轨道交通机车车辆巡检装置及系统的制作方法

文档序号:17758333发布日期:2019-05-24 21:28阅读:142来源:国知局
轨道交通机车车辆巡检装置及系统的制作方法

本申请涉及轨道交通机车车辆检测领域,特别是涉及一种轨道交通机车车辆巡检装置及系统。



背景技术:

随着交通技术的发展,以火车、动车、地铁、高铁等为代表的轨道交通机车车辆已成为人们出行的重要交通工具。轨道交通机车车辆需要定期进行检修,以保障运行的安全性。

传统技术中,对轨道交通机车车辆的检修主要以人工检测为主。通过人工目视检测或手持检测设备进行检测。这样的检测存在效率低、质量差、信息化水平低等问题。

随着人工智能的逐步发展,轨道交通机车车辆巡检装置逐渐出现。目前的轨道交通机车车辆巡检装置主要通过巡检机器人携带检测探头对轨道交通机车车辆进行检修。但是,目前这种结构的轨道交通机车车辆巡检装置的智能性有待提高。



技术实现要素:

基于此,有必要针对智能性差的问题,提供一种轨道交通机车车辆巡检装置及系统。

一种轨道交通机车车辆巡检装置,所述轨道交通机车车辆巡检装置用于对待检测车辆进行检测,所述待检测车辆停放于轨道所述轨道设置于巡检平台,且所述巡检平台沿所述轨道延伸方向对应开设巡检凹槽,所述轨道交通机车车辆巡检装置包括:

巡检机器人;

升降设备组,包括至少一个升降设备,所述升降设备设置于所述轨道延伸方向的侧面,所述升降设备为可升降结构,通过升降,所述升降设备能够实现与所述巡检凹槽对接,且能够实现与所述巡检平台表面的持平;

控制装置,与所述巡检机器人通信连接,用于控制所述巡检机器人工作。

在其中一个实施例中,所述升降设备组包括至少2个所述升降设备,至少2个所述升降设备分别设置于所述轨道延伸方向的两侧,至少2个所述升降设备能够与所述巡检凹槽对接连通,并形成至少一个通路。

在其中一个实施例中,所述轨道的数量为至少2组,所述巡检凹槽的数量为至少2个,所述升降设备组的数量为至少2组;

每个所述巡检凹槽与一组所述轨道对应设置;

每组所述轨道对应设置一组所述升降设备组;

至少2组所述升降设备组的多个所述升降设备能够与至少2个所述巡检凹槽对接连通,并形成至少一个跨轨道通路。

在其中一个实施例中,所述的轨道交通机车车辆巡检装置还包括现场工况检测装置,设置于所述轨道、所述巡检平台和/或所述巡检凹槽,与所述控制装置通信连接,用于检测巡检现场的工况。

在其中一个实施例中,所述现场工况检测装置包括积液检测机构(710)、待检测车辆在位检测组件和入侵检测组件中的至少一种;

所述积液检测机构设置于所述巡检凹槽,与所述控制装置通信连接,用于检测所述巡检凹槽内的积液情况;

所述待检测车辆在位检测组件设置于所述轨道,与所述控制装置通信连接,用于检测所述待检测车辆是否停靠到位;

所述入侵检测组件设置于所述轨道、所述巡检平台和/或所述巡检凹槽,与所述控制装置通信连接,用于检测所述巡检现场是否有入侵。

在其中一个实施例中,所述巡检机器人包括:

作业行走装置,包括车体和车轮,所述车轮设置于所述车体底部,所述车体包括容纳腔;

机械臂,设置于所述车体,与所述控制装置通信连接,所述机械臂为可折叠结构,所述机械臂能够收纳于所述容纳腔。

在其中一个实施例中,所述巡检机器人还包括:

检测装置,所述检测装置设置于所述机械臂末端,与所述控制装置通信连接。

在其中一个实施例中,所述巡检机器人还包括:

对接装置,设置于所述车体,用于实现与其他设备的对接。

在其中一个实施例中,所述巡检机器人还包括:

辅助充电端,设置于所述车体。

在其中一个实施例中,所述轨道交通机车车辆巡检装置还包括:

辅助充电装置,设置于所述轨道,与所述辅助充电端匹配,用于向所述辅助充电端提供电源。

在其中一个实施例中,所述轨道交通机车车辆巡检装置还包括巡检辅助装置,所述巡检辅助装置包括:

