吸声纺织复合材料的制作方法

文档序号:15618984发布日期:2018-10-09 21:53阅读:214来源:国知局

本申请涉及一种吸声纺织复合材料。本申请还涉及所述纺织复合材料的制备方法及其在汽车领域内作为吸声体的应用。



背景技术:

在us5298694中描述了一种用于吸声的方法,其中采用隔音的无纺织物,该无纺织物包含与卷曲填充纤维成分(卷曲膨胀纤维)混合的超细纤维成分(熔喷超细纤维)。超细纤维的平均纤维直径小于15微米,优选在5到15微米,并且在起皱的短纤维无纺织物中以40:60到95:5的重量比分布。对于这种材料结构而言,声学效果由此产生:采用更多的超细纤维在无纺织物中实现了更大的内表面积,从而声波的动能加倍转换成热能。所述无纺织物的缺点在于,单个层内的气流阻力无法调节或设定,由此隔声无纺织物的吸声特性不是最优的。

另外,de10163576b4公开了用于吸收声波和隔热的隔离材料,所述隔离材料由两种不同的热塑性基质纤维(在0.8到1.7dtex的范围内)以及热塑性熔融纤维成分(2.2dtex)组成。由此整个无纺织物内的平均纤维直径达到1.3dtex。明显地,通过减少粘合纤维(纤维混合物的10%)的使用,产生了一种无纺织物,其拥有良好的悬垂特性并且还具有无纺织物的内部强度,后者是由于机械强化和热强化实现的。受限于工艺,也不可能有目的地调节隔离材料的声学特性。此外,无法通过采用更细的短纤维来进一步改善声波的吸收特性,因为根据目前的现有技术,无法在梳理机上可靠地处理0.5dtex以下的更细的纤维。

ep1058618b1描述了一种吸声的薄层层叠体,其由开孔的载体层和开孔的第二纤维层组成。对于开孔的载体层,涉及克重小于2000g/m2、厚度小于50毫米的纤维网,或者涉及密度为16至32kg/m3、厚度至少为6毫米的超轻塑料泡沫。开孔的第二纤维层由熔喷超细纤维制成,所述纤维具有的纤维直径优选为2到5微米。而且还描述了500到4000ns/m3的气流阻力。通过吸声薄膜层叠体的叠置结构,提供了流动层,该层能够被声学调节。这种连接的缺点在于以下事实:载体层未显示出明显的声学相关性。



技术实现要素:

本发明的主要任务在于提供一种吸声材料,该材料至少部分地消除现有技术中存在的缺点。吸声性应当容易调节,材料应当制造成具有高度的压缩能力和极好的回弹性,同时克重很小。

此外吸声材料还应当在对于汽车工业很重要的、800hz到2000hz的频率范围内显示出特别优异的声学吸收特性。

该任务通过一种吸声纺织复合材料,尤其是复合无纺织物完成,所述纺织复合材料包括:

a)至少一个载体层,所述载体层包括作为骨架纤维(gerüstfasern)的粗的短纤维和细的短纤维,所述粗的短纤维的纤度为3dtex至17dtex,所述细的短纤维的纤度为0.3dtex至2.9dtex、更优选为0.4dtex至2.9dtex、尤其是0.5dtex至2.9dtex,以及

b)设置在所述载体层上的微孔的流动层,所述流动层包含纤维直径小于10微米的超细纤维,

其中所述吸声纺织复合材料的流动阻力为250ns/m3至5000ns/m3,优选为250ns/m3至4000ns/m3,更优选为250ns/m3至3000ns/m3,特别是250ns/m3至2000ns/m3

令人惊奇地发现,根据本发明的纺织复合材料能够避免上述现有技术的缺点。另外还发现,上述结构的纺织复合材料在对于汽车工业很重要的、800hz至2000hz的频率范围内显示出突出的声学吸收特性。

无意将本发明局限于某种机制,猜测所发现的高得惊人的吸声系数是由于载体层的细纤维和粗纤维之间的协同相互作用与流动层的组合。猜测特别选择载体层内的纤度为0.3dtex至2.9dtex、尤其是0.5dtex至2.9dtex的细的短纤维和纤度为3dtex至17dtex的粗的短纤维能够形成对于吸声而言特别合适的骨架结构,该骨架结构本身就能够吸收声波。通过合适地选择细的和粗的短纤维,能够为载体层赋予高的可压缩性和高的回弹性,由此载体层上的流动层能够最优地进入振动,并由此能够根据“柔性吸板”的作用方式而特别有效地吸收声音能量。

