混合动力电动车辆的容错运转的制作方法

文档序号:15743914发布日期:2018-10-23 22:45阅读:115来源:国知局

本发明大体涉及功率分流混合动力车辆驱动系统,并且更具体地,涉及在电池和/或可变电压转换器的连接或功能发生故障之后运转行驶。



背景技术:

一种类型的混合动力电动车辆动力传动系统是在美国专利8,425,377号和美国专利7,686,723号中公开的类型的功率分流驱动系统,两者均通过引用并入本文。功率分流驱动系统有两个动力源。第一源包括内燃发动机,并且第二源是电动马达、发电机、和储存设备(例如电池组)的组合。发动机功率在任何发电机转速和车辆速度下分为两个功率流动路径。发动机转速由发电机控制,因此发动机转速可以在发电机允许的转速范围内与车辆速度分离。当发电机使用来自发动机的机械功率输入来产生电力时,这种运转模式称为正功率分流。

由于行星齿轮组的机械特性,发电机可以向行星齿轮组分配功率以驱动车辆。这种运转模式称为“负功率分流”。因此发电机、马达、和行星齿轮组的组合可认为具有电动无级变速器(e-CVT)特性。

可以启动发电机制动器,使得发动机输出功率仅通过机械路径以固定的齿轮比传输到动力传动系统的扭矩输出侧。由于没有倒挡,第一动力源只能向前推进车辆。发动机需要发电机控制器或应用发电机制动器来传输向前行驶的输出功率。当第二动力源启动时,电动马达从电池汲取电力并独立于发动机驱动车辆向前行驶和向后行驶。此外,发电机可以从电池中汲取电力并驱动发动机动力输出轴上的单向离合器以向前方推进车辆。这种运转模式称为“发电机驱动模式”。车辆系统控制器协调两个动力源,使它们完美协作以在不超出动力传动系统的系统限制的情况下满足驾驶者的扭矩需求。车辆系统控制器允许为了任何给定的车辆速度和动力请求而连续调节发动机转速。机械动力流动路径通过行星齿轮组向驱动轴提供有效的动力输送。

通过优化运转内燃发动机(ICE)并且通过实施再生制动,具有功率分流结构的混合动力电动车辆的燃料经济性显著提高。然而,由于大量额外的车辆部件(例如可变电压转换器(VVC)、马达逆变器、发电机逆变器、电池、马达、和发电机),整体系统成本增加并且额外产生了对车辆可靠性和耐用性的担忧。

应当监测的故障状况包括电气故障,例如VVC、电池、电池接触器(即继电器)故障,或电缆使电力进出电池中断。任何这些故障都会阻碍VVC调节在VVC和逆变器之间的高电压(HV)总线上的电压电平的能力。因此,HV总线上会出现显著的过电压。为了防止这样的过电压,检测到这些故障之一已用于触发车辆驱动系统的关闭。期望获得在VVC故障期间避免车辆驱动关闭的容错运转(fault-tolerant operation)。还期望在不引起系统成本显著增加的情况下实现这种容错运转。



技术实现要素:

在本发明的一个方面,一种混合动力驱动系统包括直流(DC)电源、内燃发动机、牵引马达、发电机、选择性地连接到电池的可变电压转换器(VVC)、马达逆变器、发电机逆变器、将VVC的输出端连接到逆变器的总线、以及调节发动机转速、马达扭矩、和发电机扭矩的控制器。调节的发动机转速根据驾驶员扭矩需求而确定。控制器检测电池和VVC无法调节总线上的总线电压的故障。在检测到故障时,控制器调节马达逆变器的功率输出使其等于发电机逆变器的功率输出和逆变器的估计功率损失之和。其结果是,即使电池和VVC不可用,总线电压仍保持在参考水平,并且可以继续单独使用发动机动力来运转车辆。

根据本发明,提供一种混合动力驱动系统,包括:

直流电源;

内燃发动机;

牵引马达;

发电机;

选择性地连接到电源的可变电压转换器(VVC);

马达逆变器;

发电机逆变器;

将VVC的输出端连接到马达逆变器和发电机逆变器的总线;和

调节发动机转速、马达扭矩、和发电机扭矩的控制器;