辅助行走装置;

工具架,设置于所述辅助行走装置,用于放置待替换检测装置。

在其中一个实施例中,所述巡检辅助装置还包括:

机械应急装置,设置于所述辅助行走装置,与所述对接装置结构匹配,用于实现与所述巡检机器人的机械对接。

在其中一个实施例中,所述检测装置通过快换装置连接于所述机械臂末端;

所述快换装置包括机械臂端和工具端,所述机械臂端与所述机械臂连接,所述工具端与所述检测装置连接,所述机械臂端与所述工具端能够插接实现电气连接和机械连接;

所述巡检辅助装置的所述工具架设置待替换检测装置,所述待替换检测装置的一端连接有所述工具端,所述工具端用于与所述机械臂端连接实现所述待替换检测装置与所述机械臂的连接。

在其中一个实施例中,所述轨道交通机车车辆巡检装置还包括:

参考基准,沿所述轨道的延伸方向设置于所述轨道的一侧;

位姿检测装置,设置于巡检机器人,用于检测所述巡检机器人相对于所述参考基准的距离信息;

处理装置,与所述位姿检测装置通信连接,用于根据所述巡检机器人相对于所述参考基准的距离信息计算所述巡检机器人相对于基准坐标的位姿偏移量。

在其中一个实施例中,所述处理装置与所述控制装置通信连接,所述控制装置还用于根据所述巡检机器人相对于所述基准坐标的位姿偏移量控制所述巡检机器人行走。

本申请实施例提供的所述轨道交通机车车辆巡检装置首先通过所述升降设备,自动升降,实现与所述巡检凹槽的对接和与所述巡检平台的对接和连通,提高了自动化程度。其次,通过所述升降设备实现与所述巡检平台表面的持平,使得所述巡检平台平整,无行走障碍。再次,通过所述升降设备使得所述巡检机器人进入、退出所述巡检凹槽无需人工干预,可实现全自动行走,从而提高所述巡检机器人的智能性,进而提高了所述轨道交通机车车辆巡检装置的智能性。

一种轨道交通机车车辆巡检系统,包括:

如上所述的轨道交通机车车辆巡检装置,其中,所述巡检机器人的数量为至少2个;

调度装置,与所述巡检机器人通信连接,用于调度所述巡检机器人。

在其中一个实施例中,至少2个所述巡检机器人分别设置不同的检测装置,所述调度装置用于控制每个所述巡检机器人分别完成对多辆所述待检测车辆的一项检测项目。

本申请实施例提供的所述轨道交通机车车辆巡检系统,通过所述调度装置控制多个所述巡检机器人工作,从而能够实现多个所述巡检机器人同时进行巡检作业,大大缩短了巡检作业时间,提高了巡检作业效率。

附图说明

图1为本申请一个实施例提供的轨道交通机车车辆巡检装置及巡检现场示意图;

图2为本申请一个实施例提供的轨道交通机车车辆巡检装置及巡检现场示意图;

图3为本申请一个实施例提供的升降设备结构示意图;

图4为本申请一个实施例提供的轨道交通机车车辆巡检装置结构示意图;

图5为本申请一个实施例提供的巡检机器人正视结构示意图;

图6为本申请一个实施例提供的巡检机器人立体结构示意图;

图7为本申请一个实施例提供的辅助充电端和辅助充电装置结构示意图;

图8为本申请一个实施例提供的巡检机器人及巡检辅助装置正视结构示意图;

图9为本申请一个实施例提供的巡检机器人及巡检辅助装置立体结构示意图;

图10为本申请一个实施例提供的轨道交通机车车辆巡检装置结构示意图;

图11为本申请一个实施例提供的巡检位姿检测过程中的基准坐标示意图;

图12为本申请一个实施例提供的位姿检测装置结构框图;

图13为本申请一个实施例提供的参考基准侧视图;

图14为本申请一个实施例提供的通过第一检测距离和第二检测距离获得所述巡检机器人相对于第二基准面沿第二方向姿态偏移量的计算方法原理示意图(图中所示为巡检机器人车体和参考基准的侧视图);

图15为本申请一个实施例提供的通过第一检测距离和第三检测距离获得所述巡检机器人绕第二方向旋转角度的计算方法原理示意图(图中所示为巡检机器人车体和参考基准的俯视图);

