混合动力汽车的制作方法

文档序号:18039111发布日期:2019-06-28 23:45阅读:189来源:国知局
混合动力汽车的制作方法

本发明涉及混合动力汽车。



背景技术:

以往,作为这种混合动力汽车,提出了如下的混合动力汽车,其具备:第一电动机;发动机;行星齿轮机构,三个旋转要素在列线图上依次与第一电动机的旋转轴、发动机的输出轴及连结于车轴的驱动轴这三个轴连接;第二电动机,相对于驱动轴输入输出动力;及蓄电池,与第一电动机及第二电动机进行电力的授受(例如,参照专利文献1)。在该混合动力汽车中,在极度冷机时进行将蓄电池切离而行驶的无蓄电池行驶的情况下,通过设定比通常的值大的(绝对值则是比通常的小的)值作为第一电动机的输出下限值,将压制发动机的转速的转矩限制为小,来抑制由于来自发动机的输出不足而产生的发动机熄火。

现有技术文献

专利文献

专利文献1:日本特开2016-74233号公报



技术实现要素:

发明所要解决的课题

在上述的结构的混合动力汽车中,当在进行着无蓄电池行驶的期间加速器踏板被大幅踩下时,有时会产生发动机熄火。若加速器踏板被大幅踩下,则行驶所要求的要求转矩变大,所以,由于需要输出该转矩,第一电动机及第二电动机的转矩的绝对值变大。由于第一电动机作用于抑制发动机的转速的上升的方向,所以,若第一电动机的转矩的绝对值骤增,则会使发动机的转速减少,根据情况会产生发动机熄火。在无蓄电池行驶的情况下,行驶所需的动力、辅机功率由发动机输出补偿,所以若产生发动机熄火,则不仅是行驶,也对辅机的驱动产生妨碍。

本发明的混合动力汽车的主要目的在于,抑制在进行着无蓄电池行驶的期间产生发动机熄火。

用于解决课题的技术方案

本发明的混合动力汽车为了达成上述的主要目的而采用了以下的技术方案。

本发明的混合动力汽车,具备:

第一电动机,输入输出动力;

发动机;

行星齿轮机构,三个旋转要素在列线图上依次与所述第一电动机的旋转轴、所述发动机的输出轴及连结于车轴的驱动轴这三个轴连接;

第二电动机,相对于所述驱动轴输入输出动力;

蓄电池,与连接于所述第一电动机及所述第二电动机的电力线连接,与所述第一电动机及所述第二电动机进行电力的授受;

系统主继电器,进行所述蓄电池相对于所述电力线的连接及连接的解除;及

控制装置,在以关闭了所述系统主继电器的状态行驶时,执行无蓄电池行驶控制,即:对所述发动机进行控制以使得所述发动机以自持运转转速进行自持运转,对所述第一电动机进行控制以将基于行驶所要求的驱动力的转矩从所述第一电动机输出,对所述第二电动机进行控制以充放从由所述第一电动机充放的电力减去辅机电力而得到的电力,

其特征在于,

在执行所述无蓄电池行驶控制的期间所述发动机的转速达到了低于比所述自持运转转速小的第一规定转速时,所述控制装置执行减小从所述第一电动机输出的转矩的绝对值的转矩调整控制。

在该本发明的混合动力汽车中,具备:第一电动机,输入输出动力;发动机;行星齿轮机构,三个旋转要素在列线图上依次与第一电动机的旋转轴、发动机的输出轴及连结于车轴的驱动轴这三个轴连接;第二电动机,相对于驱动轴输入输出动力;蓄电池,与连接于第一电动机、第二电动机的电力线连接,与第一电动机、第二电动机进行电力的授受;及系统主继电器,进行蓄电池相对于电力线的连接及连接的解除。在该本发明的混合动力汽车中,在以关闭了系统主继电器的状态行驶时,执行无蓄电池行驶控制,即:对发动机进行控制以使得发动机以自持运转转速进行自持运转,对第一电动机进行控制以将基于行驶所要求的驱动力的转矩从第一电动机输出,对第二电动机进行控制以充放从由第一电动机充放的电力减去辅机电力而得到的电力。并且,在执行无蓄电池行驶控制的期间发动机的转速达到了低于比自持运转转速小的第一规定转速时,执行减小从第一电动机输出的转矩的绝对值的转矩调整控制。由于第一电动机作用于抑制发动机的转速的上升的方向,所以,通过执行减小从第一电动机输出的转矩的绝对值的转矩调整控制,能够抑制发动机的转速的减少,或者使发动机的转速增加。其结果,能够抑制在进行着无蓄电池行驶的期间产生发动机熄火。