其中控制器检测电源和VVC无法调节总线上的总线电压的故障;和

其中在检测到故障时,控制器调节马达逆变器功率输出,以使马达逆变器功率输出与发电机逆变器功率输出和逆变器的估计功率损失之和相匹配。

根据本发明的一个实施例,控制器还根据总线电压与预定的电压之间的偏差来调节马达逆变器功率输出。

根据本发明的一个实施例,DC电源是电池组,其中根据在未检测到故障时电池组的荷电状态来确定调节的发动机转速,并且其中控制器调节发动机转速而不考虑在检测到故障时电池组的荷电状态。

根据本发明,提供一种混合动力驱动系统,包括:

直流电源;

内燃发动机;

牵引马达;

发电机;

选择性地连接到电源的可变电压转换器(VVC);

马达逆变器;

发电机逆变器;

将VVC的输出端连接到马达逆变器和发电机逆变器的总线;和

调节发动机转速、马达扭矩、和发电机扭矩的控制器;

其中控制器检测电源和VVC无法调节总线上的总线电压的故障;和

其中在检测到故障时,控制器根据A)总线电压与预定的电压之间的偏差、和B)发电机逆变器功率输出来生成马达扭矩指令。

根据本发明的一个实施例,控制器还在检测到故障期间根据逆变器的估计功率损失来产生马达扭矩指令。

根据本发明的一个实施例,DC电源是电池组,其中根据在未检测到故障时电池组的荷电状态来确定调节的发动机转速,并且其中控制器调节发动机转速而不考虑在检测到故障时电池组的荷电状态。

根据本发明,提供一种具有马达逆变器和发电机逆变器的混合动力车辆中的DC平衡控制器,包括:

电压调节器,当总线与车辆电池隔离时电压调节器根据逆变器的总线处的电压与参考的电压之间的差提供控制信号;和

组合器,组合器根据控制信号与发电机逆变器输出的功率之间的差来产生马达逆变器功率目标。

根据本发明的一个实施例,组合器根据控制信号与来自发电机逆变器的功率输出和逆变器的估计功率损失之和之间的差来产生马达逆变器功率目标。

根据本发明的一个实施例,控制器还包括指令发电机,指令发电机使用马达转速将功率目标转换成马达扭矩指令。

根据本发明,提供一种控制混合动力驱动系统的方法,混合动力驱动系统具有电池、内燃发动机、牵引马达、发电机、选择性地连接到电池的可变电压转换器(VVC)、马达逆变器、发电机逆变器、将VVC的输出端连接到马达逆变器和发电机逆变器的总线、以及控制器,方法包括以下步骤:

检测电池和VVC是否可用于调节总线上的电压;

当电池和VVC可用时,则执行以下步骤:

根据驾驶员扭矩指令、实际车辆速度、和电池荷电状态确定发动机转速指令;

通过修改发电机逆变器的发电机扭矩指令来将发动机转速调节为发动机转速指令;和

根据驾驶员扭矩指令和发电机扭矩指令确定马达逆变器的马达扭矩指令;和

当电池和VVC不可用时,则执行以下步骤:

根据驾驶员扭矩指令和实际车辆速度来确定发动机转速指令,而不考虑电池荷电状态;

通过修改发电机逆变器的发电机扭矩指令来将发动机转速调节为发动机转速指令;和

调节马达扭矩指令以获得马达功率输出,马达功率输出与逆变器的功率损失加上由修改的发电机扭矩指令得到的发电机功率输出相匹配。

根据本发明的一个实施例,匹配的马达功率输出由以下步骤确定:

在总线与电池相隔离的情况下,根据总线上的电压与参考的电压之间的差使用电压调节器来产生控制信号;和

根据控制信号与发电机功率输出之间的差来产生马达逆变器功率目标。

根据本发明的一个实施例,马达逆变器功率目标还根据逆变器的功率损失来确定。

附图说明

图1是示出具有功率分流混合动力电驱动系统的车辆的框图;

图2是示出混合动力电动车辆的电驱动部分的示意性框图;

图3是示出功率分流混合动力驱动系统中的功率流动的框图;

图4是示出用于确定发动机转速指令和发动机扭矩指令的常规控制系统的框图;

图5是示出用于确定发电机扭矩指令和马达扭矩指令的常规控制系统的框图;

图6是示出当发生故障使得VVC无法调节HV总线电压时,功率分流混合动力驱动系统中的功率流动的框图;

图7是示出用于确定发动机转速指令和发动机扭矩指令的本发明的控制系统的一个实施例的框图;

图8是示出用于使用马达逆变器DC平衡控制器来确定发电机扭矩指令和确定马达扭矩指令的本发明的控制系统的一个实施例的框图;

