内燃机的输出状态检测装置的制作方法

文档序号:3965455阅读:256来源:国知局
专利名称:内燃机的输出状态检测装置的制作方法
技术领域
本发明涉及一种用于检测内燃机输出状态的内燃机输出状态检测装置。
背景技术
近年来,具有发动机和电动发电机(作为电动机或发电机起作用)的车辆例如所谓混合式车得到实用化。在这样的混合式车中,为了在效率良好的发动机区域运行发动机,通过行星齿轮连接发动机和电动发电机,控制电动发电机,将发动机转速维持在效率良好的发动机转速。
因此,本发明的目的在于提供一种在具有内燃机和电动机的车辆等可检测内燃机输出状态的输出状态检测装置。
作为检测例如燃料阀和点火装置的问题导致内燃机气缸内不发火(内燃机的输出状态)的装置,具有公开于特开平2-49955号公报的技术。该技术用于检测内燃机的输出轴的回转角速度,根据回转角速度的异常判别发生不发火的异常气缸。然而,在如上述那样具有发动机和电动发电机的车辆中,由电动发电机控制发动机的转速,所以,如该技术那样根据发动机的转速检测燃烧状态(输出状态)较困难。
或者,为了稳定地运行内燃机,降低排出废气内的有害成份,检测燃料特性。由于燃料特性的变化使内燃机的输出改变,所以,可作为内燃机的输出状态中的一个检测燃料特性。作为检测燃料特性的燃料特性检测装置,已知有特开平9-256898号公报记载的装置。特开平9-256898号公报记载的燃料特性检测装置通过辅机驱动时的发动机转速的变化检测燃料特性。
当燃料特性为重质时,在冷起动时等情况下,如燃料附着于进气管(进气孔)内壁等,则附着的燃料难以挥发。如不检测燃料特性并根据该检测结果修正燃料喷射量,则空燃比可能变淡。为此,内燃机的输出和运行状态变得不稳定,排出废气中含有较多有害物质。
然而,在具有发动机和电动发电机(车轮驱动用和发电用)的车辆中,由电动发电机控制发动机的转速,所以,发动机转速的变化非常小,从发动机转速的变化判定燃料特性非常困难。
本发明的特征在于具有内燃机、由内燃机驱动产生电力的发电机、检测发电机的转矩反力的转矩检测装置、及检测内燃机输出状态的输出状态检测装置,输出状态检测装置根据由转矩检测装置检测的电动机的转矩反力可检测内燃机的输出状态。
电动机接受内燃机的输出,所以,电动机的转矩反力反映出内燃机的输出。为此,按照本发明,可根据电动机的转矩反力检测内燃机的输出状态。
图面的简单说明

图1为搭载本发明内燃机的输出状态检测装置的混合式车的主要部分的示意构成图。
图2为图1装置的动力分配机构的示意构成图。
图3为示出图2的动力分配机构构成部分的转速关系的列线图。
图4为示出本发明内燃机输出状态检测装置的燃烧状态检测动作的流程图。
图5为示出本发明内燃机输出状态检测装置的燃烧状态检测动作的流程图。
图6示出发动机转矩随时间变化的图。
图7为示出本发明内燃机的输出状态检测装置的燃料特性检测动作(发动机稳定状态时)的流程图。
图8为示出起动时燃料喷射量TAU的计算处理的流程图。
图9为示出起动时燃料喷射量TAU的计算处理的流程图。
图10为示出暖机和高负荷修正系数FWLOTP计算循环的流程图。
图11为示出起动后增量修正系数FASE计算循环的流程图。
图12为示出空燃比反馈修正系数FAF计算循环的流程图。
图13为示出空燃比反馈控制的空燃比传感器输出值A/F、延迟计数器CDLY、空燃比标志F1、空燃比反馈修正系数FAF的变化的时间图。
图14为示出壁面附着燃料修正系数FMW计算循环的流程图。
图15为示出本发明的内燃机的输出状态检测装置的燃料特性检测动作(发动机过渡状态时)的流程图。
该车辆为所谓的混合式车,作为驱动源具有内燃机即发动机1和电动发电机(MG)2。另外,该车辆还具有接受发动机1的输出动力进行发电的电动发电机(MG)3。这些发动机1、MG2、及MG3由动力分配机构4连接。动力分配机构4将发动机1的输出动力分配到MG3和驱动轮5。另外,动力分配机构4还具有将MG2的输出动力传递到驱动轮5的功能和作为通过减速器7和驱动轴6传递到驱动轮5的驱动力的变速器的功能。动力分配机构4将在后面详细说明。
MG2为交流同步电动机,由交流电驱动。变流器9用于将贮存于蓄电池8的电力从直流变换成交流,供给到MG2,并用于将由MG3发电的电力从交流变换成直流,贮存到蓄电池8。MG3基本上具有与上述MG2大体相同的构成,具有作为交流同步电动机的构成。MG2主要用于输出驱动力,而MG3主要用于接受发动机1的输出动力发电。
MG2主要产生驱动力,但也可利用驱动轮5的回转发电(再生制动),作为发电机起作用。此时,在驱动轮5施加制动(再生制动),所以,通过与脚踏制动(液压制动)和发动机制动并用,可对车辆进行制动。另一方面,MG3主要接受发动机1的输出动力发电,但也可作为通过变流器9接受蓄电池8的电力进行驱动的电动机起作用。
在发动机1的曲轴15安装用于检测活塞位置和发动机1的转速的曲柄位置传感器21。曲柄位置传感器21连接在发动机ECU11。另外,在MG2和MG3的各驱动轴安装用于分别检测其回转位置和转速的回转传感器(解析器)22、23。回转传感器22、23分别连接到电动机ECU12。
图2示出上述动力分配机构4、发动机1、MG2、及MG3。在这里,由行星齿轮装置构成动力分配机构4,所以,下面也将动力分配机构4说成行星齿轮装置4。行星齿轮装置4由太阳齿轮4a、配置于该太阳齿轮4a周围的行星齿轮4b、配置于该行星齿轮4b的外周的齿圈4c、及保持行星齿轮4b的齿轮托架4d构成。
发动机1的曲轴15通过缓冲器16接合到中心轴17,该中心轴17与齿轮托架4d接合。即,发动机1的输出动力输入到行星齿轮装置4的齿轮托架4d。另外,MG2在内部具有定子2a和转子2b,该转子2b与齿圈4c接合,转子2b和齿圈4c与减速器7的第1齿轮7a接合。
减速器7由第1齿轮7a、转矩传递链7b、第2齿轮7c、第3齿轮7d、传递链末端齿轮7e构成。即,电动机2的动力输入到行星齿轮装置4的齿圈4c,通过减速器7和差速齿轮18传递到驱动轴6。结果,MG2成为时常与车轴6连接的形式。
MG3与MG2同样,在内部具有定子3a和转子3b,该转子3b与太阳齿轮4a接合。即,发动机1的输出动力由该行星齿轮装置4分配,通过太阳齿轮4a输入到MG3的转子3b。另外,发动机1的输出动力由该行星齿轮装置4分配,通过齿圈4c传递到驱动轴6。
通过控制MG3的发电量,控制太阳齿轮4a的回转,可将行星齿轮装置4全体用作无级变速器。即,发动机1或(和)MG2的输出动力由行星齿轮装置4变速后输出到驱动轴6。另外,MG3的发电量(作为电动机起作用的场合的耗电量),可控制发动机1的转速。在这里,可控制发动机1的转速将其维持在良好的能量转换效率区域。