在这样的本发明的混合动力汽车中,也可以是,在执行所述转矩调整控制的期间所述发动机的转速达到了比所述第一规定转速大的第二规定转速以上时,所述控制装置停止所述转矩调整控制的执行。这样一来,能够抑制减小从第一电动机输出的转矩的绝对值的转矩调整控制持续进行。

另外,在本发明的混合动力汽车中,也可以是,所述转矩调整控制中的从所述第一电动机输出的转矩的绝对值,是比将所述发动机在所述第一规定转速下能够输出的最大转矩换算于所述第一电动机的旋转轴而得到的转矩小的值。这样一来,通过执行转矩调整控制,能够更切实地使发动机的转速上升。

在本发明的混合动力汽车中,也可以是,在存在在执行所述无蓄电池行驶控制的期间执行了所述转矩调整控制的履历时,所述控制装置对所述发动机进行控制以使得所述发动机以比所述自持运转转速大的转速进行自持运转。这样一来,能够抑制在执行之后的无蓄电池行驶控制的期间执行转矩调整控制。

附图说明

图1是示出作为本发明的一实施例的混合动力汽车20的结构的概略的结构图。

图2是示出包括电动机mg1、mg2的电机驱动系统的结构的概略的结构图。

图3是示出正在以无蓄电池行驶模式行驶时的控制框的一例的框图。

图4是示出由电动机ecu40执行的转矩调整处理的一例的流程图。

图5是示出进行了转矩调整时的列线图的一例的说明图。

图6是示出由hvecu70执行的目标转速调整处理的一例的流程图。

图7是示出车速v与目标转速ne*的关系的一例的说明图。

具体实施方式

接着,使用实施例对本发明的具体实施方式进行说明。

【实施例】

图1是示出作为本发明的一实施例的混合动力汽车20的结构的概略的结构图,图2是示出包括电动机mg1、mg2的电机驱动系统的结构的概略的结构图。如图所示,实施例的混合动力汽车20具备发动机22、行星齿轮30、电动机mg1、mg2、变换器41、42、升降压转换器55、作为蓄电装置的蓄电池50、系统主继电器56、辅机蓄电池60及混合动力用电子控制单元(以下,称作“hvecu”)70。

发动机22构成为将汽油、轻油等作为燃料而输出动力的内燃机。该发动机22由发动机用电子控制单元(以下,称作“发动机ecu”)24进行运转控制。

虽然未图示,但发动机ecu24构成为以cpu为中心的微处理器,除了cpu之外,还具备存储处理程序的rom、暂时地存储数据的ram、输入输出端口及通信端口。向发动机ecu24,从输入端口输入对发动机22进行运转控制所需的来自各种传感器的信号,例如来自对发动机22的曲轴26的旋转位置进行检测的曲轴位置传感器23的曲轴角θcr等。从发动机ecu24,经由输出端口输出用于对发动机22进行运转控制的各种控制信号。发动机ecu24经由通信端口而与hvecu70连接。发动机ecu24基于来自曲轴位置传感器23的曲轴角θcr来运算发动机22的转速ne。

行星齿轮30构成为单小齿轮式的行星齿轮机构。行星齿轮30的太阳轮与电动机mg1的转子连接。行星齿轮30的齿圈与经由差速齿轮38连结于驱动轮39a、39b的驱动轴36连接。行星齿轮30的齿轮架经由减震器28而与发动机22的曲轴26连接。

电动机mg1构成为具有埋入永磁体的转子和卷绕有三相线圈的定子的同步发电电动机,如上所述,转子连接于行星齿轮30的太阳轮。电动机mg2与电动机mg1同样地构成为同步发电电动机,转子连接于驱动轴36。

