用于控制轻度混合动力电动车辆的方法和装置与流程

文档序号:17594806发布日期:2019-05-03 22:22阅读:126来源:国知局
用于控制轻度混合动力电动车辆的方法和装置与流程

本申请要求于2017年10月26日向韩国知识产权局提交的申请号为10-2017-0140015的韩国专利申请的优先权和权益,其全部内容通过引用并入本文。

本公开涉及一种轻度混合动力车辆(或轻度混合动力电动车辆),更特别地,涉及一种用于控制轻度混合动力车辆的方法和装置。



背景技术:

混合动力电动车辆同时使用内燃发动机和电池电源。混合动力电动车辆有效地结合内燃发动机的扭矩和电机的扭矩。

根据发动机和电机之间的动力分配比,混合动力电动车辆可以被分类为重度(hardtype)或轻度型(mildtype)。在轻度型混合动力电动车辆(或轻度混合动力电动车辆)的情况下,使用被配置成根据发动机的输出起动发动机或发电的轻度混合动力起动机和发电机(mhsg)来代替交流发电机。在重度混合动力电动车辆的情况下,除了被配置成起动发动机或发电的集成起动机和发电机(isg)之外,还使用用于产生驱动扭矩的驱动电机。

在本背景技术部分中公开的上述信息仅用于增强对本发明背景的理解,因此其可包含不构成本领域普通技术人员已知的现有技术的信息。

本部分的公开内容是为了提供本发明的背景。申请人指出,本部分可包含本申请之前可获得的信息。但是,通过提供本部分,申请人不认为本部分中包含的任何信息构成现有技术。



技术实现要素:

轻度混合动力电动车辆不提供其中mhsg的扭矩用作主驱动扭矩的驱动模式,但是mhsg可以根据车辆的行驶状态辅助发动机的扭矩,并且可以通过再生制动对电池(例如,48v电池)充电。因此,轻度混合动力电动车辆的燃料效率可以得到改善。

与具有低振动和噪音以及高耐用性的类似的发动机和多点喷射(mpi)发动机相比,混合动力车辆可以包括用于提供高输出和燃料经济性的汽油直接喷射(gdi)发动机。

本公开致力于提供一种用于控制轻度混合动力车辆的方法和装置,该方法和装置能够输出即使在车辆同时运转其gdi燃料系统和mpi燃料系统时也不可能获得的高扭矩。

本发明的实施例可以提供用于控制轻度混合动力车辆的方法,该方法包括:通过控制器基于发动机的转速和发动机的负载来控制向发动机供应燃料的燃料系统变成同时使用汽油直接喷射燃料系统和多点喷射燃料系统的系统;以及在燃料系统变成同时使用汽油直接喷射燃料系统和多点喷射燃料系统的系统之后,当轻度混合动力车辆的驾驶员的需求扭矩大于阈值时,通过控制器使起动机-发电机运转,使得由汽油直接喷射燃料系统和多点喷射燃料系统操作的发动机的扭矩变成驾驶员的需求扭矩。

用于控制轻度混合动力车辆的方法可以进一步包括:通过控制器基于由加速踏板位置传感器检测到的加速踏板的位置值来计算驾驶员的需求扭矩。

驾驶员的需求扭矩可以是驾驶员的需求扭矩的每单位时间的变化量。

用于控制轻度混合动力车辆的方法可以进一步包括:通过控制器使多点喷射燃料系统运转以起动发动机。

用于控制轻度混合动力车辆的方法可以进一步包括:在多点喷射燃料系统运转之后,当发动机的转速大于或者等于参考转速时,通过控制器控制向发动机供应燃料的燃料系统变成汽油直接喷射燃料系统。

本发明的实施例可以提供用于控制轻度混合动力车辆的装置,该装置包括:多点喷射燃料系统,被配置成向发动机供应燃料;汽油直接喷射燃料系统,被配置成在多点喷射燃料系统运转之后,当发动机的转速大于或等于参考转速时,向发动机供应燃料;以及控制器,被配置成基于发动机的转速和发动机的负载来控制向发动机供应燃料的燃料系统变成同时使用汽油直接喷射燃料系统和多点喷射燃料系统的系统。在燃料系统变成同时使用汽油直接喷射燃料系统和多点喷射燃料系统的系统之后,当轻度混合动力车辆的驾驶员的需求扭矩大于阈值时,控制器可以使起动机-发电机运转,以使得由汽油直接喷射燃料系统和多点喷射燃料系统操作的发动机的扭矩变成驾驶员的需求扭矩。