图3为示出行星齿轮装置4的各齿轮的转速和回转方向(即连接到各齿轮的发动机1、MG2、MG3的转速和回转方向)的平衡的列线图。在这里,纵轴表示各齿轮(太阳齿轮4a、齿圈4c、齿轮托架4d)的转速,即发动机1、MG2、MG3的转速。另一方面,横轴表示各齿轮的齿轮比,如太阳齿轮4a的齿数与齿圈4c的齿数的比为ρ,则与图3中齿轮托架4d对应的轴位于将太阳齿轮4a与齿圈4c的轴按1∶ρ内分的座标位置。发动机1和齿轮托架4d的转速Ne、MG2和齿圈4c的转速Nm、MG3和太阳齿轮4a的转速Ng满足以下关系。Ng=Nm-(Nm-Ne)1+ρρ---(1)]]>停车时,如发动机1停止,则MG2、MG3也停止,所以,处于图3中的线A所示那样的状态。当起动时或低速行走时,利用在低回转状态下可产生高转矩的MG2的特性,使发动机1停止,由蓄电池8的电力仅驱动MG2进行行走(线B)。对于混合式车,在刚由起动钥匙启动后,为了触媒暖机等,即使在停车状态下也使发动机运行一定时间。在这样的停车状态下起动发动机时,使MG2停止,将MG3用作起动机使发动机1回转,从而起动发动机(线C)。
稳定行走时,利用发动机1的动力行走,MG3基本不回转、不发电,MG2根据需要提供辅助驱动力(线D)。在从稳定行走进行到加速时等高负荷行走时,提高发动机1的转速,由MG3发电,增大MG2的辅助动力,利用发动机1和MG2的驱动力运行(线E)。制动时,减速过程中由MG2发电,进行将动能作为电力回收的再生发电。另外,在蓄电池8的充电量下降的那样的场合,即使为轻负荷时,驱动发动机1,利用发动机1的输出动力由MG3发电,通过变流器9对蓄电池8充电。
MG2、MG3的转速控制通过参照回转传感器22、23的输出由电动机ECU12控制变流器9来进行。这样,发动机1的转速也可得到控制。
这些控制由几个电子控制装置(ECU)进行(参照图1)。作为混合式车的特征由发动机1进行的驱动和MG2、MG3的电动驱动,由主ECU10综合进行控制。由主ECU10平衡发动机1的驱动和MG2、MG3的电动驱动,以获得最佳能量转换效率,为了控制发动机1、MG2、及MG3,各控制指令输出到发动机ECU11和电动机ECU12。
另外,发动机ECU11和电动机ECU12将发动机1、MG2、及MG3的信息传送到主ECU10。在主ECU10还连接用于控制蓄电池8的蓄电池ECU13和用于控制制动器的制动器ECU14。蓄电池ECU13监视蓄电池8的充电状态,在充电量不足时,向主ECU10输出充电要求指令。接受充电要求的主ECU10为了对蓄电池18充电,进行使发电机3发电的控制。制动器ECU14进行车辆的制动,与主ECU10一起控制由MG2进行的再生制动。
当发动机1的输出转矩Te、MG2的输出转矩Tm、MG3的发电产生的转矩反力Tg都不为0并平衡时(稳定状态时),满足以下关系。Tm=11+ρTe---(2)]]>Tg=ρ1+ρTe---(3)]]>上述转矩反力为发电时由MG3产生的反力。另外,Tg由于通常沿与Te、Tm相反的方向作用,所以为负值。
另一方面,当三者都不平衡时,相应于与平衡时的转矩的差,各构成要素的转速变化。此时,如发动机1的回转角速度为ωe,MG3的回转角速度为ωg,包含齿轮的惯性力矩分别为Ie、Ig,则下式成立。Te=Iedωedt+1+ρρ(Igdωgdt-Tg)---(4)]]>对于惯性力矩Ie、Ig,将由实验预先求出的数值存储在主ECU10的ROM,使用时将该值取出。另外,发动机1的回转角速度ωe由曲柄位置传感器21检测。MG3的回转角速度为ωg由回转传感器23检测。
下面说明以上那样构成的混合式车的发动机1的输出状态检测动作。首先,说明作为内燃机输出状态检测燃烧状态的场合。图4为该燃烧状态检测动作的流程图。根据该流程图的处理仅在发动机1动作时进行。
在步骤S11,判定是否刚起动发动机。如处于起动后的规定时间内,则移动到步骤S12,判定是否发动机转速Ne上升后经过一定时间。这是因为,如发动机转速Ne没有充分上升或上升后时间不长,则处于暖机状态或MG3作为起动机正使发动机1回转的状态,发动机1内的燃烧不稳定,所以,不需要进行不发火判定。因此,在没有经过一定时间的场合,跳过其后的处理而结束。
在经过一定时间的场合,转移到步骤S13,比较检测出的MG3的转矩反力Tg和平衡转矩反力Tgreq。平衡转矩反力Tgreq,指在运行发动机1以输出对发动机1要求的发动机要求转矩Tgreq的状态下,处于相对该要求转矩平衡的状态下的MG3所产生的转矩反力。下面对其进行详细说明。
主ECU10根据驾驶者的加速操作,参照该时刻的车速、蓄电池容量、辅机输出等,计算出分别对发动机1和MG2要求的转矩Tereq、Tmreq。并决定满足这些要求的转矩Tereq、Tmreq的发动机1和MG2的各转速Ne、Nm。此时,从式(1)决定MG3的转速Ng。控制电动机ECU12,通过变流器9控制流往MG2、MG3的电流、频率,从而调整MG2、MG3的转速Nm、Ng。这样,发动机1的转速也可调整到规定的转速。
此时,如发动机1的燃烧状态稳定,发动机1的实际输出Te与要求转矩Tereq一致。然而,如发动机1的燃烧状态不稳定、产生不发火,则实际的输出转矩Te低于要求转矩Tereq。此时,MG3的转矩反力Te的绝对值比与发动机1的要求转矩Tereq平衡时的值Tgreq的绝对值小。
因此,通过比较两者,可判定不发火。转矩反力Tg可从由回转传感器23测定的MG3的转速和MG3的发电量计算出。也可在MG3设置转矩传感器。如从MG3的转速和发电量计算出的转矩反力Tg的绝对值比与发动机1的要求转矩Tereq平衡的平衡转矩反力Tgreq的绝对值小,则转移到步骤S19,判定为不发火。不是这样的场合,跳过其后的处理而结束。
当发动机1起动后经过充分的时间时,转移到步骤S14,判定发动机处于自立运行状态。在这里,发动机自立运行指不由MG3进行发动机1的转速控制的状态,发动机1的转速与通常搭载的发动机同样,由发动机ECU11控制。以下的步骤S15-S17的处理为在由MG3进行发动机1的转速控制时特有的处理,所以,当发动机进行自立运行时,跳过这些处理转移到步骤S18。