此外,开孔的载体层与微孔的流动层组合使得纺织复合材料的声学特性的容易、有目的的调节和可变性成为可能。进而发现,根据本发明的纺织复合材料能够制造成具有高的可压缩性和良好的回弹性,同时克重较低。由此本申请的一个优选实施方式的纺织复合材料具有的可压缩性为70%至100%,更优选75%至100%,尤其是80%至100%;和/或具有的回弹性为70%至100%,更优选75%至100%,尤其是80%至100%。由此纺织复合材料能够容易地被压缩,并由此同时很好地置于预定的安装空间内,因为通过良好的回弹性能够很好地在安装空间内重新回弹。这使得装入具有复杂几何形状和不同厚度尺度的安装空间内成为可能。

载体层原则上可以是机织物、编织物、针织物和/或无纺织物。根据本申请优选的是,载体层为按照dineniso9092的无纺织物,由此构造成复合无纺织物。

载体层的粗的短纤维的纤维纤度为3dtex至17dtex。在一个优选实施方式中,纤维纤度达到3dtex至12dtex,尤其是3dtex至9dtex。粗的短纤维赋予纺织复合材料以必要的结构,并且保证纺织复合材料在安装状态下也保持尺寸稳定。

如果载体层不含粘合纤维,则在本申请的一个优选实施方式中,基于载体层的总重量,载体层含有的粗的短纤维的比例为10wt.%至90wt.%,更优选20wt.%至90wt.%,再优选30wt.%至90wt.%,再优选50wt.%至90wt.%,更优选60wt.%至90wt.%,尤其是70wt.%至90wt.%。如果载体层含有作为其他纤维的粘合纤维,基于载体层的总重量,粗的短纤维的比例优选为5wt.%至85wt.%,更优选10wt.%至85wt.%,更优选20wt.%至80wt.%,再优选30wt.%至80wt.%,再优选40wt.%至80wt.%,再优选50wt.%至80wt.%,尤其是60wt.%至80wt.%。

根据本申请的纺织复合材料的载体层的细的短纤维的纤维纤度达到0.3dtex至2.9dtex,尤其是0.5dtex至2.9dtex。同样可以考虑的是,细的短纤维的纤维纤度在0.3dtex至0.5dtex,例如0.3dtex至0.49dtex。在一个优选的实施方式中,细的短纤维的纤维纤度达到0.5dtex至2.5dtex,尤其是0.5dtex至2.0dtex。通过在载体层中采用细的短纤维,由于载体层的大很多的内表面,声音能量也可以在该层中转化成热量。

如果载体层不含粘合纤维,在本申请的一个优选实施方式中,基于载体层的总重量,载体层包含的细的短纤维的比例为10wt.%至90wt.%,更优选10wt.%至80wt.%,更优选10wt.%至70wt.%,更优选10wt.%至60wt.%,再优选10wt.%至50wt.%,再优选10wt.%至40wt.%,尤其是10wt.%至30wt.%。如果载体层包含作为其他纤维的粘合纤维,则基于载体层的总重量,载体层包含的细的短纤维的比例为10wt.%至90wt.%,更优选10wt.%至80wt.%,更优选10wt.%至70wt.%,再优选10wt.%至60wt.%,再优选10wt.%至50wt.%,再优选10wt.%至40wt.%,尤其是10wt.%至30wt.%。

根据本申请,骨架纤维是短纤维。与可能包含于载体层内的粘合纤维不同,骨架纤维不会或者仅非实质地熔融。与理论上具有无限长度的长丝不同,短纤维具有有限的纤维长度。根据本申请,优选用作骨架纤维的细的和粗的短纤维彼此独立地具有的纤维长度为20毫米至80毫米,更优选为25毫米至80毫米,尤其是30毫米至80毫米。作为骨架纤维,可以采用合成纤维或者合成纤维的混合物。优选采用合成纤维。

