到燃料电池堆12时,fcs控制器60可工作以禁用升压转换器。fcs控制器60确定燃料电池堆电压是否在预定电压窗内。因此,fcs控制器60可工作以当燃料电池堆电压高于上限电压时发送控制信号以启用堆叠放电电路并当燃料电池堆电压低于上限电压时发送控制信号以启用堆叠放电电路。有利地,fcs控制器60可工作以当燃料电池堆电压在预定电压窗口内时执行诊断测试。

参考图2,提供了从高电将电压施加到燃料电池堆的不同系统的示意图。燃料电池充电系统10'包括燃料电池堆12,其包括多个单独的燃料电池。燃料电池堆12在电压端子14、16之间具有燃料电池堆电压。在正常燃料电池工作期间,燃料电池堆电压是输出的第一电压。升压转换器20与燃料电池堆12和高压系统22电连接。高压系统22在第一直流工作电压下工作。第一直流工作电压高于在燃料电池堆12的端子14和16处看到的电压的第一电压。升压转换器20在燃料电池工作期间将电力从燃料电池堆12转移到高压系统22。在一个改进中,高压系统22向其中并入燃料电池充电系统10和燃料电池堆12的车辆提供电压。通常,高压系统22包括高压电池24。降压电压部件26'将第二直流工作电压施加到电压输出端子14、16之间的燃料电池堆12。在图2所示的变型中,降压电压部件26'是降压转换器。在一个改进中,微处理器40用于控制升压转换器20和降压转换器。从特征上来讲,第二直流工作电压从第一直流工作电压降低到低于降压转换器的第一电压的充电电压。燃料电池系统10'也包括用于在必要时使燃料电池堆放电的堆叠放电电路32。为此,堆叠放电电路32包括电阻器34和开关36。在使用降压转换器的这种变型中,堆叠放电电路32可以或可以不被禁用。上文在图1的描述中阐述了升压转换器20和fcs控制器60的细节。如上所述,fcs控制器60通过启用和禁用来自高压系统22的燃料电池堆12的充电来控制降压转换器。特别地,fcs控制器60可工作以当将第二直流工作电压施加到燃料电池堆12时禁用升压转换器。fcs控制器60确定燃料电池堆电压是否在预定电压窗内。有利地,fcs控制器60可工作以当燃料电池堆电压在预定电压窗口内时执行诊断测试。

参考图1和图3,描述了燃料电池充电系统的工作。图3是说明了用于对燃料电池堆进行充电的图1的系统所遵循的协议的流程图。图3所示的步骤中的每一个可以由fcs控制器60通过发送适当的控制信号或由用户手动执行。在框100中,启用燃料电池堆充电模式。该启用通常由用户工作fcs控制器60进行,但是在某些工作模式中可以作为自动功能发生。在框102中,确定并应用堆叠充电模式的设定点。框102中的工作可以由用户和/或fcs控制器60执行。这些设定点包括施加到燃料电池堆12的电压的窗口的上限和下限。在框104中,fcs控制器60使得堆叠放电电路32能够降低堆叠电压。

在框106中,fcs控制器60确定下面的堆叠电压是否低于窗口上限。如果堆叠电压低于窗口上限,则fcs控制器60禁用堆叠放电电压电路32(框108)。如果堆叠电压低于窗口上限,则fcs控制器60继续保持堆叠放电电压电路32启用,直到堆叠电压低于窗口上限。当堆叠电压低于窗口上限时,fcs控制器60确定是否已经做出退出堆叠充电模式的请求(框110)。如果请求退出堆叠充电模式,则fcs控制器60复位正常燃料电池工作的系统设定点(框112),然后使系统退出堆叠充电模式(框114)。如果没有做出这样的请求,则fcs控制器60确定堆叠电压是否低于电压窗口的下限。如果堆叠电压不低于下限,则系统返回到框110的工作,其可以包括进行诊断测试。如果堆叠电压低于窗口下限,则系统进行到框116的工作,其中fcs控制器60向堆叠充电部件26发送控制信号以对燃料电池堆12充电。如果堆叠电压低于窗口下限,则系统返回框116的工作,其中堆叠充电部件26继续对燃料电池堆12充电。如果堆叠电压不低于窗口下限,则fcs控制器60发送控制信号以禁用堆叠充电部件26的开关30。系统然后循环回执行框106的工作,其中fcs控制器60查询以确定堆叠电压是否低于窗口上限。

虽然上面描述了示例性实施例,但是并不意味着这些实施例描述本发明的所有可能形式。相反,说明书中使用的词语是描述性而不是限制性词语,并且应当理解,在不脱离本发明的精神和范围下,可以进行各种改变。另外,可以组合各种实现实施例的特征以形成本发明的其它实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1