当发动机1不进行自立运行时,转移到步骤S15。在步骤S15,判断MG3的转速控制的控制量。例如,当使用PID控制时,判定P控制量的变化量。P控制量急剧变化时,为MG3的转速及发动机1的转速和输出转矩自身急剧变化的状态。为此,当P控制量急剧变化时,不论是否有无不发火,由于MG3的转速(发动机1的转速和输出转矩)的变动变大,不能将这些变化用于不发火判定。因此,当控制量急剧变化时,不进行不发火判定,跳过其后的处理。在控制量变化小的场合,转移到步骤S16。
在步骤S16中,将转矩反力Tg与临界值Tgx比较。如上述那样,当不发火时,发动机1的输出转矩Te的绝对值变小,MG3的转矩反力Tg的绝对值也变小。因此,如转矩反力Tg与规定的临界值Tgx相比绝对值小,则判定不发火的可能性高,转移到步骤S17,如不是这样,则判定燃烧状态稳定,跳过其后的处理。在这里,当发动机1和MG3的转速稳定时(稳定状态下),临界值Tgx的计算根据式(3)进行,当发动机1和MG3的转速变化时(处于过渡状态时),必须根据式(4)进行。
当肯定步骤S16判定不发火的可能性高时,为了以更高的精度判定有无不发火,在步骤S17和步骤S18参照发动机1的转速。在这里,发动机1不为自立运行,由MG3进行转速控制,发动机1处于不发火产生的回转变化变小的状态。为此,在步骤S17,将用于以下步骤S18的判定回转变化的临界值设定为比发动机自立运行中的临界值低的临界值。
接着,进行步骤18的处理。首先,在肯定步骤S14后的步骤S18中,判定是否比自立运行发动机1的场合的回转变化临界值大。当回转变化在临界值以上时,转移到步骤S19,判定不发火。
另一方面,步骤S16被肯定,在由步骤S17改变回转变动临界值后的步骤S18中,判定是否比发动机1不自立运行时的回转变化临界值大,当回转变化在临界值以上时,转移到步骤S19,判定不发火。当不发火发生的频率比发动机1的循环数高时,主ECU10将其内容显示在仪表显示系,结束处理。
也可不进行步骤S16的判定处理,而是进行与步骤S13同样的判定处理来代替它。步骤S13的判定处理根据对于发动机1的要求转矩Tereq进行判定,所以,具有在刚起动发动机1后稳定地进行判定的优点。
在步骤S14中,判定发动机1正处于自立运行中,但例如也可每过规定时间或在检测出不发火以后的循环中,强制地将发动机1切换到独立运行。在这些场合,由于停止MG3对发动机1进行的转速控制,所以,可仅从回转变动检测发动机1的不发火。
另外,在由MG3对发动机1进行回转控制的过程中,不发火判定也可不使用发动机1的回转变动,而是仅使用步骤S16或步骤S13对转矩变动的检测。在连续发生未达到完全不发火的不稳定燃烧的场合,发动机1的转速变化即使小也明显地表示出转矩的不足。通过检测转矩变动,可检测出这样连续的不稳定燃烧。
也可将与稳定行走时的发动机1的转速Ne和MG3的转速Ng相应的转矩反力的临界值Tgx作为图存放在主ECU10,稳定行走时利用该图进行步骤S16的判定处理。同样,减速时也可通过修正这些图的值,求出临界值Tgx,进行判定处理。
在发动机1不进行自立运行时,由于发动机1的转速变化在MG3的控制中得到缓和,所以,即使产生不发火也不能由与自立运行相同的回转变动进行判定。本发明在这样的场合,通过减小发动机1转速的变动判定临界值,即使在缓和的条件下也可进行正确的判定。发动机1的转速的变动与转矩变动相比,对不发火的反应迅速,所以,单次的不发火检测精度高。因此,虽然最好并用两者,但在不发火判定中也可仅使用其中一个。
Tgx、Tgreq、回转变动的临界值等各种临界值随大气压、内燃机的冷却水温、吸入空气量、发动机转速、空燃比、点火时间、燃料特性、发电机的发电电力或输出功率等变化。因此,最好将它们中的一个或组合作为参数改变临界值。这样,可与运行状态无关地进行正确的不发火判定。另外,当如上述那样采用行星齿轮4等那样的动力分配机构时,也可在上述参数考虑动力分配机构的动力分配状态。
大气压由大气压传感器24检测。冷却水温由安装于发动机1的冷却水温传感器25检测。吸入空气量从由设于进气管30上的压力传感器27检测出的进气管压力检测。吸入空气量也可由安装于发动机1的进气管30上空气流量计检测。发动机转速由曲柄位置传感器21检测。空燃比由设于发动机1的排气管31上的空燃比传感器26检测。
发动机1的火花塞29的点火通过从发动机ECU11将点火信号送出到点火线圈28,所以,点火时间可根据曲柄位置传感器21的输出由ECU11检测。燃料特性的检测将在后面详述。MG3的发电电力和输出由发电机ECU12检测。动力分配状态由对行星齿轮装置4的驱动状态进行控制的发动机ECU11检测。
如上述那样,利用发动机1的输出转矩Te和MG3的转矩反力Tg之间的式(3)、(4)那样的规定关系,可从MG3的转矩反力Tg求出发动机1的输出转矩Te。当不发火使燃烧状态变化时,发动机1的输出转矩Te变化。因此,燃烧状态可根据发动机1的输出转矩Te的变化判定,并可根据MG3的转矩反力Tg最终地判定燃烧状态。
另外,燃烧状态的变化使发动机1的转速产生变化。与稳定的燃烧状态的场合相比,在燃烧状态发生变化的场合,即使为同一转速,发动机1的输出转矩Te也不同。因此,通过在燃烧状态的判定中同时使用发动机1的转速,可以良好的精度进行判定。
另外,发动机1的输出转矩Te由于与发动机1的转速对应,所以,发动机1的输出转矩Te的控制可通过控制发动机1的转速进行。此时的发动机1侧的输出转矩Te的目标值(要求转矩Tereq)可从控制的转速计算。如上述那样,可从MG3的转矩反力Tg计算发动机1的实际输出转矩Te。在稳定的燃烧状态下,要求转矩Tereq与实际的输出转矩Te一致,但当发生燃烧异常时,实际的输出转矩Te相对要求转矩Tereq变小。为此,通过比较两者,可判定燃烧状态。
在发动机1的自立运行状态下,发动机1的回转不从发动机外部接受控制。因此,当发动机1的燃烧状态发生变化时,它作为发动机1的转速变化表现出来,所以,仅从发动机1的转速变化可判定燃烧状态。
大气压、发动机1的冷却水温、吸入空气量、发动机转速、空燃比、点火时间、燃料特性、MG3的发电电力、MG3的输出等对发动机1的运行状态产生影响的各种参数不同时,即使为同一转速,获得的输出转矩也不同。另外,由于燃烧稳定度的容许性也发生变化,所以,通过改变判定时的Tgx、Tgreq、回转变化的临界值等各种临界值,可极力细微地对应运行状态的不同情况。
在发动机1的转速控制的控制量在规定量以上的场合,MG3的转速Ng从目标转速的偏离大,在这样的场合,当进行控制时,MG3的转速Ng及发动机1的转速Ne急剧变化。发动机1的输出转矩Te也相应地急剧变化。因此,不论利用转速和转矩变化中的哪一个进行燃烧状态的判定,由于控制时的转速变化、转矩变化大,所以难以正确检测燃烧状态产生的变化,因此,最好暂时停止燃烧状态的判定。