控制器可以基于由加速踏板位置传感器检测到的加速踏板的位置值来计算驾驶员的需求扭矩。

根据本发明的实施例的用于控制轻度混合动力车辆的方法和装置可以控制发动机使用发动机的起动机-发电机辅助扭矩来输出车辆驾驶员所请求的并且在同时使用gdi燃料系统和mpi燃料系统时不会输出的高扭矩。

附图说明

图1是用于说明根据发动机转速和发动机负载的燃料系统的使用区域的视图。

图2是示出应用了根据本发明的实施例的用于控制轻度混合动力车辆的方法的多点喷射(mpi)燃料系统和汽油直接喷射(gdi)燃料系统的立体图。

图3是示出用于控制应用根据本发明的实施例的用于控制轻度混合动力车辆的方法的轻度混合动力车辆的装置的框图。

图4是示出根据本发明的实施例的用于控制轻度混合动力车辆的方法的流程图。

图5是说明应用图4所示的用于控制轻度混合动力车辆的方法的轻度混合动力车辆的框图。

图6是用于说明图3所示的mpi燃料系统和gdi燃料系统的曲线图。

附图标记

30:mhsg

200:控制器

205:发动机

210:mpi燃料系统

215:gdi燃料系统

具体实施方式

为了充分理解本发明的实施例以及通过实施本发明而实现的优点,将参照说明本发明的实施例的附图和附图中所描述的内容。

在下文中,将参照附图详细描述本发明的实施例。在描述本发明的实施例时,因为公知的构造或功能可能不必要地模糊本发明的要旨,所以将不详细描述公知的构造或功能。相同的附图标记在整个附图中将用于表示相同的组件。

本说明书中使用的术语仅用于描述实施例而不是限制本发明。除非上下文另外明确指出,否则单数形式将包括复数形式。将进一步理解的是,在本说明书中使用的术语“包括”或“具有”指定存在本说明书中提到的特征、数字、步骤、操作、组件或部件、或其组合,但不排除存在或添加一个或多个其他特征、数字、步骤、操作、组件、部件或其组合。

在整个说明书和权利要求书中,当描述元件“联接”到另一元件时,元件可以“直接联接”到另一元件或者通过第三元件“电力地或机械地联接”到另一元件。

除非另有定义,否则应理解的是,包括技术术语和科学术语的本说明书中使用的术语具有与本领域技术人员通常理解的含义相同的含义。必须理解的是,由字典定义的术语与相关技术的上下文中的含义相同,除非上下文另有明确规定,否则它们不应被理想地或过度正式地定义。

近来,已经开发了一种包括同时使用多点喷射(mpi)燃料系统(或喷嘴燃料喷射(pfi)燃料系统)和汽油直接喷射(gdi)燃料系统(或直接喷射(di)燃料系统)的轻度混合动力起动机和发电机(mhsg)的轻度混合动力车辆。

相关技术在发动机起动时使用多点喷射(mpi)燃料系统(或喷嘴燃料喷射(pfi)燃料系统),在发动机起动之后,当发动机的每分钟转数(rpm)上升到1500rpm时,将燃料系统变成汽油直接喷射(gdi)燃料系统(或直接喷射(di)燃料系统),并且基于发动机的rpm和发动机的负载,根据燃料系统的使用区域将gdi燃料系统变成mpi燃料系统或者将gdi燃料系统变成同时使用gdi燃料系统和mpi燃料系统的系统。

当在轻度混合动力车辆行驶期间如图1所示的根据发动机的转速(例如,发动机rpm)和发动机负载(例如,制动平均有效压力(bmep))的燃料系统的使用区域是同时使用gdi燃料系统和mpi燃料系统的系统的使用区域时,轻度混合动力车辆可能不会输出高马力扭矩。

具体地,当同时使用gdi燃料系统和mpi燃料系统时,轻度混合动力车辆的发动机的马力可以是例如380马力的相对小的值。由于当燃料系统的喷射器的燃料量(或喷射量)增加以增大发动机的马力时,在车辆的怠速区域或低流量区域中不执行对发动机的精确控制,因此废气的排放可能增加。

本发明的方面提供了一种用于控制混合动力车辆的方法,该混合动力车辆具有用于其内燃发动机的两个单独的燃料供应系统。为了起动发动机以及发动机的低rpm(低于1500)运转,多点喷射(mpi)系统向发动机供应燃料。当起动车辆时,混合动力车辆的电机/发电机(mhsg)也与mpi系统结合运转。

随后,响应于驾驶员在加速踏板上的输入(将加速踏板推到第一位置),车辆使用汽油直接喷射(gdi)系统而不是mpi系统向发动机供应燃料用于发动机的高rpm(1500以上)运转。