如图2所示,变换器41连接于高电压侧电力线54a,具有六个晶体管t11~t16和在反方向上并联连接于晶体管t11~t16的六个二极管d11~d16。晶体管t11~t16以分别相对于高电压侧电力线54a的正极侧线和负极侧线成为源侧和漏侧的方式各两个地成对配置。另外,晶体管t11~t16的成对的晶体管彼此的连接点分别与电动机mg1的三相线圈(u相、v相、w相)的各相连接。因此,在对变换器41作用有电压时,通过利用电动机用电子控制单元(以下,称作“电动机ecu”)40调节成对的晶体管t11~t16的导通时间的比例,在三相线圈形成旋转磁场,驱动电动机mg1旋转。变换器42与变换器41同样,连接于高电压侧电力线54a,具有六个晶体管t21~t26和六个二极管d21~d26。并且,在对变换器42作用有电压时,通过利用电动机ecu40调节成对的晶体管t21~t26的导通时间的比例,在三相线圈形成旋转磁场,驱动电动机mg2旋转。

升降压转换器55连接于高电压侧电力线54a和低电压侧电力线54b,具有两个晶体管t31、t32、在反方向上并联连接于晶体管t31、t32的两个二极管d31、d32及电抗器l。晶体管t31连接于高电压侧电力线54a的正极侧线。晶体管t32连接于晶体管t31和高电压侧电力线54a及低电压侧电力线54b的负极侧线。电抗器l连接于晶体管t31、t32彼此的连接点和低电压侧电力线54b的正极侧线。升降压转换器55通过利用电动机ecu40调节晶体管t31、t32的导通时间的比例,从而将低电压侧电力线54b的电力升压并向高电压侧电力线54a供给,或者将高电压侧电力线54a的电力降压并向低电压侧电力线54b供给。在高电压侧电力线54a的正极侧线和负极侧线安装有平滑用的电容器57,在低电压侧电力线54b的正极侧线和负极侧线安装有平滑用的电容器58。

虽然未图示,但电动机ecu40构成为以cpu为中心的微处理器,除了cpu之外,还具备存储处理程序的rom、暂时地存储数据的ram、输入输出端口及通信端口。如图1所示,向电动机ecu40,经由输入端口输入对电动机mg1、mg2、升降压转换器55进行驱动控制所需的来自各种传感器的信号。作为向电动机ecu40输入的信号,例如可以举出来自对电动机mg1、mg2的转子的旋转位置进行检测的旋转位置检测传感器43、44的旋转位置θm1、θm2、来自对在电动机mg1、mg2的各相流动的电流进行检测的电流传感器45u、45v、46u、46v的相电流iu1、iv1、iu2、iv2、来自安装于电动机mg1的温度传感器45t的电动机温度tm1。另外,也可以举出来自安装于电容器57的端子间的电压传感器57a的电容器57(高电压侧电力线54a)的电压vh、来自安装于电容器58的端子间的电压传感器58a的电容器58(低电压侧电力线54b)的电压vl。从电动机ecu40,经由输出端口输出用于对电动机mg1、mg2、升降压转换器55进行驱动控制的各种控制信号。作为从电动机ecu40输出的信号,可以举出例如向变换器41、42的晶体管t11~t16、t21~t26的开关控制信号、向升降压转换器55的晶体管t31、t32的开关控制信号。电动机ecu40经由通信端口而与hvecu70连接。电动机ecu40基于来自旋转位置检测传感器43、44的电动机mg1、mg2的转子的旋转位置θm1、θm2来运算电动机mg1、mg2的电角度θe1、θe2、转速nm1、nm2。