图9是示出马达逆变器DC平衡控制器的一个实施例的框图;

图10是示出在使用常规控制器的VVC的故障状况期间,HV总线上的电压的曲线图;

图11是示出在使用本发明的修改的控制器的VVC的故障状况期间,HV总线上的电压的曲线图;

图12是示出本发明的方法的一个实施例的流程图。

具体实施方式

参考图1,混合动力电动车辆10包括内燃发动机(ICE)11和变速驱动桥12,变速驱动桥12包括牵引马达13、发电机14、和行星齿轮组15。马达13从电池组16通过VVC 17和逆变器18接收电功率,并且在变速器控制模块(TCM)20的控制下提供驱动扭矩以推进车辆。马达还可用作通过再生制动将机械功率转化为电功率的发电机。

变速驱动桥12具有功率分流配置,其中马达13和发电机14通过行星齿轮组15与ICE 11相互作用,行星齿轮组15包括中心齿轮21、行星架22、和环形齿轮23。中心齿轮21连接到发电机14的输出轴以接收发电机扭矩。行星架22连接到ICE 11的输出轴以接收发动机扭矩。行星齿轮组15将发电机扭矩和发动机扭矩组合,并在环形齿轮23处提供组合的输出扭矩。如本领域已知的,变速驱动桥12还可包括单向离合器OWC和发电机制动器24。

变速驱动桥12包括具有第一齿轮26、第二齿轮27、和第三齿轮28的中间轴25。行星输出齿轮30连接到环形齿轮23并且与第一齿轮26啮合,以在行星齿轮组15和中间轴25之间传递扭矩。输出齿轮31连接到马达13的输出轴并与第二齿轮27啮合,以在马达13和中间轴25之间传递扭矩。变速器输出齿轮32连接到变速器输出轴33。输出轴33通过差速器35连接到一对驱动轮34。变速器输出齿轮32与第三齿轮28啮合,以在变速驱动桥12和驱动轮34之间传递扭矩。

电池16是能够输出电功率以运转马达13和发电机14的高压电池。当马达13和发电机14作为发电机运转时,电池16也从马达13和发电机14接收电功率。通常,电池16是由多个电池模块(未示出)组成的电池组,其中每个电池模块包括多个电池单元(未示出)。还可以使用其它类型的能量储存设备,例如补充或替换电池16的电容器和燃料电池(未示出)。

电池能量控制模块(BECM)36接收指示车辆和电池状况(例如电池温度、电压、和电流)的输入信号。BECM 36计算和估计电池参数,例如电池荷电状态(SOC)和电池供电能力。VVC 17和逆变器18电连接在电池16与马达13和发电机14之间。取决于驱动系统的瞬时运转模式,VVC 17将功率从电池16推动到高压(HV)DC总线以使用逆变器18转换、或将功率从HV DC总线推动到电池16,由此总线上的DC电压保持在所需的范围内。TCM 20控制马达13、发电机14、VVC 17、和逆变器18。

车辆10包括与其它车辆系统和控制器通信以协调其功能的车辆系统控制器(VSC)37。虽然示为单个控制器,但是VSC 37可以包括可以用于根据整体车辆控制逻辑或软件来控制多个车辆系统的多个控制器。VSC 37通过一个或多个通信总线(例如CAN总线)与其它车辆系统和控制器(例如BECM 36和TCM 20)通信。VSC 37从驾驶员接收以加速器踏板位置来表示的所需的扭矩输入(未示出)。VSC 37为控制驾驶员操作而提供各种输出信号(即指令),例如所需的车轮扭矩、所需的发动机转速、和发电机制动指令。接触器控制信号确定电池接触器继电器(未示出)的激活。

车辆10可以包括制动系统,制动系统具有与VSC 37通信以协调再生制动的制动系统控制模块(BSCM)38。车辆10还可以包括用于控制ICE 11的发动机控制模块(ECM)39。VSC 37向ECM 39提供所需的发动机扭矩指令,发动机扭矩指令基于包括驾驶员对车辆推进的需求的多个输入信号。

图2是示出可用于功率分流混合动力驱动的电驱动系统的一个优选实施例的电示意图。电池16通过接触器继电器开关40和41而连接到VVC 17。主链路电容器42连接到VVC 17的输出端,以建立正总线43和负总线44。马达逆变器18A和发电机逆变器18B连接在总线之间。逆变器18A和18B各自由桥式配置的多个开关器件(例如绝缘栅双极型晶体管,IGBT)组成。根据来自控制器20的控制信号以常规方式(例如使用脉冲宽度调制)驱动逆变器18A和18B以及VVC 17中的开关。