如对MG3的转速Ng进行PID控制时的P成份变化量大,则MG3的转速Ng从目标转速的偏离大。由于P成份变化量的检测较容易,所以,在PID控制时的P成份变化量大的场合,上述发动机1的转速控制的控制量最好在规定值以上。
当一时停止通过控制MG3的回转进行发动机1的转速控制时,与发动机1的燃烧状态的变化相应,发动机1的转速产生变化。因此,在停止由MG3对发动机1进行的转速控制的场合,可从该发动机1的转速变化判定燃烧状态的变化。
下面,说明作为内燃机的输出状态检测各气缸的燃烧状态的场合。图5为该燃烧控制动作的流程图。根据该流程图进行的处理仅在发动机1动作时进行。
首先,在步骤S21,检测转矩反力Tg和处于燃烧行程的气缸。转矩反力Tg如上述那样,可从由回转传感器23检测的MG3的转速和MG3的发电量由电动机ECU12计算。而且,也可在MG3设置转矩传感器。另外,处于燃烧行程的气缸可根据曲轴位置传感器21的输出由发动机ECU11判定。然后,在步骤S22,根据转矩反力Tg,在稳定运行时(稳定状态时)由式(3)计算发动机转矩Te,在发动机1的转速变化时(过渡状态时)由式(4)计算发动机转矩Te。
在步骤S23,比较实际的发动机1的输出转矩Te对发动机1的要求转矩Tereq。此时的发动机1的转速控制如上述图4所示场合的步骤S13中进行的说明。另外,发动机ECU11在进行发动机1的转速控制的同时,对应于要求转矩Tereq和发动机转速Ne获得规定的空燃比地控制燃料供给量。然而,当每个气缸的燃料供给量产生偏差等使燃烧条件不同时,使每个气缸产生的转矩形成差别,最终表现为发动机转矩的变化。
图6示出在4缸发动机1中仅第1气缸以稳定状态进行浓空燃比燃烧时发动机1的输出转矩Te的时间变化曲线。在进行浓空燃比燃烧的气缸产生燃烧行程时的发动机1的输出转矩Te比在其它气缸进行燃烧行程时即要求转矩Tereq大。另一方面,在产生稀空燃比燃烧的场合,输出转矩Te变小。因此,通过比较要求转矩Tereq与实际的输出转矩Te,可判定燃烧状态。
在步骤S24,根据比较结果,当判定某一气缸为浓空燃比燃烧时,减小燃料喷嘴的燃料喷射量修正系数,以削减导入到该气缸的燃料量。另一方面,在将某一气缸判定为淡空燃比燃烧时,提高燃料喷射量修正系数,以增大导入到该气缸的燃料量。修正系数的变更可与转矩成比例,也可以阶梯方式变化。
通过使控制每个气缸的燃料供给量以减小转矩变化,可消除各气缸的空燃比偏差,可在理想配比(ストイキ)区域运行所有气缸,所以,废气排放也得到改善。
在上面的说明中,从MG3的转矩反力Tg推定实际的发动机1的输出转矩Te,根据该输出转矩Te与要求转矩Tereq的比较进行控制,特别是在油门开度、发动机转速、吸入空气量没有变化的稳定运行时,转矩反力Tg应为一定,所以,也可判定燃烧行程时的转矩反力Tg从其它气缸的燃烧行程时的平均值偏离的气缸,对该气缸改变燃料喷射量修正系数。此时的修正系数的变化量与偏差对应即可。对于油门开度、发动机转速、吸入空气量变化的场合,也可参照前后具有燃烧行程的气缸的燃烧行程时的转矩反力Tg加以推定。
在这里,主要对调整燃料喷射量的控制进行了说明,但也可调整吸入空气量,组合两者,从而调整空燃比。或者,也可通过控制燃料喷射时间和点火时间,从而控制各气缸的燃料状态。
此外,作为控制的燃烧条件的例,在具有将废气的一部分返回到进气侧的废气回流控制装置(EGR)的场合,可控制废气回流量,在发动机1为直喷发动机等稀薄燃烧内燃机的场合,可控制旋涡和滚转等进气流,在具有可变气门正时机构的内燃机的场合,可改变阀正时。
如上述那样,利用发动机1的输出转矩与MG3的转矩反力Tg之间的式(3)、(4)那样的规定关系,可从MG3的转矩反力Tg求出发动机1的输出转矩Te。当不发火、浓空燃比燃烧等使燃烧状态变化时,发动机1的输出转矩Te变化。各气缸的输出转矩Te在燃烧行程中为峰值。因此,各气缸的燃烧状态可从燃烧行程的输出转矩Te进行判定。该输出转矩Te可从MG3的转矩反力Tg求出,所以,可从MG3的转矩反力Tg和处于燃烧行程的气缸最终判定各气缸的燃烧状态。
另外,按照上述控制,判定各气缸的燃烧状态后,通过调整燃烧状态被判定为不稳定的气缸的燃烧条件,例如空燃比、燃料喷射量、燃料喷射时间、点火时间、吸入空气量,可朝使燃烧状态稳定的方向进行控制。这样,可抑制各气缸的燃烧状态的偏差导致的转矩变化。
下面,说明作为内燃机的输出状态检测燃料特性的场合。图7示出燃料特性判定处理的流程图。下面沿图7说明燃料特性的判定处理。
首先,判定发动机1是否处于运行状态(步骤100)。这里所说发动机运行状态,指除发动机停止状态和起动状态外的发动机燃烧状态。如发动机1处于运行状态,则判定是否处于燃料切断状态(步骤101)。当处于燃料切断状态时,由于作为检查对象的燃料不燃烧,所以,当然不能判定燃料特性。
如不为燃料切断状态,则判定发动机回转控制实施条件是否成立(步骤102)。回转控制实施条件具体地说为不控制MG3的发电量或放电量、没有对发动机1提出自立运行要求(例如空调作动开始要求、发动机水温上升要求)、或混合式车的车速不在规定车速以下。如回转控制实施条件成立,则为了将发动机1的转速维持在规定区域内,实施发动机回转控制(步骤103)。
接着,判定燃料特性判定条件是否成立(步骤104)。燃料特性判定条件在这里为是否处于刚冷起动后的暖机模式过程中。如燃料特性判定条件成立,则检测MG3的转矩反力Tg(步骤105)。MG3的转矩反力Tg根据通过变流器9经由电动机ECU12将MG3的发电量(作为发电机起作用时的耗电量)取入到主ECU10内的发电量和由回转传感器23检测出的MG3的转速计算出。
接着,从MG3的转矩反力Tg利用上述式(3)计算发动机1的输出转矩Te(步骤106)。根据冷却水水温、吸入空气量、发动机转速、空燃比、点火时间中的至少一个值(或这些值的组合)判断发动机1的运行状态,从该运行状态计算发动机1的输出转矩Te-cal(步骤107)。
在这里,从发动机1的运行状态计算出输出转矩Te-cal,但也可将与输出转矩Te-cal相当的一定值作为转矩判定值进行控制。
然后,求出根据发动机1的运行状态计算出的输出转矩Te-cal与根据MG3的转矩反力Tg计算出的发动机1的输出转矩Te的差,判定该差是否比预先设定的设定基准值大(步骤108)。
