涉及钇-硷土-铋-铜氧化物的新方法和新产物的制作方法

文档序号:3948290阅读:355来源:国知局
专利名称:涉及钇-硷土-铋-铜氧化物的新方法和新产物的制作方法
本文是1988年2月12日申请的USSN155,340号的延续部分,而该文件又是1987年9月11日的申请的USSN095,083号的延续部分,两份申请在此以整体参考的形式结合在一起。
本发明涉及超导陶瓷的制备和(或)改良。
至少有一种是超导体的两种或多种组合物在高温下一起反应形成一种或多种新的组合物。例如,两种已知的超导体,YBa2Cu3氧化物和Bi2Sr2CaCl2氧化物在950℃在一起反应,生成一种新的化合物,即Y,Bi,和Ba面心立方晶体氧化物,后者不具有超导作用。Bi2Sr2CaCl2氧化物完全消失。假如在反应之前YBa2Cu2是过量存在的,则总的组成仍然是超导的,因为剩余的YBa2Cu3氧化物是“连续”相而且仍然是超导的。在另一个实例中,要锻烧的产物是由所需的金属的碳酸盐的共沉淀混合物所形成的。
新的YBiBa氧化物包着YBa2Cu2氧化物,这样对于改良的超导体提供了一定程度的对热和机械冲击以及对大气接触的保护。
很久以来就已知,当金属处于低温条件下,某些金属的有效电阻有时会基本消失。特别令人感兴趣的是金属和金属氧化物在一定的低温下能够导电而实际上没有电阻,即称之为超导体,例如已知某些金属当冷却到开尔温标约4°时,具有超导性,而有些铌合金在约15°K,有些在高约23°K时具有超导性。
在体系La-Ba-Cu-O中(J.G.BednorZ和K.A.Muller,Zeit,Phys.B.64 189-193(1986))和在体系Y-Ba-Cu-O中(Wu等人,Phys.Rev.Lett.58 908-910〔1987〕)超导性的发现刺激人们去寻找其他体系,特别是着眼于用其他元素来取代早先材料中所用的稀土(RE)元素。例如,已有报道用Bi和Tl代替RE(papers in press)。在制备Tl-Ba-Cu-O体系中,Z,Z,Sheng和A.M.Hermann(在液氮温度以上不含稀土的Tl-Ba-Cu-O体系中的超导性)首先将BaCl3和CuO混含并研磨,得到的产物加热,然后,间断地再研磨而得到一种均匀黑色Ba-Cu-氧化物粉末,然后再将其与Tl2O3混合,研磨和加热而形成一种超导材料,注意到Tl氧化物部分熔化并部分气化。
Sheng和Hermann在一篇论文中也报导了Tl-Ca-Ba-Cu-O超导体系,“在120KTl-Ca-Ba-Cu-O体系中的整体超导性”(来自作者们的通信),作者们指导“在120K以上的稳定与可重复的整体超导性和在100K以上的零电阻”。根据此论文,此组成是通过将Tl2O3,CaO,和BaCu3O4在一起混合和研磨而制备的,研磨过的混合物压成片状,然后在流动的氧气中加热,产物冷下来时发现是超导的。
另外,Hazen等人的论文“Tl-Ca-Ba-Cu-O体系中的100K超导相”(来自作者们的通信),它涉及两个超导相,Tl2Ca2Ba2Cu3O10+δ和Tl2Ca1Ba2Cu2O8+δ,两个都具有接近120K的开始Tc和在100K的零电阻,制备包括将Tl2O3,CaO和BaCu3O4(或Ba2Cu3O5)在一起研磨,接着加热。
在HighTcUpdate卷2第6期,页1,1988年3月15日的“NataBane”中进一步报告了Tl-Ca-Ba-Cu-O体系的性质。