图16为本申请一个实施例提供的轨道交通机车车辆巡检位姿检测方法的步骤流程示意图;

图17为本申请一个实施例提供的获取巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量的步骤流程示意图;

图18为本申请一个实施例提供的获取巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量的步骤流程示意图;

图19为本申请一个实施例提供的获取巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量的步骤流程示意图;

图20本申请一个实施例提供的获取待检测车辆相对于基准坐标的位姿偏移量,得到车辆位姿偏移量的步骤流程示意图;

图21为本申请一个实施例提供的车底高度长度曲线信息和标准高度长度曲线信息对比图;

图22为本申请一个实施例提供的轨道交通机车车辆巡检装置结构示意图;

图23为本申请一个实施例提供的轨道交通机车车辆巡检装置及系统的巡检现场位置布置示意图。

附图标记说明:

轨道交通机车车辆巡检系统1轨道交通机车车辆巡检装置10

轨道100巡检平台200巡检凹槽300巡检机器人400

作业行走装置410车体411车轮412容纳腔413

机械臂420检测装置430快换装置431机械臂端433

工具端435对接装置440辅助充电端450升降装置460

升降设备组500升降设备501升降平台板510驱动装置520

升降控制装置530距离传感器540控制装置600

现场工况检测装置700积液检测机构710

待检测车辆在位检测组件720入侵检测组件730

辅助充电装置800巡检辅助装置900辅助行走装置910

工具架920能源供给装置930电源供给装置931气源供给装置932应急装置940机械应急装置941电气应急装置942调度装置20

巡检位姿检测系统30参考基准310基准标尺311

基准斜面312位姿检测装置320第一距离检测装置321

第二距离检测装置322第三距离检测装置323识别装置324

第一处理机构325第二处理机构326第四距离检测装置327

处理装置330

具体实施方式

为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请的轨道交通机车车辆巡检装置及系统进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。

本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。

在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。

本申请提供一种轨道交通机车车辆巡检装置10。所述轨道交通机车车辆巡检装置10用于对轨道交通机车车辆,例如,动车、高铁、火车、地铁等进行检测。待检测的所述轨道交通机车车辆以下简称为待检测车辆。

请参见图1,所述轨道交通机车车辆巡检装置10在巡检现场对所述待检测车辆进行检测。所述巡检现场包括巡检平台200、轨道100和巡检凹槽300。所述轨道100设置于所述巡检平台200。所述待检测车辆停放于所述轨道100。所述巡检平台200沿所述轨道100延伸方向对应开设巡检凹槽300。

所述巡检平台200可以是与地面平齐的平面,也可以是高出地面或低于地面的平面。所述巡检平台200用于设置巡检需要的装置,并供巡检需要的设备以及工作人员行走。所述轨道100包括2条平行的铁轨。所述轨道100的铁轨可以直接设置于所述巡检平台200,也可以通过间隔设置的支撑柱或其他装置设置于所述巡检平台200。所述轨道100的数量可以为1组,也可以为多组。每组所述轨道100对应设置所述巡检凹槽300。所述巡检凹槽300为凹陷于所述巡检平台200呈凹槽结构的坑。所述巡检凹槽300开设于所述轨道100之间,并沿所述轨道100的延伸方向延伸。所述巡检凹槽300的大小及凹陷尺寸可以根据实际需求设置,本申请不做具体限定。所述待检测车辆停放于所述轨道100,在所述巡检平台200可以实现对所述待检测车辆车侧的检测,在所述巡检凹槽300内可以实现对所述待检测车辆车底的检测。

在一个实施例中,所述轨道交通机车车辆巡检装置10包括巡检机器人400、升降设备组500和控制装置600。

所述巡检机器人400即为轨道交通机车车辆巡检机器人,以下均简称为巡检机器人400。所述巡检机器人400用于检测所述待检测车辆的相关参数,例如:外观、尺寸、位置姿态、温度、漏气情况等。所述巡检机器人400的具体结构及功能等,本申请不做限定,可以根据实际需求选择。