在输出转矩Te-cal与输出转矩Te的差比设定基准值大的场合,由于燃料特性为重质,可判断从MG3的转矩反力Tg计算出的实际输出转矩Te比从发动机1的运行状态推定的输出转矩Te-cal低。当判断燃料为重质时,燃料特性指示值FQIND为1,存放在主ECU10内的备份RAM内(步骤109)。
另一方面,在根据发动机1的运行状态计算出的输出转矩Te-cal与根据MG3的转矩反力Tg计算出的发动机1的输出转矩Te的差比设定基准值小的场合,可认为燃料不为重质,使燃料特性指示值FQIND为0,存放在主ECU10内的备份RAM内(步骤110)。这样判定的燃料特性反映在其后的发动机1的运行中。
上述ECU10-12在判定燃料特性时与其它各种传感器和各种装置一起作为转矩检测装置和燃料特性判定装置(第1转矩检测装置和第2转矩检测装置)起作用。转矩检测装置为从该发电量(MG3作为电动机起作用时其耗电量)和转速检测MG3的转矩反力Tg的装置。燃料特性判定装置为根据检测出的MG3的转矩反力Tg判定燃料特性(燃料是否为重质)的装置。另外,燃料特性判定装置具有第1转矩检测装置和第2转矩检测装置。第1转矩检测装置为根据检测出的MG3的转矩反力Tg计算发动机1的输出转矩Te的装置,第2转矩检测装置为从发动机1的运行状态计算发动机1的输出转矩Te-cal的装置。
由于发动机1的输出转矩Te随燃料特性变化,所以,可根据MG3的转矩反力Tg判定燃料特性(燃料是否为重质)。在这里,在刚进行冷起动后检测燃料特性。这是因为,刚进行冷起动后,随着燃料特性的不同,在进气管内壁的附着量和燃料的挥发量的差很明显,所以,燃料特性的不同使发动机1的输出转矩的变化幅度变大,使输出转矩的变化更易于检测。如易于检测发动机1的输出转矩的变化,则可更为确实地检测燃料特性。另外,发动机1充分暖机后,发动机1的温度足够高,所以,燃料的挥发量也产生大的差别。为此,刚冷起动后易于检测燃料特性。
另外,如在这里说明的那样,可进行积极地将发动机1的转速维持在规定区域的控制。此时,可通过MG3的转矩反力Tg检测发动机1的输出转矩的变化,确实地检测燃料特性。
为了将发动机1的转速维持在规定区域,也可并用对发动机1的吸入空气量进行控制的节气门开度控制。然而,如为了将发动机1的转速维持在规定区域使用MG3的转矩反力Tg,则燃料特性的不同反映在MG3的转矩反作用Tg,所以,可确实地判定燃料特性。在仅从发动机1的转速判定燃料特性的场合,当要进行将转速维持在规定区域的那样的控制时,转速变化消失(或变得非常小),所以,燃料特性的判定非常困难。
如上述那样,在这里,首先在刚进行冷起动后的稳定状态时判定燃料特性。MG。当最初对混合式车点火时,为了进行发动机1和废气净化触媒等的暖机,进行运行发动机1一定时间的暖机模式,如在该暖机模式过程中形成稳定状态,则此时可进行燃料特性的判定。废气净化触媒的暖机的原因在于,一般情况下,废气净化触媒不达到活性温度以上则不能起到净化作用,通过进行暖机,可升温到该活性温度。
或者,在刚进行冷起动后需要对蓄电池8充电的场合,驱动发动机1,由发电机3发电,所以,在这样的场合形成稳定状态,可判定燃料特性。或者在刚进行冷起动后,为了判定燃料特性,也可进行积极地形成稳定状态的燃料特性判定模式。
另外,只要不供给燃料,燃料特性就不变化,所以,每次点火时只要进行一次就足够。也可按每几次点火进行一次的比例实施。或者也可取入检测燃料残量的传感器的输出,在燃料残量增加(即进行供油)时进行燃料特性的判定。最好都在刚进行冷起动后进行,原因与上述相同。
如在这里所述的那样,发动机1的输出转矩不仅可从MG3的转矩反力Tg计算出,也可从发动机1的运行状态计算出。这样,可从MG3的转矩反力Tg和发动机1的运行状态分别计算出发动机1的输出转矩,将其进行比较,从而可进行更高精度的燃料特性判定。
即,根据发动机1的运行状态计算出的输出转矩Te-cal为看成在本来的运行状态下输出的输出转矩推定值。与此不同,根据MG3的转矩反力Tg计算出的输出转矩Te可认为是发动机1实际输出的输出转矩。比较该两者时,产生偏差可认为是由燃料特性导致偏差。这样,可进行精度比仅根据MG3的转矩反力Tg判定燃料特性时更高的判定。
下面,说明上述燃料特性定如何反映到发动机的运行中。
在混合式车的场合,组合发动机1和MG2的输出动力(也可能仅使用其中任一方)驱动车辆。为此,在由主ECU10综合计算出驱动车辆所需驱动力后,该必要驱动力分配成对发动机1的要求部分和对MG2的要求部分。之后,可从主ECU10分别向发动机ECU11、电动机ECU12、及蓄电池ECU13发出驱动指示。下面,说明根据该驱动指示的发动机1的运行。
判定的燃料特性反映在发动机1的燃料喷射量。通常,燃料喷射量TAU通过按各种修正系数对基本喷射量进行修正而获得。下面,依次说明内燃机起动时的起动时的燃料喷射量TAU的计算和内燃机一旦起动后的起动后燃料喷射量TAU的计算。
首先,说明起动时燃料喷射量TAU的计算。
燃料特性由于在发动机1运行状态下检测出,所以,在计算起动时燃料喷射量TAU时,使用前次的燃料特性的检测结果。
起动时燃料喷射量TAU由下式(5)计算。
TAU=TAUST×KNEST×KBST×KPA…(5)在这里,起动时基本燃料喷射量TAUST相应于内燃机的冷却水温THW和燃料特性决定,由下面说明的各种修正系数修正该起动时基本燃料喷射量TAUST,最终获得起动时燃料喷射量。起动时基本燃料喷射量TAUST作为图存放在发动机ECU11内的ROM。
转速修正系数KNEST由于相应于发动机1的转速NE决定,为用于相应于转速NE使起动时燃料喷射量TAU变化的修正系数。蓄电池电压系数KBST相应于蓄电池电压VB决定。当蓄电池电压VB下降时,燃料泵的性能下降,所以,由蓄电池电压修正系数KBST修正该能力下降导致的不足量。大气压修正系数KPA相应于大气压PA决定。由于空气密度(吸入空气量)随大气压PA变化,所以,由大气压修正系数KPA修正该空气密度的变化产生的必要燃料的变化。
图8示出起动时燃料喷射量TAU的计算的流程图。
首先,从各种传感器读入冷却水温THW、转速NE、蓄电池电压VB、大气压PA(步骤200)。另外,从发动机ECU11的备份RAM读入示出燃料特性的燃料特性脂示值FQIND(步骤201)。从读入的冷却水温THW和燃料特性指示值FQIND检索发动机ECU11内的图,读入起动时基本燃料喷射量TAUST(步骤202)。接着,从转速NE计算转速修正系数KNEST(步骤203),从蓄电池电压B计算蓄电池电压修正系数KBST(步骤204),从大气压PA计算大气压修正系数KPA(步骤205)。