Wang等人在比较碳酸盐,柠檬酸盐和草酸盐到达High-Tc金属氧化物La2-xSrxCuO4超导体的化学途径(Inorg.Chen.26,1474-1476(1987)一文中揭示了一种碳酸盐沉淀技术,沉淀剂是K2CO3,根据此论文,必须反复地洗沉淀,显然这在生产工作中是一个缺点,之所以需要洗,是因为钾会逆向影响最后材料的超导性。假如在共沉淀碳酸盐过程中重复洗涤(如下觯チ吮担庠谖业姆椒ㄖ惺且桓黾焕乃鹗А 从技术观点看,显然共沉淀碳酸盐会提供更高的均匀性,然而,问题的技术解决遇到了严重的困难。例如,Wang等人的方法,用碳酸钾(或碳酸钠),需要无数的洗涤,即使这样,在陶瓷基体中仍明显地留下了可以觉察的碱量,正如已指出的,连续地洗涤除去钡,在我的方法中是不能实行的,不仅不能由阳离子衍生出足量的碳酸盐,而这些阳离子也会全部烧掉。例如,碳酸铵不起作用,因为需要PH在7以下以防止生成四氨铬铜,但是在这些条件下,生成碳酸氢盐离子,结果生成碳酸氢钡,它微溶而破坏了所要求的化学计量。另一方面,季铵碳酸盐能简单和干净地生成所要求的金属碳酸盐而不会形成令人讨厌铬合物或配位化合物副产物,而且保留了可靠而精确的所要求的化学计量,很容易为进一步加工回收包着的颗粒。
就我所能确定的资料而言,两个已知的超导体还从来没有一道反应过。
本发明的概念不限于本文所列举的实施例,还期望通过形成新化合物扩展到其他超导体的二元,三元体等。在发明概念中考虑的材料包含L-M-A氧化物体系,这里L至少是一个三价金属,包括Bi,Sc,V和其他稀土;M至少是一个二价金属,包括Ba,Be,Mg,Ca和Sr;而A至少是一个多价金属包括Nb,Cu,Ag和Au。
这些可能在“熔体”中反应,或者整个混合物可以通过碳酸盐共沉淀形成,而可能是容易和适当的,且并不要求所有的起始材料都是超导体。
在图中

图1表示通过“复合”方法制备的,X自0增加到0.429的(YBa2Cu3)(1-x)(Bi2Sr2CaCu2)xOr的X射线粉末衍射图。
图2表示“X=0.429”复合试样的X-射线粉末衍射图与文献中报导的Cd3Bi10O18的衍射图的比较。
图3表示用“共沉淀碳酸盐”方法制备的材料的X-射线粉末衍射图。
图4表示用“复合”方法产生的X=0.158试样的电阻对于温度的曲线。
图5表示用“复合”方法制备的X=0.429试样的电阻对于温度的曲线。
图6A-6D表示一些发明的产物断面的电子显微图和元素图。
如上所述,本发明的方法是一种通用方法,上面用两个已知的超导体,即YBa2Cu3和Bi2Sr2CaCu2的氧化物来举例说明。
Bi2Sr2CaCu2O8+x与Ba2Cu3O7-x在950℃反应生成一个新的,a=8.55埃,包含Y,Bi和Ba立方面心相,这个相显然与Cd3Bi10O18的高温型是同晶型的,反应的试样在组成式(YBa2Cu3)(1-x)(Bi2Sr2CaCu2)xOy中的X值高达0.2都是超导的,具有Tc约为83K。X=0.2相应于一个材料具有接近60%重量立方相和40%重量残余的YBa2Cu3O7-x。立方相在77K以上不是超导的,但当通过一个溶液一相途径制备时,表现出在近120K时有一个半导体至金属的转变,对于0<x≤0.2组合物临界温度表现与X无关。
YBa2Cu3O7-x(“Y-123”和Bi2Sr2CaCu2O8+x(“Bi-2122”))都是超导体,具有Tc>77K,但是它们具有相当不同的晶体结构(1-2),(参考资料收集在下面)已有相当数量的文献关于过渡金属离子取代进入Y-123结构(3-6),但是,尽我所知还没有关于两个超导体材料在一起反应的。
本发明包含了Y-123和Bi-2212在两个材料的熔点之间的温度(950℃)下反应的产物,本发明也包含了以个别榉纸鹗舻难慰嫉模ü渤恋硖妓嵫畏椒ê铣傻南嗨谱楹衔锏牟牧稀#ǜ谩肮渤恋硖妓嵫巍狈椒ㄔ谙挛拿枋觯 制备了通式为(YBa2Cu3)(1-x)(Bi2Sr2CaCu2)xOy的两组材料,列于表1中。