所述升降设备组500包括至少一个升降设备501。所述升降设备501设置于所述轨道100延伸方向的侧面。所述升降设备501为可升降结构,即,所述升降设备501能够实现上升和下降。具体的,所述轨道100侧面的所述巡检平台200可以开设一升降凹槽,所述升降设备501设置于所述升降凹槽,并能够在所述升降凹槽内实现上升与下降。通过升降,所述升降设备501能够实现与所述巡检凹槽300对接,且能够实现与所述巡检平台200的表面持平。所述升降设备501可以为导轨式升降机,曲臂式升降机,剪叉式升降机,链条式升降机或其他。具体可根据实际需要选择,本申请不做限定。所述升降设备501可以但不限于用于将所述巡检机器人400或操作人员下降至所述巡检凹槽300,或将所述巡检机器人400或操作人员上升至所述巡检平台200。所述升降设备501的数量可以为一个,也可以为多个。多个所述升降设备501可以沿所述轨道100间隔设置于所述轨道100一侧,也可以分布于所述轨道100的两侧。

所述控制装置600与所述巡检机器人400通信连接,用于控制所述巡检机器人400工作。所述控制装置600可以用于控制所述巡检机器人400行走,并实施检测等。所述控制装置600可以但不限于是计算机设备、plc(programmablelogiccontroller,可编程逻辑控制器)或其他包含处理器的设备。本申请对所述控制装置600的具体结构、型号等不做限定,只要可实现其功能即可。

所述轨道交通机车车辆巡检装置10的工作过程可以包括但不限于以下过程:

所述控制装置600获取巡检任务,所述巡检任务包括所述待检测车辆的数量、所述待检测车辆的位置、待检测的项目等等。所述控制装置600将所述巡检任务发送至所述巡检机器人400,并发出巡检指令。所述巡检机器人400接收所述巡检指令,根据所述巡检任务,自主行走至所述待检测车辆的所在位置,并对所述待检测车辆进行检测。当所述巡检任务包含的所述待检测项目位于所述待检测车辆的车侧时,所述巡检机器人400在所述巡检平台200沿所述轨道100延伸方向行走并检测。此时,所述升降设备501可以与所述巡检平台200的表面持平,从而使得所述巡检机器人400沿所述巡检平台200行走不受阻碍。当所述巡检任务包含的所述待检测项目位于所述待检测车辆的车底时,所述巡检机器人400需行走至所述巡检凹槽300内作业。所述巡检机器人400根据所述巡检任务首先行走至所述升降设备501。控制所述升降设备501下降,并与所述巡检凹槽300对接后,所述巡检机器人400行走至所述巡检凹槽300,并实施巡检作业。当巡检完成后,所述巡检机器人400行走至所述升降设备501,所述升降设备501带动所述巡检机器人400上升,退出所述巡检凹槽300,回到所述巡检平台200,完成检测。

与传统技术中在所述轨道100一侧的所述巡检平台200上设置步行梯或斜坡与所述巡检凹槽300对接连通的方法相比,本申请实施例提供的所述轨道交通机车车辆巡检装置10首先通过所述升降设备501,自动升降,实现与所述巡检凹槽300的对接和与所述巡检平台200的对接和连通,提高了自动化程度。其次,通过所述升降设备501实现与所述巡检平台200表面的持平,使得所述巡检平台200平整,无行走障碍。再次,通过所述升降设备501使得所述巡检机器人400进入、退出所述巡检凹槽300无需人工干预,可实现全自动行走,从而提高所述巡检机器人400的智能性,进而提高了所述轨道交通机车车辆巡检装置10的智能性。

请参见图2,在一个实施例中,所述升降设备组500包括至少2个所述升降设备501。至少2个所述升降设备501分别设置于所述轨道100的两侧。至少2个所述升降设备501能够与所述巡检凹槽300对接连通,并形成至少一个通路。

以所述升降设备组500包括2个所述升降设备501为例,2个所述升降设备501分布于所述轨道100的两侧。2个所述升降设备501的连线与所述轨道100呈一定角度,例如,2个所述升降设备501的连线与所述轨道100垂直。2个所述升降设备501均下降至所述巡检凹槽300后,与所述巡检凹槽300对接连通,形成一个通路。所述通路与所述巡检凹槽300呈一定角度。