利用从图读入的起动时基本燃料喷射量TAUST、计算的转速修正系数KNEST、蓄电池电压修正系数KBST、大气压修正系数KPA,从上述式(5)计算起动时燃料喷射量TAU(步骤206),根据计算出的起动时燃料喷射量TAU,从发动机ECU11对进行燃料喷射的喷嘴输出控制信号(步骤207)。这样,在起动时燃料喷射量TAU通过起动时基本燃料喷射量TAUST反映进行了判定的燃料特性(燃料特性指示值FQIND)。
下面说明起动时燃料喷射量TAU的计算。
在刚由上述起动时燃料喷射量TAU起动发动机1后,应重新对燃料特性进行检测。起动时燃料喷射量TAU根据刚进行发动机1起动后重新检测的燃料特性计算。
发动机1起动后,当转速NE超过规定值时,起动后燃料喷射量TAU由下式计算。
TAU=TP×(1+FWLOTP)×FAF+FMW…(6)在这里,基本燃料喷射量TP根据内燃机的吸入空气量Q和转速NE决定,由下面说明的各种修正系数修正该基本燃料喷射量TP,最终获得起动时燃料喷射量TAU。基本燃料喷射量TP作为图存放在发动机ECU11内的ROM。
暖机和高负荷修正FWLOTP用于修正暖机和高负荷时的燃料喷射量。空燃比反馈修正系数FAF用于根据设于排气管31上的空燃比传感器26的输出使发动机1的空燃比成为规定的目标空燃比。壁面附着燃料修正系数FMW根据进气管压力PM和燃料特性决定,考虑燃料在进气管和气缸内的壁面的附着量与燃料从进气管和气缸内的壁面的剥离量的平衡,修正燃料喷射量。在发动机1的运行处于过渡状态的场合,燃料在进气管和气缸内的壁面的附着量与燃料从进气管和气缸内的壁面的剥离量的平衡被破坏时,由壁面附着燃料修正系数FMW修正燃料喷射量。
由于暖机时燃料雾化变差,暖机和高负荷修正系数FWLOTP用于提高燃料喷射量,进行稳定的燃烧,另外,由于高负荷时废气温度变高,所以,用于提高喷射量,由燃料的雾化使废气温度下降,计算按下述式(7)进行。
FWLOTP=(FLWB+FLWD)×KWL+FASE…(7)暖机增量修正系数FWLB根据冷却水温THW和燃料特性决定,作为图存放在发动机ECU11内的ROM。暖机增量衰减系数FLWD用于逐渐衰减由暖机和高负荷修正系数FWLOTP产生的增量相当的量,为不受燃料特性影响的系数。
暖机增量转速修正系数KWL根据转速NE决定,用于根据发动机1的转速修正由暖机和高负荷修正系数FWLOTP产生的增量相当的量。暖机增量转速修正系数KWL也是不受燃料特性的影响的系数。起动后增量修正系数FASE根据冷却水温THW和燃料特性决定,用于提高与在刚起动发动机1后在干燥的进气管和气缸内的壁面附着燃料产生的不足量相当的量,作为图存放在发动机ECU11内的ROM。起动后增量修正系数FASE逐渐衰减。
图9示出计算起动后燃料喷射量TAU的流程图。
首先,从各种传感器读入吸入空气量Q和转速NE(步骤300),从读入的吸入空气量Q和转速NE检测发动机ECU11内的图,读入基本燃料喷射量TP(步骤301)。另外,也有从进气管压力PM和转速NE决定基本燃料喷射量TP的场合。接着,依次计算暖机和高负荷修正系数FWLOTP、空燃比反馈修正系数FAF、及壁面附着燃料修正系数FMW(步骤302-304)。暖机和高负荷修正系数FWLOTP、空燃比反馈修正系数FAF、及壁面附着燃料修正系数FMW计算在后面说明。
利用从图读入的基本燃料喷射量TP、计算的暖机和高负荷修正系数FWLOTP、空燃比反馈修正系数FAF、及壁面附着燃料修正系数FMW,从上述式(6)计算起动后燃料喷射量TAU(步骤305)。根据计算出的起动后燃料喷射量TAU从发动机ECU11向进行燃料喷射的喷嘴输出控制信号(步骤306)。
图10示出上述步骤302的暖机和高负荷修正系数FWLOTP的计算的流程图。
首先,从各种传感器读入冷却水温THW和转速NE(步骤400)。另外,从发动机ECU11的备份RAM读入示出燃料特性的燃料特性指示值FQIND(步骤401)。从读入的冷却水温THW和燃料特性指示值FQIND,检索发动机ECU11内的图,读入暖机增量修正系数FWLB(步骤402)。接着,从转速NE计算暖机增量转速修正系数KWL(步骤403),计算起动后增量修正系数FASE(步骤404)。起动后增量修正系数FASE的计算将在后面说明。
利用从图读入的暖机增量修正系数FWLB、预先决定的暖机增量衰减系数FLWD、计算的暖机增量转速修正系数KWL及起动后增量修正系数FASE,从上述式(7)计算暖机和高负荷修正系数FWLOTP(步骤405)。
图11示出上述步骤404的起动后增量修正系数FASE的计算流程图。
首先,从传感器读入冷却水温THW(步骤500),从发动机ECU11的备份RAM读入示出燃料特性的燃料特性指示值FQIND(步骤501)。从读入的冷却水温THW和燃料特性指示值FQIND检测发动机ECU11内的图,读入起动后增量修正系数FASE(步骤502)。利用预先决定的起动后增量衰减系数KASE逐渐衰减从图读入的起动后增量修正系数FASE(步骤503、504)。在步骤504中,对于衰减了的起动后增量修正系数FASE为负的那样的场合,使起动后增量修正系数FASE为0(步骤505)。
图12示出上述步骤303中的空燃比反馈修正系数FAF的计算流程图。
图12所示循环以规定的时间间隔(例如数微秒)反复进行。在发动机1的排气管31配置用于从排出废气中的氧浓度等检测发动机1的空燃比的空燃比传感器26。根据该空燃比传感器26的输出,生成空燃比反馈修正系数FAF,根据生成的空燃比反馈修正系数FAF修正起动后燃料喷射量TAU。空燃比传感器一般为氧传感器,氧传感器可从废气中的氧浓度检测出发动机1的空燃比与理论空燃比相比是浓还是淡。
当空燃比比理论空燃比淡(淡空燃比)时,增加空燃比反馈修正系数FAF(即逐渐变浓),当空燃比比理论空燃比浓(浓空燃比)时,使空燃比反馈修正系数FAF减少(即逐渐变淡)。这样,根据从空燃比传感器26的检测结果获得的空燃比反馈修正系数FAF对起动后燃料喷射量TAU进行反馈控制,所以,即使检测吸入空气量Q的空气流量计等多少产生一些误差,也可将空燃比维持在目标空燃比(通常为理论空燃比)近旁。
首先,判定是否处于由空燃比反馈修正系数FAF进行的反馈(F/B)控制实施条件下(步骤600)。F/B控制实施条件为空燃比传感器26活性化(作为空燃比传感器的氧传感器等为了发挥其功能必须达到规定的活性温度),及暖机运行结束等。在F/B控制实施条件不成立的场合,即否定了步骤600时,将空燃比反馈修正系数FAF设为1.0(步骤628),终止该循环。