随后,当驾驶员将加速踏板进一步推到第二位置时,车辆再次使mpi系统起作用以使用gdi系统和mpi系统两者来供应燃料,直到发动机输出来自内燃发动机的最大扭矩(不会产生来自电机/发电机的辅助扭矩)。在实施例中,响应于驾驶员的踏板输入到第二位置,车辆使用gdi系统和mpi系统两者来供应燃料,直到发动机达到其最大rpm。

随后,当驾驶员将加速踏板进一步推到第三位置或者(当第二位置是踏板的最深位置时)将加速踏板保持在第二位置时,车辆使其电机/发电机(mhsg,30)起作用以产生除了来自内燃发动机的最大扭矩之外的额外扭矩。

图1是用于说明根据现有技术的根据发动机转速和发动机负载的燃料系统的使用区域的视图。

参照图1,轻度混合动力车辆可以通过由附图标记(bd)指示的边界区域频繁地改变燃料系统的使用区域。同时使用gdi燃料系统的喷射器和mpi燃料系统的喷射器的区域可能不会输出车辆驾驶员请求的发动机的高扭矩。

图2是示出应用根据本发明的实施例的用于控制轻度混合动力车辆的方法的多点喷射(mpi)燃料系统和汽油直接喷射(gdi)燃料系统的立体图。图3是示出用于控制应用根据本发明的实施例的用于控制轻度混合动力车辆的方法的轻度混合动力车辆的装置的框图。

参照图2和图3,轻度混合动力车辆包括:mpi燃料系统210,包括mpi喷射器导轨组件105;以及gdi燃料系统215,包括gdi喷射器导轨组件120、gdi高压燃料泵115以及连接gdi喷射器导轨组件和gdi高压燃料泵的高压管道110。

包括在轻度混合动力车辆中的用于控制轻度混合动力车辆的装置可以包括:控制器200,包括用于控制发动机205的电子控制单元(ecu);mpi燃料系统210,向连接至发动机的进气歧管或发动机的汽缸盖的进气口供应燃料(例如汽油);以及gdi燃料系统215,向发动机的汽缸(或发动机的燃烧室)供应燃料。

mpi燃料系统(或mpi燃料装置)210可以包括:mpi喷射器,向连接到发动机205的进气歧管供应燃料并与mpi喷射器导轨组件105(或mpi喷射器导轨组件的下部)连接;以及低压燃料泵,向mpi喷射器泵送燃料。

gdi燃料系统(或gdi燃料装置)215可以包括:gdi喷射器(或gdi高压喷射器),向发动机205的燃烧室供应燃料并与gdi喷射器导轨组件120连接;gdi高压燃料泵115,向gdi喷射器泵送燃料;低压燃料泵,向gdi高压燃料泵115泵送燃料;以及gdi高压燃料传感器,检测连接gdi高压燃料泵和低压燃料泵的管道的压力是否高。

控制器200可以控制mpi燃料系统210的操作和gdi燃料系统215的操作。例如,控制器200可以将用于控制燃料喷射正时的控制信号输出到包括在燃料系统中的喷射器。控制器200可以控制轻度混合动力车辆的整体操作。例如,控制器200可以是由程序或包括微处理器的硬件操作的一个或多个微处理器。该程序可以包括用于执行根据本发明的实施例的用于控制轻度混合动力车辆的方法的一系列命令。命令可以被存储在存储器中。

图4是示出根据本发明的实施例的用于控制轻度混合动力车辆的方法的流程图。用于控制轻度混合动力车辆的方法可以应用于图3所示的装置。图5是示出应用图4所示的用于控制轻度混合动力车辆的方法的轻度混合动力车辆的框图。

参照图2至图5,在开始步骤305中,当轻度混合动力车辆的起动键被转动时,控制器200可以控制向发动机205供应燃料的mpi燃料系统210运转(或起动)。而且,控制器200可以通过控制轻度混合动力起动机和发电机(mhsg)30来控制发动机205起动。

轻度混合动力车辆包括发动机205、变速器20、起动机-发电机(或轻度混合动力起动机和发电机)30、电池40、差速齿轮装置50、车轮60以及控制器200。

发动机205可以通过燃烧燃料和空气来将化学能转换成机械能。发动机205的扭矩可以被传递到变速器20的输入轴,并且从变速器的输出轴输出的扭矩可以通过差速齿轮装置50传递到车辆的车轴。车轴可以使车轮60旋转使得轻度混合动力车辆可以被驱动。

起动机-发电机30可以将电能转换成机械能或将机械能转换成电能。换句话说,起动机-发电机30可以根据发动机205的输出来起动发动机205或发电。另外,起动机-发电机30可以辅助发动机205的扭矩。轻度混合动力车辆在发动机205的燃烧扭矩是主动力的同时可以使用起动机-发电机30的扭矩作为辅助动力。发动机205和起动机-发电机30可以通过带32(或滑轮和带)连接。