在本申请的一个优选实施方式中,用作骨架纤维的细的和粗的短纤维彼此独立地至少含有选自以下组的聚合物:聚丙烯腈、聚乙烯醇、粘胶、聚酰胺,特别是聚酰胺6和聚酰胺6.6,优选聚烯烃,特别优选聚酯,特别是聚对苯二甲酸乙二醇酯,聚萘二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯,上述物质的混合物和/或共聚物。优选骨架纤维所含的至少一种聚合物的比例为90wt.%,更优选为95wt.%,尤其是大于97wt.%。

在本申请的一个特别优选的实施方式中,骨架纤维包含至少一种选择以下组的聚合物:聚酯,特别是聚对苯二甲酸乙二醇酯,聚酰胺及其混合物或共聚物。在本发明的一个特别优选的实施方案中,骨架纤维是聚酯纤维,特别是聚对苯二甲酸乙二醇酯。其优点在于聚对苯二甲酸乙二醇酯的自熄灭的燃烧特性,这又与纺织复合材料在汽车领域中的应用相关。

除了细的短纤维和粗的短纤维,载体层还可含有其他的纤维。根据本发明,优选载体层至少部分含有熔融的粘合纤维,作为其他纤维。作为粘合纤维,可以采用通常用于该目的的纤维,只要它们能够至少部分地热熔即可。粘合纤维可以是单纤维或者多组分纤维。根据本申请特别合适的粘合纤维是以下纤维:该纤维的粘合成分的熔点在待粘合的骨架纤维的熔点以下,优选为250℃以下,更优选在70至235℃,再优选为125至225℃,特别优选为150至225℃。合适的粘合纤维尤其是含有以下物质和/或由以下物质组成的纤维:热塑性聚酯和/或共聚酯,特别是聚对苯二甲酸丁二醇酯;聚烯烃,特别是聚丙烯;聚酰胺;聚乙烯醇;以及它们的共聚物和混合物。

根据本申请特别合适的粘合纤维是多组分纤维,优选双组份纤维,尤其是核/壳纤维。核/壳纤维包含至少两种具有不同软化温度和/或熔化温度的纤维聚合物。优选核/壳纤维由这两种纤维聚合物组成。其中具有较低软化温度和/或熔化温度的那种成分存在于纤维表面(壳),而具有较高软化温度和/或熔化温度的那种成分存在于核中。

在核/壳纤维中,粘合功能可以通过布置在纤维表面的材料来实现。对于壳而言,可以采用各种不同的材料。根据本申请,优选用于壳的材料为聚对苯二甲酸丁二醇酯、聚酰胺、聚乙烯、共聚酰胺和/或共聚酯。对于核而言,同样可以采用各种不同的材料。根据本申请,优选用于核的材料为聚酯,特别是聚对苯二甲酸乙二醇酯和/或聚萘二甲酸乙二醇酯和/或聚烯烃。

根据本申请,利用核-壳粘合纤维是有益的,因为其能够实现粘合剂成分在无纺织物内特别均匀的分布。

如果载体层含有粘合纤维作为其他纤维,则基于载体层的总重量,载体层所含粘合纤维的比例优选为5wt.%至50wt.%,更优选为10wt.%至50wt.%,再优选为10wt.%至40wt.%,尤其是10wt.%至30wt.%。

根据本申请,优选载体层通过至少部分熔融的粘合纤维来粘合及固化。优选例如用连续炉使至少部分熔融的粘合纤维熔融,而不产生机械应力。其中有益的是,无纺织物能够以高度膨胀的方式制造,但不会通过机械作用而失去体积。在本申请的另一个优选实施方式中,在载体层内的空气比纤维的体积比为75:1至250:1,更优选100:1至225:1,尤其是125:1至200:1。

在本申请的另一个实施方式中,载体层被粘合,优选用粘合纤维额外地强化。作为粘合剂可以采用聚丙烯酸酯、聚苯乙烯、聚乙酸乙烯酯乙烯、聚氨酯及其混合物和共聚物。

根据本申请,优选载体层易于强化,从而吸声的纺织复合材料易于悬垂和压缩,进而能够应用在不同的安装空间内。

流动层原则上可以是机织物、编织物、针织物和/或无纺织物。根据本申请,载体层优选采用按照dineniso9092的无纺织物,由此形成无纺纺织复合材料。

根据本申请,微孔流动层应理解为微孔层,其具有具体的流动阻力,尤其是大于250ns/m3,例如250ns/m3至5000ns/m3,优选250ns/m3至4000ns/m3,更优选250ns/m3至3000ns/m3,尤其是250ns/m3至2000ns/m3。有益地,载体层设有流动层,从而能够改善载体层的吸声特性。由此能够使载体层的克重保持较低,以及产品具有突出的声学特性。