在F/B控制实施条件成立的场合,即肯定步骤600时,为了由空燃比反馈修正系数FAF进行F/B控制,读入空燃比传感器26的输出(步骤601),首先,判定传感器输出信号为淡空燃比还是为浓空燃比(步骤602)。接着,在步骤603-608和步骤609-614,生成用于切换空燃比反馈修正系数FAF的空燃比标志F1。
空燃比标志F1在空燃比传感器26的输出值的浓信号经过规定延迟时间TDR时,从淡(F1=0)切换到浓(F1=1),当空燃比传感器26的输出值的淡信号经过规定延迟时间TDR时,从浓(F1=1)切换成淡(F1=0)(步骤603-614)。为了对这些延迟时间TDR、TDL进行计数,使用延迟计数器CDLY。
根据该空燃比标志F1为淡(F1=0)还是为浓(F1=1),空燃比标志F1是否刚反转(F1=0→1或F1=1→0),在步骤615-627生成空燃比反馈修正系数FAF。
此时,在刚判定空燃比标志F1反转(步骤615)后,使此时的空燃比反馈修正系数FAFR、FAFL一旦为FAF(步骤617、618),之后,使空燃比反馈修正系数FAF跳跃性地变化(步骤619、620)。跳跃量RSL为空燃比标志F1从淡反转到浓(F1=0→1)的场合的值,跳跃量RSR为空燃比标志F1从浓反转到淡(F1=1→0)的场合的值。在空燃比标志F1刚这样反转后,使空燃比反馈修正系数FAF跳跃性地变化,是为了提高空燃比控制的响应性。
另外,在将空燃比标志F1维持在淡(F=0)或浓(F=1)的任一值的场合,如上述那样,使空燃比反馈修正系数FAF逐渐增减,每次的变化量为KIR、KIL(步骤621-623)。变化量KIR为空燃比标志F1为淡(F1=0)时的增加单位量,变化量KIL为空燃比标志F1为浓(F1=1)时的减少单位量。空燃比反馈修正系数FAF在步骤624、625中维护其下限,在步骤626、627中维护其上限。
上述空燃比反馈控制的空燃比传感器26的输出值(A/D变换后)A/F、延迟计数器CDLY、空燃比标志F1、空燃比反馈修正FAF的变化例示于图13。
不根据空燃比传感器26的输出值直接生成空燃比反馈修正FAF,而是通过空燃比标志F1生成,是为了考虑到空燃比传感器26的响应性形成规定时间TDR、-TDL,防止空燃比传感器26的输出在短时间内进行淡-浓间的切换(参照图13右方部分)时空燃比混乱。
图14示出步骤304中的壁面附着燃料修正系数FMW的计算流程图。
首先,从各传感器读入关闭进气门时的进气管压力PM和转速NE(步骤700),从发动机ECU11内的图读入以该进气管压力PM使发动机1进行稳定状态运行的场合的燃料附着量QMW(步骤701)。另外,从发动机ECU11的备份RAM读入示出燃料特性的燃料特性指示值FQIND(步骤702),从读入的燃料特性指示值FQIND检测发动机ECU11内的图,读入燃料特性修正系数FQLTY(步骤703)。
接着,根据计算出的燃料附着量QMW由下述式(8)求出燃料附着变化量DLQMW(步骤704)。
DLQMW=(QMW-QMW-720)×KNE…(8)其中,QMW-720为720°CA以前的燃料附着量。另外,转速修正系数KNE为对应于转速NE决定的修正系数。
计算出的燃料附着变化量DLQMW为附着于壁面的燃料变化量,但由于该变化量为多次喷射的变化,所以,将其分成多次的喷射进行修正。计算出将燃料附着变化量DLQMW换算成一次喷射的换算量fDLQMW(步骤705)。其中,省略从燃料附着变化量DLQMW计算出换算量fDLQMW的方法的详细说明。从换算量fDLQMW和燃料特性修正系数FQLTY计算出壁面附着燃料修正系数FMW(步骤706)。这样,通过暖机和高负荷修正系数FWLOTP和壁面附着燃料修正系数FMW在起动后燃料喷射量TAU中反映判定的燃料特性(燃料特性指示值FQIND)。
上述燃料特性判定在稳定状态下进行。下面说明处于过渡状态时的燃料特性判定。
即,在以下例子中,除发动机1处于停止、起动、切断燃料等非燃烧状态时外,只要发动机1处于燃烧过程中,即使不为稳定状态也可检测燃料特性。
图15示出在过渡状态下的燃料特性判定处理的流程图。下面说明沿图15进行的过渡状态下的燃料特性的判定处理。
首先,判定发动机1是否处于运行过程中(步骤800),如发动机1处于运行过程中,则判定是否处于燃料切断状态(步骤801)。如不处于燃料切断状态,则读入发动机1的回转角速度ωe和MG3的回转角速度为ωg(步骤802)。
接着,检测MG3的转矩反力Tg(步骤803),从MG3的转矩反力Tg、发动机1的回转角速度ωe、及MG3的回转角速度为ωg由上述式(4)计算发动机1的输出转矩Te(步骤804)。接着,判定是否处于暖机运行过程中(步骤805)。如上述那样,由于刚冷起动后的暖机运行过程中可更为确实地判定燃料特性,所以,在这里,可判定是否处于暖机运行过程中,如处于暖机运行过程中,检测燃料特性。
如处于暖机运行过程中,为了检测燃料特性,根据冷却水温、吸入空气量、发动机转速、空燃比、点火时间中的至少一个值判断发动机1的运行状态,从该运行状态计算发动机1的输出转矩Te-cal(步骤806)。求出根据运行状态计算出的输出转矩Te-cal与根据MG3的转矩反力Tg计算出的发动机1的输出转矩Te的差,判定该差是否比预先设定的设定基准值大(步骤807)。
在根据发动机1的运行状态计算出的输出转矩Te-cal与根据MG3的转矩反力Tg计算出的发动机1的输出转矩Te的差比设定基准值大的场合,判断燃料为重质,使燃料特性指示值FQIND为1,存放在主ECU10内的备份RAM内(步骤808)。另一方面,在根据发动机1的运行状态计算出的输出转矩Te-cal与根据MG3的转矩反力Tg计算出的发动机1的输出转矩Te的差比设定基准值小的场合,认为燃料不为重质,使燃料特性指示值FQIND为0,存放在主ECU10内的备份RAM内(步骤809)。
这样判定的燃料特性反映在其后的发动机1的运行中。上述燃料特性的判定如何反映到发动机的运行中,已进行了说明,在这里省略其说明。
上述车辆为所谓融合串联方式和并联方式的混合式车,但也可适用于串联方式的混合式车和并联方式的混合式车等。另外,即使不为混合式车,只要具有接受内燃机的输出动力进行发电的发电机,则可适用本发明。在上述燃料喷射量TAU的计算中,也可由未说明的其它修正系数进行修正。
利用发动机1的输出转矩Te和MG3的转矩反力Tg之间的式(3)、(4)那样的规定关系,可从MG3的转矩反力Tg求出发动机1的输出转矩Te,通过MG3的转矩反力Tg确实地检测燃料特性。