在一个实施例中,所述轨道100的数量为至少2组。所述巡检凹槽300的数量为至少2个。所述升降设备组500的数量为至少2组。每个所述巡检凹槽300与一组所述轨道100对应设置。每组所述轨道100对应设置一组所述升降设备组500,即:每组所述轨道100的两侧均设置至少2个所述升降设备501。至少2组所述升降设备组500的多个所述升降设备501能够与至少2个所述巡检凹槽300对接连通,并形成至少一个跨轨道通路。也就是说,相邻两组所述轨道100的升降设备501能够实现连通,从而使得每组所述轨道100的所述通路连通,形成至少一个所述跨轨道通路。所述跨轨道通路能够实现多个所述巡检凹槽300的连通。因此,当有多个所述待检测车辆时,所述巡检机器人400可以实现跨轨道检测,一次检测多个所述待检测车辆,从而提高检测效率。

以下对本申请中的所述升降设备501进行说明:

请参见图3,在一个实施例中,所述升降设备501包括升降平台板510、驱动装置520和升降控制装置530。所述驱动装置520与所述升降平台板510驱动连接,用于驱动所述升降平台板510升降。所述升降控制装置530与所述驱动装置520电气连接。所述升降控制装置530用于控制所述驱动装置520工作。

所述升降平台板510设置于所述轨道100侧部的所述升降凹槽。所述升降平台板510处于上升状态时,所述升降平台板510与所述巡检平台100所在的平面平齐。所述升降平台板510处于下降状态时,所述升降平台板510与所述巡检凹槽300所在的平面平齐并连通。所述升降平台板510可以为绝缘板,绝缘板的材料可以为无机绝缘材料、有机绝缘材料或混合绝缘材料。具体可以根据实际需要选择,本申请不做限定。所述升降平台板510的形状可以为矩形、梯形或多边形等,具体可以根据实际需要选择,本申请不做具体限定。当检修现场包括多组所述轨道100,每组所述轨道100分别设置所述升降设备501时,相邻的两个所述升降设备501的升降平台板510接触设置,从而使得所述升降平台板510下降至所述巡检凹槽300时,形成所述跨轨道通路。

所述驱动装置520可以设置于所述轨道100侧面的所述升降凹槽中。所述驱动装置520与所述升降平台板510驱动连接,用于驱动所述升降平台板510升降。所述驱动装置520的具体结构、安装位置和安装方式可以根据实际需要选择,本申请不做具体限定。所述驱动装置520的数量也可以根据实际需要选择。所述驱动装置520可以为液压式驱动装置,气压驱动装置,电器驱动装置,链条式驱动装置,或其他形式的驱动装置,只要能驱动所述升降平台板510升降即可。在一个具体的实施例中,所述驱动装置520为液压式驱动装置。所述液压式驱动装置与所述升降平台板510组合构成液压剪叉式升降平台。所述液压剪叉式升降平台为固定式液压剪叉式升降平台。所述固定式液压剪叉式升降平台的滚轴、滚珠、转盘等台面可以任意配置,满足实际使用要求。因此,在实际使用中,所述固定式液压剪叉式升降平台更便于维修人员或使用人员根据实际需要进行调整,方便了所述升降设备501的使用。

所述升降控制装置530与所述驱动装置520电气连接,用于控制所述驱动装置520启动、关闭以及工作模式。所述升降控制装置530获取升降命令,并根据所述升降命令,控制所述驱动装置520启动、关闭以及工作模式,从而控制所述升降平台板510的上升或下降。

所述升降设备501的升降命令可以通过人工输入,可以通过所述控制装置600得到,也可以通过检测得到。在一个实施例中,所述升降设备501还包括距离传感器540。所述距离传感器540与所述升降控制装置530通信连接。所述距离传感器540用于检测其与前方物体的距离,从而确定所述升降平台板510表面是否有人或停靠物。若所述距离传感器540检测出的距离满足预设的距离阈值,说明所述升降平台板510表面停靠有人或物体,需要升降。例如,假设当所述升降平台板510未停靠人或物体,所述距离传感器检测出的距离为1m,当所述距离传感器540检测到的距离变为小于0.98m大于0.05m时,所述升降控制装置530判断所述升降平台板上有人或停靠物,所述升降控制装置530控制所述驱动装置520启动。所述距离传感器可以为电容式接近传感器、激光测距传感器和超声波传感器,具体可根据实际需要选择,本申请不做限定。所述距离传感器540的数量可以为一个也可以为多个。本实施例中,通过所述距离传感器540与所述升降控制装置530的配合,实现对所述升降平台板510的自动升降。本实施例提供的所述升降设备501智能性高,从而提高了所述轨道交通机车车辆巡检装置10的智能性。