表Ⅰ制备方法,总体组合物和Tc对于(YBa2Cu3)(1-x)(Bi2Sr2CaCu2)xOy试样合成方法XTc(零电阻)/K复合物0.05383复合物0.07783复合物0.15883复合物0.20083复合物0.429半导体共沉淀0.05383(非-零)共沉淀0.07783共沉淀0.15883(非-零)共沉淀0.20085(非-零)共沉淀0.429半导体到约120K以下,金属在一组中,Y-123和Bi-2212的复合物是这样合成的将各超导体以正确的比例在一个玛瑙研钵中一起研磨,再将其在20,000磅/平方英寸下压成片,再煅烧,开始的超导体(W.R.Grace和Co.Super-Tc-Y123和SuperTc-Bi2212)粒径尺寸为1-10μm,和纯度>99.9%。煅烧程序包括在950℃加热6小时,经6小时冷却至600℃,然后再经8小时冷却至400℃。在另一组中,样品的制备是通过包含以正确计量比混合的金属硝酸盐溶液中作为碳酸盐共沉淀出来,此方法在上面提过的1988年2月12日存档的U.S.S.N.155,340号参考文件中描述。在此方法中混合的金属硝酸盐(Y,Ba,Cu,Bi,Sr和Ca)的水溶液与季铵碳酸盐(例如四甲基铵碳酸盐)的水溶液反应,通过将硝酸盐和季铵碳酸盐分别缓慢地加入一个反应容器,通过滴加四甲基铵氢氧化物来保持后者的PH值在7.5-10的范围内,沉淀的碳酸盐在110℃干燥,然后在空气中540℃下加热两小时,用此方法产生的混合氧化物和碳酸盐再在氧气中在800℃加热12小时,经两小时冷却至600℃,再经8小时冷却至400℃,此灰黑色粉末然后压成片,再经类似于所描述的用于复合物片的相同条件煅烧。金属硝酸盐(AldrichChemicalCo.)纯度≥99.9/。在复合物和共沉淀的样品中的X值都有意地限制在0.5,以便避免(富铋)试样在所选择的特定的加工温度下的熔化。
X-射线粉末衍射图是用Philip APD 3600衍射仪(石墨单色仪和theta-补偿狭缝)得到的,用CuKα射线和2度2θ分-1的扫描速率,所报告的线的位置用硅内标(SRM-640b)校正过。Y-123的浓度是通过假定来自反应试样中Y-123的相的线的强度相同于来自Y-123本身的线强度而计算出来的,而且还用基于一个Y-123和Bi-2212的二元混合物的X-射线质量吸收系数作一校正曲线。
扫描电子显微图是在装有Kevex7000能量分散的X-射线萤光(EDX)附件的Hitachi型5570仪器上得到的。所有的图象是用20千伏电子束能量记录的,A·C·磁敏感性数据是用一QuantumTechnologyCorp·MeissnerProbe在20千赫芝频率和一个Oe。极大a·c场下取得的,电阻率测量是用四一点电阻仪(Keithiey580)进行,用铟与试样片接触。
图1给出Y-123起始材料和所有的复合物试样的X-射线衍射图,正如所预期的,Y-123的特征线的强度随X增加而减弱,更惊人的是,当X=0.429这些线全部消失,而被一表现出立方图的主要相所取代,同时还有CuO和一个未鉴定相的痕迹(即相对强度10%),此立方相在X=0.053时已清楚地可见,没有一个试样中见到Ri-2212超导体的特征线,立方图按a=8.55埃的立方面心结构指标化(见表Ⅱ)此相表现为与Kutvitskii等人(Ⅰ)所报告的Cd3Bi10O18的高温型是同晶型的,然而镉化合物报导为具有4.42埃的a/2晶胞尺寸。
表Ⅱ在所得到的(YBa2Cu3)(1-x)(Bi2Sr2CaCu2)xOy中的立方相的粉末X-射线衍射线用Cu-Kα射线h k l d(观察) d(计算) I/IO1114.9344.93682004.2764.27522203.0273.0231003112.5782.57884002.1392.138333311.9631.96254221.7461.745514401.5101.511225311.4471.44546001.4241.42526201.3511.352184441.2341.23456421.1411.14323共沉淀组材料所相应的X-射线衍射图示于图3中,组与组之间非常强的相似相说明立方相的形成更主要是热力学控制现象而非扩散控制过程。在共沉淀组中,可以见到与未反应的碳酸钡在20-24°的线有关的小峰,也可看到在复合物组中,Y-123宄中絏=0.158,即使在低水平的-2212掺入情况下,表现裂解单峰,这表明,除了形成立方结构之外,Y-123相在Bi-2212存在下将变为四方结构。