对流动层的流动阻力的调整可以本领域技术人员已知的方式和方法,通过有目的地调整孔隙度及厚度来实现。对于过度多孔的材料而言,将不会在纤维上产生足够的摩擦,因此不能有效地将动能转化成热能,由此不太可能吸收。相对地,对于待密封的材料,声波将主要在材料表面上被反射,并且因此不可能被吸收到材料中。

根据本申请,流动层包含的超细纤维具有的纤度为10微米以下,优选0.5微米至5微米,更优选1微米至3微米。采用超细纤维有益的是,通过极小的纤维直径在无纺织物提供非常大的内表面,声能可在这些表面上被特别好地吸收。能够以简单的方式,例如利用熔喷方法得到具有这种细度的纤维(熔喷纤维),由此形成熔喷纤维无纺织物。采用熔喷纤维有益的是,用它们能够以简单的方式获得具有高密度和良好的声学特性的无纺织物。

作为用于流动层的超细纤维,优选采用合成纤维。这种纤维最好由至少一种选自以下组的聚合物组成:聚烯烃,特别是聚丙烯;聚对苯二甲酸乙二醇酯;聚酰胺;上述物质的混合物和/或共聚物。优选地,超细纤维含有上述聚合物、其混合物和/或共聚物,其比例为至少90wt.%,更优选大于95wt.%,尤其是大于97wt.%。

优选地,基于流动层的总重量,流动层具有的超细纤维的量为大于50wt.%,更优选大于70wt.%,尤其是大于90wt.%。

根据本申请的纺织复合材料可以仅由载体层和流动层构成。根据本申请,优选纺织复合材料还具有其他层,尤其是在流动层上设置至少一个覆盖层。其中有益的是,流动层能够更好地被保护免受损坏。证明特别合适的是,采用熔纺无纺织物作为覆盖层。优选覆盖层的克重在25g/m2以下,例如12g/m2至17g/m2。同样有益地,覆盖层由热塑性长丝构成,尤其是由聚丙烯长丝构成。

载体层、流动层和可能存在的覆盖层可以用各种不同的方法放在一起。因此可以考虑的是,利用粘性材料将各层彼此粘接。如果采用熔喷无纺织物织物流动层,则在本申请的一个优选实施方式中,通过将熔喷纤维直接喷射到载体层上来准备流动层。由此能够获得复合无纺织物,其中在载体层与流动层之间识别不出明确的相界。这使得在载体层与流动层的边界区域内调整纤维纤度级别成为可能,这有益地影响声学特性。此外,可能放弃额外的粘接层,这同样有益地影响声学特性。

根据本申请,纺织复合材料具有的流动阻力为250ns/m3至5000ns/m3,优选250ns/m3至4000ns/m3,更优选250ns/m3至3000ns/m3,尤其是250ns/m3至2000ns/m3,和/或350ns/m3至5000ns/m3,优选450ns/m3至5000ns/m3,更优选550ns/m3至5000ns/m3,和/或350ns/m3至2000ns/m3,更优选450ns/m3至2000ns/m3,尤其是550ns/m3至2000ns/m3。同样可考虑的是,纺织复合材料的流动阻力在2000ns/m3和5000ns/m3之间,例如2001ns/m3至5000ns/m3。纺织复合材料的流动阻力等于载体层的流动阻力和流动层的流动阻力之和。其中流动层通常对流动阻力的贡献比例明显更大。对流动阻力的调整可以简单的方式,通过选择合适的、具有期望流动阻力的流动层来实现。

利用根据本申请的纺织复合材料,能够实现突出的吸声级别,在1000hz的情况下,按照dineniso10534-1测量时,例如为30%至100%,更优选40%至100%,更优选50%至100%。这么高的吸声级别对于本领域技术人员而言是令人吃惊的,因为它大于单独测量的、流动层和载体层的吸声系数之和。