蓄电池50例如构成为锂离子二次电池、镍氢二次电池,连接于低电压侧电力线54b。该蓄电池50由蓄电池用电子控制单元(以下,称作“蓄电池ecu”)52管理。

虽然未图示,但蓄电池ecu52构成为以cpu为中心的微处理器,除了cpu之外,还具备存储处理程序的rom、暂时地存储数据的ram、输入输出端口及通信端口。向蓄电池ecu52,经由输入端口输入对蓄电池50进行管理所需的来自各种传感器的信号。作为向蓄电池ecu52输入的信号,例如可以举出来自安装于蓄电池50的端子间的电压传感器51a的蓄电池50的电压vb、来自安装于蓄电池50的输出端子的电流传感器51b的蓄电池50的电流ib、来自安装于蓄电池50的温度传感器51c的蓄电池50的温度tb。蓄电池ecu52经由通信端口而与hvecu70连接。蓄电池ecu52基于来自电流传感器51b的蓄电池50的电流ib的累计值来运算蓄电比例soc。蓄电比例soc是能够从蓄电池50放出的电力的容量相对于蓄电池50的全部容量的比例。

系统主继电器56设置于低电压侧电力线54b中的比电容器58靠蓄电池50侧处。该系统主继电器56通过由hvecu70进行通断控制,进行蓄电池50与升降压转换器55侧的连接及连接的解除。

辅机蓄电池60构成为比蓄电池50低电压的蓄电池,例如铅蓄电池,连接于辅机系统电力线64。辅机系统电力线64经由dc/dc转换器62连接于低电压侧电力线54b,由dc/dc转换器62将低电压侧电力线54b侧的电力变换为低电压而进行供给。辅机系统电力线64与操舵装置等辅机66连接。

虽然未图示,但hvecu70构成为以cpu为中心的微处理器,除了cpu之外,还具备存储处理程序的rom、暂时地存储数据的ram、输入输出端口及通信端口。向hvecu70,经由输入端口输入来自各种传感器的信号。作为向hvecu70输入的信号,例如可以举出来自点火开关80的点火信号、来自对换档杆81的操作位置进行检测的换档位置传感器82的换档位置sp。另外,也可以举出来自对加速器踏板83的踩踏量进行检测的加速器踏板位置传感器84的加速器开度acc、来自对制动器踏板85的踩踏量进行检测的制动器踏板位置传感器86的制动器踏板位置bp、来自车速传感器88的车速v。从hvecu70,经由输出端口输出向系统主继电器56的驱动控制信号、向dc/dc转换器62的驱动控制信号等。如上所述,hvecu70经由通信端口而与发动机ecu24、电动机ecu40、蓄电池ecu52连接。

在这样构成的实施例的混合动力汽车20中,以混合动力行驶模式(hv行驶模式)、电动行驶模式(ev行驶模式)、无蓄电池行驶模式等行驶。hv行驶模式是伴随着发动机22的运转和电动机mg1、mg2的驱动而进行行驶的行驶模式。ev行驶模式是使发动机22停止运转并且驱动电动机mg2而进行行驶的行驶模式。无蓄电池行驶模式是在利用系统主继电器56切离了蓄电池50的状态下伴随着发动机22的运转和电动机mg1、mg2的驱动而进行行驶的行驶模式。