图3示出了在功率分流动力传动系统的各个元件之间的正常功率流动路径。取决于运转模式(例如再生制动),各部件之间的功率流动是双向的。例如,输送到行星齿轮组15的发动机功率可以通过控制发电机扭矩而在发电机14(例如用于对电池16充电或为马达13供电)和中间轴25(例如用于旋转车轮)之间分配。可以根据发电机扭矩和驾驶员扭矩指令(即通过加速器踏板的扭矩需求)来控制马达扭矩。在正常(即非故障)运转状态期间,电功率在逆变器系统部件(VVC 17和逆变器18)的控制下流入或流出电池16。通过使用HV总线的测量电压确定功率流动方向和VVC 17的开关操作,使得将HV总线电压在所需的范围内调节。

图4和5中更详细地示出了在传统驱动系统中使用的某些控制操作。正常操作包括使用发电机扭矩指令来调节发动机转速,并且产生马达扭矩指令以满足驾驶员扭矩指令。如图4所示,将代表驾驶员扭矩指令和测量的车辆速度的电信号提供给乘法器45的相应输入端,以产生连接到加法器47的加法输入端的驾驶员功率指令。将表示电池荷电状态(SOC)的信号以及表示驾驶员扭矩指令和测量的车辆速度的信号提供给电池SOC管理框46的相应输入端,电池SOC管理框46使用已知方法来提供连接到加法器47的减法输入端的电池功率请求。驾驶员功率指令表示要传递到车轮的总功率,并且加法器47的输出是发动机功率指令。当电池SOC高时,框46输出正的电池功率请求(即需要利用存储的电功率来推进车辆)。当驾驶员功率指令低时,则车辆可以仅使用电池功率驱动,并且所得到的发动机功率指令可以为零(即发动机关闭)。在高水平的驾驶员功率指令或当电池管理导致电池充电请求(即电池功率请求为负)时,则所得到的发动机功率指令为正。使用车辆速度作为输入,发动机优化框48确定以最高效率产生所需的发动机功率的发动机转速指令。在除法器50中,发动机功率指令通过除以测量的发动机转速反馈信号而转换成发动机扭矩指令。可以将发动机扭矩指令发送到发动机控制器以调节发动机。

图5示出了根据发动机扭矩和转速确定由发电机和马达产生的所需的扭矩的已知方式。因此,发动机转速指令连接到加法器51的求和输入端。测量的发动机转速连接到加法器51的减法输入端。将指令的发动机转速与实际发动机转速之间的偏差从加法器51输入到发动机转速控制器52,发动机转速控制器52使用常规方法来产生发电机扭矩指令(例如,能够通过修改发电机扭矩指令来调整发动机转速)。在控制器(例如TCM)中使用发电机扭矩指令控制发电机逆变器以获得所需的发电机扭矩。发动机转速控制器52例如可以是比例积分控制器,并且可以在TCM内实现。

驾驶员扭矩指令在放大器53中乘以已知齿轮比(gear ratio)k2,并且连接到加法器54的求和输入端。发电机扭矩指令和发电机转速反馈输入到环形齿轮扭矩估计器55,并且所得到的扭矩估计在放大器56中乘以另一已知齿轮比k1。放大器56的输出端连接到加法器54的求和输入端,以产生马达扭矩指令。

在电池和/或VVC发生故障变得无法调节总线上的总线电压的情况下,有必要停止使用图4和5的控制策略。图6示出了在VVC故障时可用的功率流动路径。电池16无法再存储由发电机14或马达13产生的过量功率。当VVC发生故障时,正常控制策略在马达逆变器和发电机逆变器之间产生功率失配。导致来自发电机的额外功率将非常快地对HV DC链路电容器充电到不期望的过电压(例如超过1000V),这会触发导致驱动系统关闭的系统过电压(OV)保护故障。

为了避免不期望的关闭,本发明在这种VVC/电池故障期间采用容错控制机制,容错控制机制调节马达逆变器输出功率使得马达逆变器输出功率与发电机逆变器输出功率基本匹配。更具体地说,可以通过将马达逆变器功率与发电机逆变器输出功率加上对马达逆变器和发电机逆变器中发生的估计功率损失相匹配来实现HV总线电压平衡。