另外,即使通过由回转控制将发动机1的转速维持在规定领域,将发动机1维持在能量转换效率良好的规定区域,也可确实地从MG3的转矩反力Tg检测燃料特性。即使这样进行回转控制、燃料特性的不同基本上不使转速产生变化时,也可确实地检测燃料特性。
另外,上述燃料判定装置具有第1转矩计算装置和第2转矩计算装置,比较由各转矩检测装置检测出的发动机1的输出转矩从而判定燃料特性,所以,可进行更高精度的检测。
产业上利用的可能性按照本发明的内燃机输出状态检测装置,可从电动机的转矩反力检测内燃机的输出状态,适合用于在具有内燃机和电动机的车辆等检测内燃机的输出状态。
权利要求
1.一种内燃机的输出状态检测装置,其特征在于具有内燃机、由上述内燃机驱动产生电力的发电机、检测上述发电机的转矩反力的转矩检测装置、及检测上述内燃机的输出状态的输出状态检测装置,上述输出状态检测装置根据由上述转矩检测装置检测的上述电动机的转矩反力检测上述内燃机的输出状态。
2.如权利要求1所述的内燃机的输出状态检测装置,其特征在于上述内燃机和上述电动机由动力分配装置连接,上述内燃机的转速、上述发电机的转速、上述内燃机的输出转矩、及上述发动机的转矩反力满足规定的关系。
3.如权利要求1所述的内燃机的输出状态检测装置,其特征在于上述输出状态检测装置为判定上述内燃机的燃烧状态的燃烧状态判定装置。
4.如权利要求3所述的内燃机的输出状态检测装置,其特征在于还具有用于检测上述内燃机的发动机转速的回转检测装置,上述燃烧状态判定装置在判定上述内燃机的燃烧状态时参照上述发动机转速。
5.如权利要求3所述的内燃机的输出状态检测装置,其特征在于还具有控制上述发电机以将上述内燃机的转速维持在规定区域的回转控制装置和用于计算上述内燃机的输出转矩目标值的要求转矩计算装置,上述燃烧状态判定装置通过比较由上述要求转矩计算装置计算出的上述内燃机的输出转矩目标值和根据由上述转矩检测装置检测出的转矩反力计算出的上述内燃机的输出转矩,判定上述内燃机的燃烧状态。
6.如权利要求3所述的内燃机的输出状态检测装置,其特征在于还具有用于控制上述发电机以将上述内燃机的转速维持在规定区域的回转控制装置和用于检测上述内燃机的发动机转速的回转检测装置,在上述回转控制装置不进行上述内燃机的转速控制的上述内燃机的自立运行状态的场合,上述燃烧状态检测装置根据由上述回转检测装置检测出的发动机转速判定上述内燃机的燃烧状态。
7.如权利要求3所述的内燃机的输出状态检测装置,其特征在于还具有用于检测对上述内燃机的运行状态产生影响的各种信息的运行状态检测装置,上述燃烧状态判定装置根据由上述运行状态检测装置检测的各种信息改变判定燃烧状态时的临界值。
8.如权利要求7所述的内燃机的输出状态检测装置,其特征在于由上述运行状态检测装置检测出的各种信息为大气压、上述内燃机的冷却水温、吸入空气量、发动机转速、空燃比、点火时间、燃料特性、上述发电机的发电电力、及上述电动机的输出功率中的任何一种或其组合。
9.如权利要求3所述的内燃机的输出状态检测装置,其特征在于还具有通过控制上述发电机的转速以将上述内燃机的发动机转速维持在规定区域内的回转控制装置,上述燃烧状态判定装置在上述回转控制装置的控制量为规定量以上的场合,一时停止燃烧状态的判定。
10.如权利要求9所述的内燃机的输出状态检测装置,其特征在于上述回转控制装置通过PID控制对上述发电机的转速进行控制,上述燃烧状态判定装置在上述PID控制的P成份的变化量为规定值以上的场合判定上述回转控制装置的控制量在规定量以上。
11.如权利要求3所述的内燃机的输出状态检测装置,其特征在于还具有通过控制上述发电机以将上述内燃机的发动机转速维持在规定区域内的回转控制装置和用于检测上述内燃机的发动机转速的转速检测装置,上述燃烧状态判定装置一时停止上述回转控制装置的控制,根据在该状态下由上述回转检测装置检测出的发动机转速判定上述内燃机的燃烧状态。
12.如权利要求3所述的内燃机的输出状态检测装置,其特征在于上述内燃机为多缸内燃机,还具有用于判别上述内燃机中的燃烧行程实施过程中的气缸的气缸判别装置,上述燃烧状态判定装置根据由上述转矩检测装置检测出的转矩反力和由上述气缸判别装置判别的燃烧行程实施过程中的气缸判定各气缸燃烧状态。
13.如权利要求12所述的内燃机的输出状态检测装置,其特征在于还具有燃烧状态改变装置,该燃烧状态改变装置用于改变由上述燃烧状态判定装置判定为燃烧状态不稳定的气缸的燃烧条件,朝稳定方向控制燃烧状态。
14.如权利要求1所述的内燃机的输出状态检测装置,其特征在于上述输出状态检测装置为用于判定上述内燃机的燃料特性的燃料特性判定装置。
15.如权利要求14所述的内燃机的输出状态检测装置,其特征在于还具有控制上述发电机将上述内燃机的发动机转速维持在规定区域的回转控制装置,上述燃料特性判定装置根据在由上述回转控制装置将发动机转速维持在规定区域时的上述转矩检测装置的检测结果,进行燃料特性的判定。
16.如权利要求15所述的内燃机的输出状态检测装置,其特征在于上述燃料特性判定装置具有根据由上述转矩检测装置检测的转矩反力计算上述内燃机的输出转矩的第1转矩计算装置和根据上述内燃机的运行状态计算出上述内燃机的输出转矩的第2转矩计算装置,比较上述第1转矩计算装置和上述第2转矩计算装置的计算值,判定燃料特性。
17.如权利要求16所述的内燃机的输出状态检测装置,其特征在于上述第2转矩计算装置根据冷却水温、吸入空气量、发动机转速、空燃比、及点火时间中的至少一个值判断上述内燃机的运行状态,计算上述内燃机的输出转矩。
18.如权利要求14-17中任何一项所述的内燃机的输出状态检测装置,其特征在于上述燃料特性判定装置根据刚冷起动后的上述转矩检测装置的检测结果,判定燃料特性。
全文摘要
一种内燃机输出状态检测装置,检测电动机的转矩反力,从该转矩反力检测内燃机的输出状态。具有内燃机、由该内燃机驱动产生电力的发电机、检测该发电机的转矩反力的转矩检测装置、及检测内燃机的输出状态的输出状态检测装置。输出状态检测装置根据由转矩检测装置检测的电动机的转矩反力检测内燃机的输出状态。
文档编号B60W10/08GK1331780SQ9981500
公开日2002年1月16日 申请日期1999年9月17日 优先权日1998年12月24日
发明者高冈俊文, 广濑雄彦, 金井弘, 井上敏夫, 草田正树, 西垣隆弘, 小岛正清, 山口胜彦 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1