图3是示出在以无蓄电池行驶模式行驶时的控制框的一例的框图。在无蓄电池行驶模式中,hvecu70基于来自加速器踏板位置传感器84的加速器开度acc和来自车速传感器88的车速v来设定应该向驱动轴36输出的要求转矩td*、发动机22的目标转速ne*。要求转矩td*例如通过将加速器开度acc和车速v应用于预先确定了加速器开度acc、车速v及要求转矩td*的关系的映射而导出要求转矩td*来设定。目标转速ne*例如通过以车速v越大则其越大的方式将车速v应用于预先确定了车速v与目标转速ne*的关系的映射而导出目标转速ne*来设定。hvecu70关于要求转矩td*,向电动机ecu40发送,关于目标转速ne*,向发动机ecu24发送。电动机ecu40输入高电压侧电力线54a的电压vh、发动机22的转速ne、要求转矩td*来计算电动机mg1的转矩指令tm1*和电动机mg2的转矩指令tm2*。电动机mg1的转矩指令tm1*例如可以在将对要求转矩td*乘以驱动轴36的转速nd(相当于电动机mg2的转速nm2)而得到的行驶用功率pdrv加上辅机66所需的辅机用功率ph而得到的要求功率p*除以目标转速ne*后的转矩作用于行星齿轮30的齿轮架时作为太阳轮所需的转矩而计算出。电动机mg2的转矩指令tm2*例如可以通过将从对转矩指令tm1*乘以电动机mg1的转速nm1而得到的值减去辅机用功率ph后的值除以电动机mg2的转速nm2来计算出。电动机ecu40对变换器41的开关元件进行开关控制,以从电动机mg1输出相当于转矩指令tm1*的转矩,对变换器42的开关元件进行开关控制,以从电动机mg2输出相当于转矩指令tm2*的转矩。另外,电动机ecu40关于转矩指令tm1*向hvecu70发送。接收到转矩指令tm1*的hvecu70将在使转矩指令tm1*作用于行星齿轮30的太阳轮时从发动机22向曲轴26输出的转矩作为推定转矩teest来计算,将推定转矩teest向发动机ecu24发送。发动机ecu24计算基于来自hvecu70的目标转速ne*与发动机22的转速ne(实际转速)的差的反馈控制下的修正值,并且将计算出的修正值加到推定转矩teest中来设定发动机22的目标转矩te*。发动机ecu24执行发动机22的吸入空气量控制、燃料喷射控制、点火控制等以输出目标转矩te*。发动机22进行基于目标转速ne*与转速ne(实际转速)的差的反馈控制,所以发动机22的转速ne收敛于目标转速ne*。

接着,对抑制在正在以这样的无蓄电池行驶模式行驶时产生发动机熄火的情况下的动作进行说明。图4是示出在无蓄电池行驶模式时由电动机ecu40执行的转矩调整处理的一例的流程图。该例程在每次计算转矩指令tm1*、tm2*时反复执行。

在转矩调整处理中,首先,判定转矩调整标志ft是否为值0(步骤s100)。转矩调整标志ft在通过转矩调整处理正在进行转矩调整时设定值1,在不再进行转矩调整时设定值0。在没有进行转矩调整的通常时设定值0。现在,考虑没有进行转矩调整时。于是,在步骤s100中判定为转矩调整标志ft为值0。

在判定为转矩调整标志ft为值0时,判定发动机22的转速ne是否低于第一规定转速nref1(步骤s110)。在此,第一规定转速nref1设定为比能够使发动机22进行自持运转的最小转速稍大的转速,例如可以使用900rpm、1000rpm、1100rpm等。因此,第一规定转速nref1是比基于车速v设定的发动机22的目标转速ne*小的转速。作为发动机22的转速ne达到低于第一规定转速nref1的状态,可以考虑由于加速器踏板83被大幅踩下而设定大的要求转矩td*,伴随于此,对电动机mg1的转矩指令tm1*设定小的转矩(绝对值则是大的转矩)而进行控制,从而发动机22的转速ne被抑制而减少了的状态。

在步骤s110中判定为发动机22的转速ne低于第一规定转速nref1时,判断为有可能产生发动机熄火,进行步骤s120~s150的处理(转矩调整)。首先,对电动机mg1的转矩指令tm1*设定对计算出的电动机mg1的转矩指令tm1*加上规定转矩tset而得到的值与下限转矩tlim中的较大的一方(绝对值则是较小的一方)(步骤s120)。规定转矩tset例如可以设定为电动机mg1的额定最大转矩的20%、30%等正的值的转矩。关于对电动机mg1的转矩指令tm1*加上规定转矩tset而得到的值,由于转矩指令tm1*为负的值,所以其绝对值是比转矩指令tm1*小规定转矩tset。下限转矩tlim可以使用比在转速ne下进行着运转时从发动机22输出了能够输出的最大转矩时应该从电动机mg1输出的转矩小的转矩(负的值的转矩)。因此,步骤s120成为利用下限转矩tlim限制对电动机mg1的转矩指令tm1*加上规定转矩tset而得到的值(绝对值则是比转矩指令tm1*小规定转矩tset的值)的处理。通过设定这样电动机mg1的转矩指令tm1*,能够通过发动机ecu24的反馈控制而使发动机22的转速ne上升。