纺织复合材料的克重优选为50g/m2至350g/m2,更优选为100g/m2至300g/m2,尤其是150g/m2至250g/m2。对于这种克重有益的是,能够提供重量轻的纺织复合材料,由此因重量减少而能够在汽车中降低排放。

纺织复合材料的厚度优选为5毫米至35毫米,更优选为10毫米至30毫米,尤其是15毫米至25毫米。对于至少10毫米的厚度而言有益的是,产生大的壁间距,从而中等波长的中频声波和长波长的低频声波也能够被吸收到纺织复合材料内。

本申请的另一个主题是用于制造根据本发明的纺织复合材料的方法,所述纺织复合材料的流动阻力为250ns/m3至5000ns/m3,尤其是250ns/m3至2000ns/m3,所述方法包括以下步骤:

a)提供和/或制备至少一个开孔的载体层,所述载体层包括作为骨架纤维的、纤度为3dtex至17dtex的粗的短纤维,以及纤度为0.5dtex至2.9dtex的细的短纤维;

b)提供和/或制备微孔的流动层,所述流动层包含纤维直径在10微米以下的超细纤维;

c)将所述流动层置于所述载体层之上;

d)连接所述载体层和流动层。

如果将熔喷无纺织物作为流动层,则流动层也可以通过将熔喷纤维直接喷射到载体层上来准备。由此本发明的另一个主题是用于制造根据本发明的纺织复合材料的方法,所述纺织复合材料的流动阻力为250ns/m3至5000ns/m3,尤其是250ns/m3至2000ns/m3,所述方法包括以下步骤:

a')提供和/或制备至少一个开孔的载体层,所述载体层包含作为骨架纤维的粗的短纤维和细的短纤维,所述粗的短纤维的纤度为3dtex至17dtex,所述细的短纤维的纤度为0.3dtex至2.9dtex,尤其是0.5dtex至2.9dtex;

b’)将熔喷无纺织物纺在所述载体层上,作为微孔的流动层,所述微孔流动层包括纤维直径在10微米以下的超细纤维。

提供和/或制备至少一个开孔载体层可以通过本领域技术人员已知的制备工艺来实现,例如用于干燥短纤维无纺织物的制备工艺。根据本发明适用于载体层的制备方法例如是梳理方法,以及空气动力学方法,例如气流成网方法(airlay-verfahren)和空气沉积方法(airlaid-verfahren)。在经典的梳理方法中,通常利用人工换向辊(arbeiter-wenderwalzen)将短纤维分解成单根纤维,并且作为桩沉积。这些纤维然后能够例如通过堆垛机(kreuzleger)加倍,以便形成单层或多层纤维网。如果无纺织物的纤维布置应制备成随机取向,则空气动力学方法特别合适。随机取向是有益的,因为由此能够获得体积大的、压缩弹性的纤维网,同时密度较小。如果采用粘合纤维,则该粘合纤维例如能够在连续式加热炉内被加热到熔点,由此用于固化无纺织物。热固化能够在载体层和流动层之间连接之前和/或之后进行。还可能采用其他非接触的固化方式,例如涂覆粘合剂。特别优选的是,无纺织物以非机械固化方法进行固化,因为由此不会对载体层的蓬松度造成不利影响。

流动层同样可以通过本领域技术人员已知的方式和方法来制备。根据本发明特别优选的是熔喷方法。其中有益的是,能够以简单的方式在一个工艺步骤内低费用地生产细的纤维。

载体层和流动层之间的连接能够以本领域技术人员已知的方式和方法实现,例如利用热熔粘合剂(schmelzklebstoff)或者胶粘剂(haftklebstoff)。优选热熔粘合剂或者胶粘剂内联地施加到载体层上,同时流动层通过移液器(abwickler)内联地输送。

如果采用熔喷无纺织物织物微孔流动层,则其在本发明的一个特别优选的实施方式中被直接纺到载体层上。由此能够获得其中在载体层和流动层之间识别不出明显的相界的复合无纺织物。这使得在载体层与流动层的边界区域内调节纤维细度级别成为可能,这又有益地影响声学效果。此外,还能够放弃额外的粘接层,这又有益地影响声学特性。

为了保护流动层,该层最优地设有覆盖层,如上面描述的那样。这对于熔喷无纺织物而言是特别有益的。

根据本发明的纺织复合材料突出地适于在汽车领域吸声,例如织物用于汽车内部空间的声学部件,尤其是作为汽车内饰件中的吸声衬垫。

附图说明

图1:根据本发明示例1的在阻抗管(dineniso10534)中的吸声系数与对比例2和3的比较;