在一个实施例中,所述升降设备501还进一步包括升降安全报警装置550。所述升降安全报警装置550与所述升降控制装置530电气连接。所述升降报警装置550用于当所述距离传感器540检测到异常数据或所述升降设备501出现故障时进行报警。所述升降安全报警装置550的具体结构本申请不做限定,可以根据实际需求选择。通过所述升降安全报警装置550可以提高所述升降设备501的安全性和智能性,进而提高所述轨道交通机车车辆巡检装置10的安全性和智能性。

请参见图4,在一个实施例中,所述轨道交通机车车辆巡检装置10还包括现场工况检测装置700。所述现场工况检测装置700设置于所述巡检现场。具体的,所述现场工况检测装置700可以设置于所述轨道100、所述巡检平台和/或所述巡检凹槽300。所述现场工况检测装置700与所述控制装置600通信连接。所述现场工况检测装置700用于检测现场工况。通过设置所述现场工况检测装置700可以在巡检开始前,及巡检过程中,及时了解所述巡检现场的情况,从而根据所述情况控制对所述巡检机器人400的控制,提高巡检工作的可靠性、安全性和智能性。

所述现场工况检测装置700可以根据不同的需求和不同的工况设置不同的结构。以下结合实施例对所述现场工况检测装置700的结构进行说明。

在一个实施例中,所述现场工况检测装置700包括积液检测机构710。所述积液检测机构710设置于所述巡检凹槽300。所述积液检测机构710与所述控制装置600通信连接。所述积液检测结构710用于检测所述巡检凹槽300内的积液情况。

所述积液检测机构710可以为液体检测传感器。所述积液检测机构710的数量不限。所述积液检测机构710在所述巡检凹槽300的具体设置位置也不限,可以根据实际情况设定。例如,可以在所述巡检凹槽300深度较深,容易产生积液的位置设置所述积液检测机构710。所述积液检测机构710检测当前位置的积液情况,并传输至所述控制装置600。所述控制装置600结合积液情况判断是否启动巡检作业。当积液超过预设积液阈值时,不满足作业条件,不向所述巡检机器人400发出使能信号。本实施例中,通过所述积液检测机构710防止在所述巡检凹槽300积液较多时仍然启动巡检作业的情况,提高了轨道交通机车车辆巡检装置10的安全性和智能性。

在一个实施例中,所述现场工况检测装置700包括待检测车辆在位检测组件720。所述待检测车辆在位检测组件720设置于所述轨道100。所述待检测车辆在位检测组件720与所述控制装置600通信连接。所述待检测车辆在位检测组件720用于检测所述待检测车辆是否停靠到位。

所述待检测车辆在位检测组件720可以设置于所述轨道100一侧,也可以设置于支撑所述轨道100的所述支撑柱。所述待检测车辆在位检测组件720的数量可以是一个,也可以是多个。所述待检测车辆在位检测组件720可以包括但不限于速度传感器和存在传感器。在一个具体的实施例中,沿所述轨道100延伸方向,在所述铁轨内侧依次设置多个所述存在传感器和多个所述速度传感器。当所述待检测车辆沿所述轨道100驶入并停靠时,所述存在传感器检测到所述轨道100上存在车轮及车体,且依次排列的多个所述速度检测装置检测到所述车体的速度逐渐降低至0。说明所述待检测车辆驶入所述轨道100且停靠至传感器设置位置。所述控制装置600依据所述待检测车辆在位检测组件720的检测结果判断是否启动巡检作业,并控制所述巡检机器人400的启动。本实施例中,通过所述待检测车辆在位检测组件720进一步提高了所述轨道交通机车车辆巡检装置10的智能性和自动性,提高了所述轨道交通机车车辆巡检装置10巡检的准确性。

在一个实施例中,所述现场工况检测装置700包括入侵检测组件730。所述入侵检测组件730设置于所述巡检现场。具体的,所述入侵检测组件730可以设置于所述轨道100、所述巡检平台200和/或所述巡检凹槽300。所述入侵检测装置730与所述控制装置600通信连接。所述入侵检测组件730用于检测所述巡检现场是否有入侵。