图7和8示出了对图4和5的传统控制策略的相应改变。在图7中,取决于故障检测信号的状态,选择器开关60将来自SOC管理框46的电池功率请求、或零值连接到加法器47的减法输入端。当VVC存在故障时,则隔离电池(即没有功率可以流入或流出电池),并且在故障期间电池请求必须设置为零。在图8中,取决于故障检测信号的状态,选择器开关61输出来自加法器54的结果、或来自马达逆变器DC平衡控制器62的输出作为马达扭矩指令。

如图9中更详细所示的,马达逆变器DC平衡控制器62通过调节马达扭矩指令来控制DC总线电压。从加法器70中的逆变器总线上的瞬时电压的测量值(Vdc反馈)中减去所需的参考的电压(Vdc参考)。该差值(即电压偏差)输入到DC电压调节器71。取决于偏差的大小(例如当偏差位于Vdc参考附近的特定范围之外时),调节器71生成连接到加法器72的加法输入段的控制信号。加法器72的相应减法输入端接收ISC估计损失信号和发电机功率反馈信号。估计损失信号可以从由经验导出的查找表中获得,查找表基于驱动系统的各种运转参数(例如,逆变器中流动的电流的大小、以及存在于开关桥处的表示开关损失的电压)。发电机功率反馈信号可以在发电机逆变器的输出端测量。加法器72的输出提供马达功率参考,马达功率参考代表消耗来自发电机逆变器的足够多的过剩功率以将总线电压维持在所需的电压范围内的马达功率消耗的大小。马达功率参考通过在除法器73中除以马达转速反馈信号而转换为马达扭矩指令。

图10示出了使用图4和5的传统控制策略的总线电压图。VVC/电池在时间t1发生故障。由于不能通过将过量的功率移入电池来控制总线电压,因此总线电压在短时间内上升到不可接受的水平,并且车辆驱动系统必须关闭。相反,图11示出了使用图7-9的改进的控制策略的总线电压图。VVC/电池在时间t1发生故障,但由于发电机产生的扭矩(即功率)与牵引马达的扭矩负载(加上逆变器功率损失)相平衡,因此总线电压能够保持在所需的范围内。逆变器功率损失如果足够低,则可以在一些实施例中忽略。

图12示出了本发明的一个优选方法。在步骤75中,执行故障监测。监测到的故障包括可能指示电池和/或VVC无法调节总线上的总线电压的任何故障。在步骤76中,执行检查以确定是否已经发生与VVC/电池相关的故障。如果否,则功率分流混合动力驱动系统的控制器基于驾驶员扭矩需求、车辆速度、和电池荷电状态来确定发动机转速指令。也以常规方式确定发动机扭矩指令。在步骤78中,使用指令的发电机扭矩来调节内燃发动机的转速(即所确定的发动机转速确定发电机扭矩指令)。在步骤79中,在没有故障的正常运转期间,正常运转的VVC在高压总线上保持所需的电压。在步骤80中,基于驾驶员需求的扭矩和指令的发电机扭矩来确定马达扭矩指令。

在步骤76中如果检测到与VVC/电池相关的故障,则在步骤81中确定发动机转速指令和发动机扭矩而不考虑电池荷电状态。在步骤82中,继续使用指令的发电机扭矩来调节内燃发动机的转速。在步骤83中,在该故障状态下,通过命令马达扭矩与指令的发电机扭矩加上逆变器的估计功率损失相匹配,而将逆变器总线上的电压调节到预定的参考的电压。特别地,该方法优选地根据总线电压和预定的电压之间的偏差来调节马达逆变器功率输出。可以根据A)总线电压与预定的电压之间的偏差、B)发电机逆变器功率输出、以及C)可选地根据逆变器的估计功率损失,来产生指令的马达扭矩指令。

在优选实施例中,马达扭矩调节由DC平衡控制器执行,DC平衡控制器包括电压调节器,电压调节器在总线与车辆电池隔离时根据逆变器总线处的电压与参考的电压之间的差提供控制信号。DC平衡控制器包括组合器,组合器根据控制信号与从发电机逆变器输出的功率之间的差产生马达逆变器功率目标。因此,即使在有这些故障的情况下,混合动力驱动系统也能保持运转,这显著降低了这些故障的严重程度,并提高了系统的健壮性和可靠性。另外,可以在不增加任何硬件部件或成本的情况下引入本发明。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1