根据X-射线衍射图计算出具有X=0.2的复合物试样的Y-123浓度为40(±10)重量%,这意味着约 1/2 的Y-123已与Bi反应而形成立方相。
图6-a给出从X=0.158复合物材料制成的片的断面扫描电子显微图,清楚地见到两个不同的形貌一个光滑的,黑色的烧结区(A),和由约1微米分散的白色颗粒组成的区域(B),图6-b和6-c相应地给出同一区域铋和铜的X-射线萤光图,铜表现为主要与光滑区相连系而铋与分散颗粒相连系,这两个区域的EDX谱表现A包含Y,Ba,Cu,和痕量的Ca和Sr,而B包含Y,Bi和Ba与痕量的Ca和Cu,这两个组成表现为相应地与Y-123和立方相相连系。
图6-d示出用共沉淀制备的相当于X=0.158的材料。在此试样中,大而光滑的暗区被5-10微米的“块”所代替,它们象复合物试样中那样包含Y,Ba,Cu和痕量的Ca和Sr,但是它们也包含了痕量的铋。Bi的存在可能诱发Y-123相采纳在此材料X-射线图中见到的四方结构,此行为曾经在曾掺有铁的Y-123中观察到(3-6)在Y-123中以少至2%的铁来取代Y-123中的铜能够导致一个正交一至一四方的转变,而不损失超导性,B颗粒也存在于共沉淀的试样中而具有与复合物材料中相似的Y-Bi-Ba组成(还有痕量的Ca和Cu)。
用S.E.M观察到,在X=0.429,相应于立方相的B颗粒在结构中占优势,正如前述,对于复合物和共沉淀试样,此相(通过EDX)都主要包含Y,Bi和Ba,还有痕量的Ca和Cu,剩下的铜主要以小而光滑的块存在,这在复合材料中仅包含痕量的其它元素,而在共沉淀试样中包含高浓度的锶和钙,表现出在这个复杂体系中的两个相都以固体溶液存在,而在两相之间元素的具体分配是一个动力学控制现象,取决于合成的起始材料。
表Ⅰ总结了电阻率对于温度的测量,开始的Y-123表现在92K时的零电阻,所有的试样,除去具有最高铋浓度(X=0.429)的那些试样之外,表现在从-88K开始的温度有一电阻的突降。所有的复合物试样在83K表现此降落达到可测量的零电阻(例见图4)。这表明一个相互连结的超导相的存留。有三个共沉淀试样表现出与超导的复合物试样相似形状的电阻对温度的曲线,然而,在这些材料中,突然的电阻降在83K停止在一个小的有限值,此残余的电阻可能是由于在超导的颗粒之间的一BaCO3薄层(其存在由×RD表明)两个X=0.429试样都表现出温度低至-120K时有一增加的电阻。在复合物试样中,此趋势继续到所研究的最低温度(81K),而在共沉淀试样中,电阻的温度系数表现在-120K时改变符号(见图5),在所有其他样品中,电阻降低与在交流磁化测量所测得的大的抗磁信号相关。然而,在X=0.429的共沉淀材料没有检测到这样的信号。因而电阻降低是由于半导体-金属转移所致。虽然在所有研究温度下,相应复合物样品似乎是半导体,图5显示在120K存在的电阻波动,表示此样品的一小部分也可经历相似的转移。样品间的差别可能是由于在立方体相固体溶液组合物中变化极小之故。
从以上可证明,在950℃,Bi-2212完全与Y-123反应,在固体溶液中产生一个新的8.55埃的面心立方相,含有钇,铋和钡与微量的铜和钙。
XRD分析X=0.2复合物样品表明仅有立方和Y-123相存在,后者约占总量的40%(重量),很显然这样品在83K超导,且含有约60%(重量)非超导材料(如电阻和抗磁测量所示)。无论是复合物还是共沉淀超导材料的Tc在83K相当恒定而Bi组份无关。令人惊奇的是,给定的广延固体溶液形式和由Ca和Bi取代阳离子,在该复合物中是以将Y-123从斜方晶系转变到四方晶体结构。
参考文献1.Siegrist,T.;Sunshine,S.;Murphy,D.W.;Cava,R.J.;Zahurak,S.M.Phys.Rev.B1987,35,7137-9.