所述入侵检测组件730可以包括图像采集装置以及与其通信连接的图像处理装置。所述图像采集装置可以是摄像头、摄像机等。所述图像采集装置采集所述巡检现场的图像信息,并传输至所述图像处理装置。所述图像处理装置可以是计算机设备等。所述图像处理装置也可以是所述控制装置600的一个模块或处理软件等。所述图像处理装置处理所述图像信息,并判断所述巡检现场是否有人或物体入侵,进而判断是否符合作业条件,是否启动巡检作业。本实施例中,通过所述入侵检测组件730,提高了所述轨道交通机车车辆巡检装置的智能性,并进一步提高了所述轨道交通机车车辆巡检装置10作业的安全性。

在一个实施例中,所述现场工况巡检装置700还可以包括用于检测所述巡检机器人400与相关设备挂接状况的组件,以确保所述巡检机器人400挂接的安全性。

可以理解,所述控制装置600包括用于处理以上实施例中所述现场工况检测装置700数据的相应模块,以接收所述现场工况检测装置700传输的相关数据,并进行处理判断,以确定当前所述巡检现场是否满足巡检作业的条件,进而确定是否发出巡检使能信号。

所述巡检机器人400根据所述巡检使能信号进行巡检作业。以下结合实施例对所述巡检机器人400进行说明。

请参见图5和图6,在一个实施例中,所述巡检机器人400包括作业行走装置410和机械臂420。所述作业行走装置410包括车体411和车轮412。所述车轮412设置于所述车体411底部。所述车体411包括容纳腔413。所述机械臂420设置于所述车体411。所述机械臂420为可折叠结构。所述机械臂420能够收纳于所述容纳腔413。

所述作业行走装置410具体可以为agv(automatedguidedvehicle,自动导引运输车),也可以为其他能够自动完成行走功能的小车。所述车体411可以为立方体结构,也可以为其他形状的结构。以立方体结构的所述车体411为例,所述车体411为空腔结构,六个面包围形成所述容纳腔413。所述车体411的顶部安装所述机械臂420。同时,所述车体411开设有一开口。所述机械臂420折叠后通过所述开口收纳于所述容纳腔413内部。所述作业行走装置410可以与所述控制装置600通信连接,所述控制装置600用于向所述作业行走装置410下发作业指令和作业行走任务。所述作业行走装置410可以包括自身的控制系统,由自身控制系统控制其行走,也可以通过外部控制系统,实现控制行走。例如可以通过所述控制装置600控制所述作业行走装置410的行走。

所述车体411底部安装所述车轮412。所述车轮412的数量可以为4个。所述车轮412的结构可以为多种,例如,所述车轮412可以为万向轮结构。在一个具体的实施例中,所述车轮412为双轮差速驱动式结构。双轮差速驱动式结构的所述车轮412能够有效减小所述巡检机器人400的体积。同时,所述车轮412采用双轮差速驱动式结构,能够避免传统的以轮距中点为基点进行规划时所进行的复杂计算,控制简单,轨迹跟踪效果良好,有效提高了运动控制的实时性。

所述机械臂420可以包含有多个活动关节。在一个具体的实施例中,所述机械臂420包括6个活动关节,且每个所述活动关节可以绕轴转动,从而可以实现所述机械臂420沿六个轴的柔性活动和定位。所述机械臂420与所述控制装置600信号连接。所述控制装置600用于控制所述机械臂420的活动、折叠等动作。

所述机械臂420在工作时,置于所述车体411外部。当所述机械臂420完成工作时,所述控制装置600控制所述机械臂420折叠,并收纳于所述容纳腔413,从而起到防尘、防撞、缩小体积的作用。

本实施例中,所述巡检机器人400包括所述作业行走装置410和所述机械臂420。所述作业行走装置410的所述车体411包括所述容纳腔413。所述机械臂420为可折叠结构,且能够收纳于所述容纳腔413,因此能够缩小所述巡检机器人400的体积,且能够防尘、防撞,便于存放。