图2:在根据本发明实例1和对比例2中采用的流动层的在阻抗管(dineniso10534)中的吸声系数与在根据本发明的示例1中采用的载体层以及与在对比例2中采用的载体层的比较;

图3:根据本发明的示例1、对比例2以及隔离的流动层的在阻抗管(dineniso10534)中的吸声系数的比较;

图4:示例4的在阻抗管(dineniso10534)中的吸声系数与示例5的比较。

下面将结合多个示例进一步说明本发明。

具体实施方式

1.根据本发明的纺织复合材料(示例1)

准备克重为200g/m2、厚度为21毫米的短纤维无纺织物,其由纤度为1.7dtex且纤维长度为38毫米的细pet短纤维,纤度为3.3dtex且纤维长度为64毫米的粗pet短纤维,以及纤度为4.4dtex且纤维长度为51毫米的pet/共聚pet双组份纤维构成。短纤维无纺织物被热接合及粘合。利用喷胶,在该短纤维无纺织物上施加聚丙烯熔喷无纺织物,

2.对比例2和3

对比例2:流动层与非最优的载体层

提供克重为350g/m2且厚度为20毫米的短纤维无纺织物,其由纤度为17dtex且纤维长度为38毫米的粗聚烯烃双组份纤维构成。利用喷胶,在该短纤维无纺织物上时间聚丙烯熔喷无纺织物,该聚丙烯熔喷无纺织物的克重为50g/m2,厚度为0.5毫米,平均纤维直径为2微米。

对比例3:3m新雪丽(thinsulate)(tai3027)

提供克重为330g/m2且厚度为21毫米的短纤维无纺织物,其由65wt.%的细聚丙烯熔喷纤维和35wt.%的粗pet短纤维构成。此外,在短纤维无纺织物的一侧设有由100wt.%的聚丙烯制成的覆盖层。

3.示例4和5

示例4:

提供克重为200g/m2且厚度为10毫米的短纤维无纺织物,其由50wt.%的细pet短纤维(纤度为0.6dtex)和50wt.%的粗pet短纤维(纤度为4.4dtex)构成。

示例5:

提供克重为200g/m2且厚度为10毫米的短纤维无纺织物,其由80wt.%的细pet短纤维(纤度为0.6dtex)和20wt.%的粗pet短纤维(纤度为4.4dtex)构成。

4.确定示例1和对比例2的流动阻力

关于示例1和对比例2,按照dinen29053来彼此独立地和组合地测量载体层和流动层的流动阻力。

显示单个层的流动阻力彼此组合时进一步增加。此外显示,示例1与对比例2的总体流动阻力仅相差5ns/m3

5.确定吸声系数

按照dineniso10534-1,第1部分来测量示例1,对比例2和3的吸声系数。结果在图1中显示。

显示示例1在对于汽车工业很重要的800hz至2000hz的频率范围内表现出突出的声学吸收特性。在1000hz时,吸声吸收达到了45%,这令人吃惊地高。在1000hz时,对比例2只测得为35%,而对比例3甚至数值仅为25%。在大约800hz至2000hz的频率范围内,总体上在根据本发明的纺织复合材料中观察到令人吃惊的较高的吸声系数,尽管示例1的克重比对比例2和3相比较小。

众所周知,通过流动阻力与壁间距的组合来调节多孔吸收体的吸收性。在所有示例中均选择相同的壁间距,从而其不能对结果产生影响。人们观察示例1和对比例2显示,示例1和对比例2的总流动阻力是很相似的(见上面的数字3),从而该参数不能对吸声系数的意外改进负责。

无意将本发明局限于某种机制,猜测令人吃惊的高的吸声系数取决于细纤维与粗纤维之间的协同相互作用与流动层相结合。因此猜测在载体层中特别选择纤度为0.3dtex至2.9dtex、尤其是0.5dtex至2.9dtex的细的短纤维,以及纤度为3dtex至17dtex的粗的短纤维使得形成对吸声特别合适的骨架结构成为可能,该骨架结构能够吸收声波。通过适当选择细的和粗的短纤维,则可能使载体层具有高的压缩能力和高度回弹性,由此载体层最优地通过声波而被激发振动,由此能够特别有效地吸收声音能量。