2.Subramanian,M.A.;Torardi,C.C.;Calabrese,J.C.;
Gopalakrishnan,J.;Morrissey,K.J.;Askew,T.R.;
Flippen,R.B.;Chowdhry,U.;Sleight,A.W.Science1988,239,1015-7.
3.Maeno,Y.;Tomita,T.;Kyogoku,M.;Awaji,S.;Aoki,Y.;Hoshino,K.;Minami,A.;Fujita,T.Nature1987,328,512-4.
4.Oda,U.;Fujita,H.;Toyoda,H.;Kaneko,T.;
Kohara,T.;Nakada,I.;Asavama,K.
JapanJ.Appl.Phys.1987,26,L1660-3.
5.Maeno,Y.;Kato,M.;Aiki,Y.;Fujita,T.
JapanJ.Appl.Phys.1987,26,L1982-4.
6.Takayama-Muromachi,E.;Uchida,Y.;Kato,K.
JapanJ.Appl.Phys.1987,26,L2087-90.
7.Kutvitskii,V.A.;Kosov,A.V.;Skorikov,V.M.;
Koryagina,T.I.Inorg.Mater.(USSR)1975,11,1880-3.
权利要求
1.Y,Bi和Bi氧化物的组合物,该组合物呈面心立方相,a≈8·55埃,且在大约120°K从半导体转化成金属。
2.由约60%重量权利要求1所述组合物和约40%重量超导性YBa2Cu3氧化物组成的组合物,后者呈互相联接相。
3.包含至少两种超导体反应形成一种含有非超导组份的超导产物的方法。
4.按照权利要求3所述方法,至少一种超导反应物是含有L-M-A的氧化物,其中L至少是一种三价金属,包括Bi和稀土族元素,其包括钪和钇,M至少是一种二价金属,包括Ba,Be,Mg,Ca和Sr;且A至少是一种多价金属,包括Nb,Cu,Ag和Au。
5.制备Bi,Sr,Ca,Y,Ba和Cu的超导氧化物的方法,包括(A)Bi,Sr,Ca,Y,Ba和Cu的硝酸盐水溶液与化学计量当量的季铵碳酸盐反应,形成Bi,Sr,Ca,Y,Ba和Cu的共沉淀碳酸盐且有过量的YBa2Cu3;(B)回收并干燥该碳酸盐;且(C)煅烧经干燥的碳酸盐形成含有Y,Bi和Ba氧化物的组合物,该组合物呈面心立方相,a=8.55埃,且在大约120°K有半导体到金属转移,并且也含有作为相互连接相的YBa2Cu3超导氧化物。
6.包括使超导的斜方晶系YBa2Cu3氧化物与超导的Bi2Sr2CaCu2氧化物反应形成超导产物的方法,这个超导产物的基本组成是(Ⅰ)含有Y,Bi和Bi氧化物的非超导化合物与痕量的Sr,Ca和Cu,并且具有面心立方相,a=8.55埃,在大约120°K具有半导体到金属的转移;且(Ⅱ)在整个产物中有四方晶体超导的YBa2Cu3氧化物作为相互连接相。
7.按照权利要求6的方法,采用反应物(YBa2Cu3)(1-x)(Bi2Sr2CaCu2)x的比例,当X=0.2时,在最终产生物中Ⅰ占约60%(重量)。
8.按照权利要求3,4,5,6或7的方法,其中煅烧是在大约950℃进行。
全文摘要
两种或多种超导体一起反应形成一非超导相包裹着的残余超导相。例如YBa
文档编号B60Q1/26GK1037986SQ8910226
公开日1989年12月13日 申请日期1989年4月13日 优先权日1988年4月14日
发明者尼古拉斯·戴维·斯潘塞 申请人:格雷斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1