在轻度混合动力车辆中,起动机-发电机30可以是执行交流发电机的功能、发动机扭矩辅助或再生制动的部件。

起动机-发电机30可以在车辆(或发动机)的起动和扭矩控制模式中驱动车辆的发动机205,并且可以在车辆的发电模式中根据发动机的输出发电以对48v电池40进行充电。起动机-发电机30可以根据车辆的行驶状态以运转模式进行运转。运转模式可以包括:发动机起动模式;发动机扭矩辅助模式,用于通过作为电机运转来辅助发动机的扭矩;用于对48v电池充电的模式,经由ldc对与48v电池连接的12v电池充电;再生制动模式,用于对48v电池充电;或惯性行驶模式,用于延长车辆里程。起动机-发电机30可以根据车辆的行驶状态以最佳方式被控制以提高车辆的燃料效率。

电池40可以向起动机-发电机30供应电力,或者可以在车辆的再生制动模式中由通过起动机-发电机30收集的电力来充电。电池40可以是48v电池。轻度混合动力车辆可以进一步包括:低压dc-dc变流器(ldc),将从电池40供应的电压转换为低电压;以及12v电池,向车辆的电负载供应低电压。

根据改变步骤310,在mpi燃料系统210运转(或起作用)之后,当发动机205的转速(例如,rpm)大于或等于参考转速(例如,1500rpm)时,控制器200可以控制向发动机205供应燃料的燃料系统变成gdi燃料系统215。例如,发动机205的转速可以通过rpm传感器来检测并且可以提供给控制器200。

如图6所示,当gdi燃料系统215运转时的发动机205的扭矩可以大于当mpi燃料系统210运转时的发动机的扭矩。在图6的曲线图中,水平轴可以表示rpm,竖直轴可以表示扭矩。

根据进入步骤315,控制器200可以基于发动机205的转速和发动机的负载控制向发动机205供应燃料的燃料系统变成同时使用gdi燃料系统215和mpi燃料系统210的系统。

根据确定步骤320,在燃料系统变成同时使用gdi燃料系统215和mpi燃料系统210的系统(或模式)之后,控制器200可以确定通过加速踏板位置传感器检测到的加速踏板的位置值是否大于位置参考值(例如,90%)。当加速踏板被完全压下时,加速踏板的位置值可以是100%。当加速踏板未被压下时,加速踏板的位置值可以是0%。

控制器200可以基于加速踏板的位置值来计算轻度混合动力车辆的驾驶员的需求扭矩,并且可以确定驾驶员的需求扭矩(例如,每单位时间的驾驶员的需求扭矩的变化量)是否大于阈值(例如,200nm)。阈值可以是当同时使用gdi燃料系统215和mpi燃料系统210时输出的发动机205的最大扭矩值。

根据计算步骤325,当加速踏板的位置值大于位置参考值时,包括ecu的控制器200可以计算起动机-发电机30的扭矩,该扭矩使由gdi燃料系统215和mpi燃料系统210操作的发动机205的扭矩变成驾驶员的需求扭矩。

根据操作步骤330,控制器200可以基于起动机-发电机30的扭矩来控制(或操作)起动机-发电机30,使得由gdi燃料系统215和mpi燃料系统210操作的发动机205的扭矩变成驾驶员的需求扭矩。

在实施例中使用的组件、“-单元”、块或模块可以由诸如任务、类、子例程、进程、对象、执行线程或在存储器中的预定区域中执行的程序的软件,或者诸如现场可编程门阵列(fpga)或专用集成电路(asic)的硬件来实现,并且可以由软件和硬件的组合来执行。组件、“~部件”等可以嵌入计算机可读存储介质中,并且其一部分可以分散地分布在多个计算机中。

结合本文公开的实施例描述的逻辑块、模块或单元可以由具有至少一个处理器、至少一个存储器和至少一个通信接口的计算装置来实现或执行。结合本文所公开的实施例描述的方法、进程或算法的元件可直接体现为硬件、由至少一个处理器执行的软件模块或两者的结合。可以将用于实现结合本文公开的实施例描述的方法、进程或者算法的计算机可执行指令存储在非临时性计算机可读存储介质中。

如上所述,在附图和说明书中已经公开了本发明的实施例。在本文中,已经使用特定的术语,但这只是用于描述本发明的实施例的目的,而不是用于限制含义或限制所附权利要求中公开的本发明的范围。因此,本领域技术人员将理解的是,从本发明可以做出各种修改和等同实施例。因此,本发明的范围可以由权利要求的精神确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1