接下来,如上所述,通过将从对设定好的电动机mg1的转矩指令tm1*乘以电动机mg1的转速nm1而得到的值减去辅机用功率ph后的值除以电动机mg2的转速nm2来计算电动机mg2的转矩指令tm2*(步骤s130)。然后,对转矩调整标志ft设定值1(步骤s140),登记进行了转矩调整的履历(步骤s150)。

图5是示出进行了转矩调整时的列线图的一例的说明图。图中,左的s轴表示电动机mg1的转速nm1即行星齿轮30的太阳轮的转速,c轴表示发动机22的转速ne即行星齿轮30的齿轮架的转速,r轴表示电动机mg2的转速nm2即行星齿轮30的齿圈(驱动轴36)的转速。另外,“ρ”表示行星齿轮30的齿轮比(太阳轮的齿数/齿圈的齿数)。而且,r轴的两个粗线箭头表示从电动机mg1输出并经由行星齿轮30作用于驱动轴36的转矩和从电动机mg2输出并作用于驱动轴36的转矩。除此之外,向上粗线箭头表示正的转矩,向下粗线箭头表示负的转矩。实线表示进行转矩调整之前的状态,虚线表示进行了转矩调整之后的状态。转矩调整通过减小电动机mg1的转矩指令tm1*的绝对值来进行,所以,若减小实线的状态下的图中s轴的向下的转矩,则c轴的发动机22的转速ne变大,达到虚线的状态。这样,通过减小电动机mg1的转矩指令tm1*的绝对值能够使发动机22的转速ne上升。其结果,能够抑制产生发动机熄火。

接着,判定转矩调整标志ft是否为值1(步骤s160)。由于在进行了步骤s120~s150的转矩调整时对转矩调整标志ft设定了值1,所以,在步骤s160中判定为转矩调整标志ft为值1。在该情况下,判定发动机22的转速ne是否为第二规定转速nref2以上(步骤s170)。第二规定转速nref2是比第一规定转速nref1大的值,例如可以使用比第一规定转速nref1大300rpm、400rpm、500rpm的转速。在发动机22的转速ne低于第二规定转速nref2时,判断为仍然需要转矩调整,结束转矩调整处理。在该情况下,在步骤s100中判定为转矩调整标志ft不是值0,所以进行步骤s120~s150的处理(转矩调整)。因此,到发动机22的转速ne达到第二规定转速nref2以上为止,反复进行步骤s120~s150的处理(转矩调整)。

另一方面,在发动机22的转速ne为第二规定转速nref2以上时,判断为无需转矩调整,对转矩调整标志ft设定值0(步骤s180),结束转矩调整处理。在该情况下,在步骤s100中判定为转矩调整标志ft为值0,在步骤s110中判定为发动机22的转速ne为第一规定转速nref1以上。因而,虽然执行步骤s160,但是因为转矩调整标志ft为值0,所以在步骤s160中做出否定的判定,结束转矩调整处理。即,在对转矩调整标志ft设定了值0的状态下发动机22的转速ne为第一规定转速nref1以上时,不进行步骤s120~s150的处理(转矩调整),结束转矩调整处理。

在实施例的混合动力汽车20中,当在无蓄电池行驶模式下进行转矩调整时,进行基于hvecu70的发动机22的目标转速ne*的调整。图6是示出由hvecu70执行的目标转速调整处理的一例的流程图。

当执行目标转速调整处理时,hvecu70判定是否存在转矩调整的履历(步骤s200)。该判定可以通过是否登记有转矩调整的履历来进行。在判定为没有转矩调整的履历时,判断为无需进行发动机22的目标转速ne*的调整,结束本处理。另一方面,在判定为存在转矩调整的履历时,判定目标转速ne*是否低于第三规定转速nref3(步骤s210)。第三规定转速nref3是比第一规定转速nref1大的转速,可以使用被认为无论如何设定电动机mg1的转矩指令tm1*都不会产生发动机熄火的转速。在目标转速ne*为第三规定转速nref3以上时,判断为处于不会产生发动机熄火的状态,结束本处理。在目标转速ne*低于第三规定转速nref3时,判断为有可能产生发动机熄火,将使目标转速ne*增加了增加转速δn而得到的转速与第三规定转速nref3中的较小的一方设定为目标转速ne*(步骤s220),结束本处理。由此,在正在执行转矩调整时,目标转速ne*变大,所以,反馈控制中的修正值被设定得大,能够促进发动机22的转速ne的上升。另外,能够抑制在停止了转矩调整之后发动机22的转速ne再次成为低于第一规定转速nref1。