其中根据本发明的纺织复合材料跟弯曲柔性的板状吸收体那样起作用。板状吸收体是高效的吸收体,它能够被准确地调节到期望的频率范围。振动质量(schwingmasse)通过薄膜或者薄板的质量来实现。在根据本发明的纺织复合材料中,振动质量依靠流动层来实现。在板状吸收体中,谐振系统的避震器(federung)在大多数情况下是薄膜或板与后壁之间的气垫的避震器。在根据本发明的纺织复合材料中,载体层作为避震器起作用。因此对于根据本发明的纺织复合材料而言,最好选择以下结构:流动层-载体层-壁。其中通过精确定义的、非常好的载体层的压缩特性和恢复特性,流动层能够最优地在载体层上振动,因此额外地在避震器体积内(即在载体层内部)形成内部损耗。

总而言之,这意味着通过根据本发明选择具有高压缩性和高回弹性的特定载体层,能够用载体层内的附加阻尼扩大作为多孔吸收体的流动层的作用方式,并且可以通过多孔吸收体和弯曲柔性的板状吸收体的作用方式的共同作用来提供吸声系数,特别是在对于汽车制造商很重要的800hz至2000hz的频率范围内。上述声学作用方式的令人吃惊的协同效应还通过图2和3的比较来确定。

在图2中,首先仅观察在这些示例中采用的单个层。具体比较了根据本发明的示例1和对比例2中所采用的流动层在阻抗管(dineniso10534)中的吸声系数与在根据本发明的示例1中采用的载体层在阻抗管(dineniso10534)中的吸声系数以及在对比例2中采用的载体层在阻抗管(dineniso10534)中的吸声系数。显示载体层在具有可比较的吸声系数。而流动层具有明显较高的吸声系数。因此,在1000hz,示例1的载体层显示出大约11%的吸声系数,对比例2的载体层显示大约8%的吸声系数,而流动层显示大约23%的吸声系数。

在图3中比较了根据示例1的纺织复合材料、对比例2和隔离的流动层在阻抗管(dineniso10534)内的吸声系数。显示根据本发明的示例1比绝缘的流动层以及对比例2明显更高的吸声系数。因此在1000hz,根据本发明的示例1显示出大约45%的吸声系数,对比例2显示出大约35%,而流动层显示出大约23%的吸声系数。

根据本发明的示例1得到数值令人吃惊地高。因此,假设单个层的吸声系数可以大概彼此叠加。这对于对比例2:8%[载体层]+23%[流动层]=31%——这与35%的测量值非常接近。由此在载体层和流动层之间看不出协同效应。与之相对,对于示例1计算得到的吸声系数为(11%[载体层]+23%[流动层]=34%)。但测得的数值为45%,这比计算值高11%,猜测这是取决于上面提到的流动层与载体层之间的协同效应以及它的特殊骨架结构。

在图4中显示了示例4与示例5在阻抗管(dineniso10534)中的吸声系数的比较。显示在1000hz,示例4(80wt.%的细纤维)比示例5(50wt.%的细纤维)具有更高的吸声系数。

为了确定根据本发明所使用的参数,与下列测量方法有关:

为了确定克重,用于无纺织物的试验方法

根据iso9073-1,其中试样的面积达到100毫米*100毫米。

为了确定厚度,用于无纺织物的试验方法

根据dineniso9073-2,方法b和c。

纤维纤度的确定

根据din53810(纺织纤维的细度-概念和测试原则),借助于显微镜和相应的软件来确定纤维直径的。准备4个由总数超过20根单根纤维的显微标本对于每个显微标本,纤维用剪刀截短到大约2-3毫米长,并且借助于解剖针置于载物片上。接着,在相应软件的帮助下确定并告知纤维直径(微米)。告知的纤维直径可以接着借助于以下公式换算成纤维纤度tt:

d以微米为单位的纤维直径

ρg/cm3为单位的纤维密度

确定短纤维长度

从现有的纤维试样中选择10个纤维束,其中借助于镊子从所述10个纤维束中的每一个取出单根纤维,并且通过将纤维自由端夹入两个夹紧夹中的一个,纤维的第二自由端夹入剩余的夹紧夹中来确定10根单根纤维的纤维长度。通过旋转手轮,纤维被伸展,直至其没有卷曲为止。纤维的长度从测试仪的标尺读出,并以毫米为单位标注。所有得到的结果的平均值表示短纤维长度:

∑l单根纤维长度的总和

n样本数量

确定熔点

安装dineniso11357-3,动态差分热分析(dsc)——第3部分:确定熔融温度和结晶温度,以及熔融焓和结晶焓,其中采用的加热速率为10k/min。

确定可压缩性

借鉴din53885(纺织品和纺织产品的可压缩性的确定),其中通过像标准中描述的那样借助于其他的测试仪来实现压缩性的确定。因此,准备尺寸为100毫米*100毫米的测试样品、长度尺度为毫米的测量台(messtafel)、尺寸为120毫米*120毫米的金属板,以及直径为55毫米且质量为一千克的圆柱形重物。

在测量之前,在无负载状态下,借助测量台确定测试样品的厚度。该值描述了以毫米为单位的初始厚度d0。在未加载状态下确定初始厚度以后,下一步是将金属板(100g)放置在测试样品上并与之中心对齐。然后将圆形重物放置在测量板的圆形标记上,因此测试样品被加载约1.1kg。测试样品的绝对可压缩性由下列公式确定,其反映了初始厚度与加载状态下的厚度之差:

ka[mm]=d0-db

d0毫米为单位的初始厚度

db在相应加载状态下测试样品的以毫米为单位的最终厚度

百分比表示的相对可压缩性kr为:

确定回弹性

借鉴dineniso1856(软弹性聚合物泡沫材料——压缩变形残量的确定)。作为测量装置,使用相同的结构,如“可压缩性的确定”一节所述。在确定回弹性时,在经过一定时间的压缩变形之后,在一定温度和固定的恢复时间,确定材料的初始厚度和最终厚度之间的差异。

测量之前,在无负载状态下,借助测量台确定测试样品的厚度。该值描述了以毫米为单位的初始厚度。在未加载状态下确定初始厚度后,下一步是将金属板(100g)放置在试样上并使其中心对准。然后将圆柱形的重物放置在测量板的圆形标记上,并且测试样品在24小时的时间段内和室温(23℃+/-2℃)下被加载约1.1kg。在24小时加载以后,将重物和金属板从测试样品取下,并在30分钟的恢复期之后再次测量测试样品的厚度,压缩变形残量如下确定:

d0毫米为单位的测试体的初始厚度

dr恢复以后的测试体的厚度

可以使用以下公式由压缩变形残量来计算材料的回弹性:

r[%]=100-dvr

确定空气:纤维的体积比

空气比纤维的体积比提供了关于材料多孔性的信息。因此,假设与纤维相比,空气的比例高,则材料具有高孔隙率。体积比v空气比v纤维可以如下确定。为此,首先使用以下公式计算测试体的体积:

v测试体[cm3]=l*b*d

l毫米为单位的测试体长度

b毫米为单位的测试体宽度

d毫米为单位的测试体厚度,按照dineniso9073-2,方法b和c测试

在确定了测试体的体积之后,使用以下公式在下一步骤中确定无纺织物中所含纤维的体积:

m纤维以克为单位的测试体的纤维质量

ρ纤维聚合物以g/cm3为单位的纤维聚合物的密度

优选在载体层中使用聚合物聚对苯二甲酸乙二醇酯制成的短纤维,从而可以从约1.38g/cm3的纤维密度开始。在计算了纤维体积以后,现在可以借助以下公式在下一步骤中确定空气体积:

v空气[cm3]=v测试体-v纤维

如果确定了测试体的空气体积和纤维体积,则现在用这两个体积值可以设定相对于彼此的关系。

用于确定流动阻力的测试方法

根据dinen29053,方法a(空气直流法),其中有效的样品直径为100mm,空气压力为1000mbar。

用于确定在阻抗管中的吸声系数和阻抗的测试方法

根据dineniso10534-1,第1部分:驻波比方法(iso10534-1:2001-10),其中管长a对应于100厘米,管横截面a对应于77平方厘米,管长b为30厘米,管横截面b为6.6平方米。将纺织复合材料和载体层的测试体直接放到隔音墙并进行测量。测量流动层离隔音墙20mm的距离。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1