图7是示出车速v与目标转速ne*的关系的一例的说明图。实线表示没有进行目标转速ne*的调整时的车速v与目标转速ne*的关系,点划线表示进行了目标转速ne*的调整时的车速v与目标转速ne*的关系。在没有进行目标转速ne*的调整时,目标转速ne*随着车速v变大而变大。另一方面,在进行了目标转速ne*的调整时(存在转矩调整的履历时),在车速v小且比实线增加了增加转速δn而得到的转速低于第三规定转速nref3时,将比实线增加了增加转速δn而得到的转速设为目标转速ne*,在比实线增加了增加转速δn而得到的转速为第三规定转速nref3以上时,将第三规定转速nref3设为目标转速ne*。并且,在车速v大且实线成为第三规定转速nref3以上时,将实线的转速设为目标转速ne*。

在以上说明的实施例的混合动力汽车20中,在无蓄电池行驶模式下发动机22的转速ne成为了低于第一规定转速nref1时,进行转矩调整以使得电动机mg1的转矩指令tm1*变大(绝对值则是变小)。由此,能够使发动机22的转速ne上升,能够抑制产生发动机熄火。其结果,能够抑制在进行着无蓄电池行驶的期间产生发动机熄火。

在实施例的混合动力汽车20中,通过进行转矩调整以使得电动机mg1的转矩指令tm1*变大(绝对值则是变小),在发动机22的转速ne达到了第二规定转速nref2以上时,停止使电动机mg1的转矩指令tm1*变大(绝对值则是变小)的转矩调整。由此,能够抑制转矩调整持续进行。

在实施例的混合动力汽车20中,在进行转矩调整以使得电动机mg1的转矩指令tm1*变大(绝对值则是变小)之后,在目标转速ne*低于第三规定转速nref3时,将使目标转速ne*增加了增加转速δn而得到的转速与第三规定转速nref3中的较小的一方设定为目标转速ne*。由此,在执行转矩调整时,能够增大反馈控制中的修正值,能够促进发动机22的转速ne的上升。另外,在停止了转矩调整之后,能够抑制发动机22的转速ne再次成为低于第一规定转速nref1。而且,在发动机22的转速ne为第三规定转速nref3以上时,不使目标转速ne*增加,所以能够抑制不必要的目标转速ne*的增加。

在实施例的混合动力汽车20中,设为具备升降压转换器55,但也可以不具备它。

在实施例的混合动力汽车20中,设为具备发动机ecu24、电动机ecu40、蓄电池ecu52及hvecu70,但也可以将它们中的至少两个构成为单个电子控制单元。

对实施例的主要的要素与在用于解决课题的技术方案一栏所记载的发明的主要的要素的对应关系进行说明。在实施例中,电动机mg1相当于“第一电动机”,发动机22相当于“发动机”,行星齿轮30相当于“行星齿轮机构”,电动机mg2相当于“第二电动机”,蓄电池50相当于“蓄电池”,系统主继电器56相当于“系统主继电器”,hvecu70、发动机ecu24及电动机ecu40相当于“控制装置”。

此外,关于实施例的主要的要素与在用于解决课题的技术方案一栏所记载的发明的主要的要素的对应关系,实施例是用于对用于实施在用于解决课题的技术方案一栏所记载的发明的方式进行具体说明的一例,所以不是限定在用于解决课题的技术方案一栏所记载的发明的要素。即,关于在用于解决课题的技术方案一栏所记载的发明的解释应该基于该栏的记载来进行,实施例不过是在用于解决课题的技术方案一栏所记载的发明的具体的一例。

以上,使用实施例对本发明的具体实施方式进行了说明,但本发明不受这样的实施例的任何限定,当然能够在不脱离本发明的要旨的范围内以各种方式实施。

产业上的可利用性

本发明可利用于混合动力汽车的制造产业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1