在一个实施例中,所述机械臂420折叠后的形状和尺寸与所述容纳腔413的开口的形状和尺寸相匹配。

所述车体411可以沿顶端及侧面开设一开口。所述车体411的开口即为所述容纳腔413的开口。所述开口的形状和尺寸与所述机械臂420折叠的形状和尺寸相同,从而使得所述机械臂420折叠后密封在所述开口处。例如,所述机械臂420包括6个所述活动关节,折叠后长度上保持3个所述活动关节。所述开口的形状、长度、宽度均与3个所述活动关节的形状、长度、宽度一致。所述机械臂420收纳于所述容纳腔413时,3个所述活动关节收纳于所述容纳腔413内,另外3个所述活动关节与所述开口贴合,将所述容纳腔413的所述开口密封,进一步起到防尘的作用。且这样可以节省所述容纳腔413内部的空间,供所述容纳腔413放置其他设备和装置。本实施例提高了所述巡检机器人400的实用性。

在一个实施例中,所述巡检机器人400还包括升降装置460。所述升降装置460设置于所述容纳腔413。所述升降装置460与所述机械臂420机械连接。所述升降装置460用于实现所述机械臂420的上升和下降。

所述升降装置460可以具体包括举升附加轴。所述举升附加轴的一端设置于所述容纳腔413内,另外一端与所述机械臂420的底部机械连接。所述举升附加轴驱动升降的形式可以包括但不限于液压式驱动、气缸式驱动等,具体的本申请不做限定,可以根据实际需求选择。所述升降装置460的驱动可以为自动也可以为手动。在一个具体的实施例中,所述升降装置460与所述控制装置600通信连接,所述控制装置600还用于控制所述升降装置460的工作。通过所述升降装置460能够实现对所述机械臂420的升降,不仅可以实现所述机械臂420的上升伸出,还可以实现所述机械臂420的下降收纳。同时,在所述机械臂420实现巡检探测时,所述升降装置460还能进一步调整所述机械臂420的高度,实现对所述机械臂420末端位置的补偿。因此,本实施例提供的所述巡检机器人400实用性强,且能够增加巡检工作的灵活性、提高巡检的精确度。

在一个实施例中,所述巡检机器人400包括检测装置430。所述检测装置430设置于所述机械臂420的末端。所述检测装置430用于检测所述待检测车辆。所述检测装置430的种类可以根据实际需求进行设置。所述检测装置430可以直接电气连接于所述机械臂420末端,也可以通过其他装置间接连接于所述机械臂420的末端。所述机械臂420活动,带动所述检测装置430移动至所述待检测装置的检查项区域,实现对所述检查项的检查。所述检测装置430与所述控制装置600通信连接。所述控制装置600控制所述检测装置430进行检测,并对所述检测装置430采集的检测数据进行处理和分析。

在一个实施例中,所述检测装置430包括图像采集装置、漏气检测装置、温度检测装置和尺寸检测装置中的至少一种。可以理解,为了实现需要的其他功能,所述检测装置430也可以包括其他检测装置。本申请对此不做限定。

所述图像采集装置可以包括2d图像采集器和/或3d图像采集器。在一个具体的实施例中,所述2d图像采集器主要包括面阵相机。所述面阵相机用于采集被测工件的表面图像。可以用于对所述待检测车辆零部件的存在检测、形状检测、位置姿态检测、外观检测、尺寸检测等。所述2d图像采集器还可以进一步包括光源。所述光源用于对被测工件进行不光,以达到较好的图像采集效果。

在一个具体的实施例中,所述3d图像采集器主要包括线性激光光源、线阵相机、直线运动单元。所述3d图像采集器工作时,所述线性激光光源发出线性激光,投射在被测工件表面。所述线阵相机获取一张图像,随着所述直线运动单元的移动,所述线阵相机连续采集,得到多张图像。通过对多张图像的拼接,可到包含深度信息的完整图像。所述3d图像采集器可以用于对所述待检测车辆的螺栓紧固检测、裂纹检测、轮对踏面质量检测等。

所述漏气检测装置用于检测所述待检测车辆车底和/或车侧风管的检查。在一个具体的实施例中,所述漏气检测装置包括麦克风阵列。所述麦克风阵列用于采集检测漏气声音数据。所述麦克风阵列获取的所述漏气声音数据传输至所述控制装置600。所述控制装置600对所述漏气声音进行处理和判断,从而确定出风管是否漏气,并进一步确定出漏气的具体位置。在一个实施例中,所述麦克风阵列包括3个心形指向麦克风和1个全指向麦克风。在另一个实施例中,所述麦克风阵列包括1个心形指向麦克风,且所述机械臂420上设置多个所述心形指向麦克风。

在一个实施例中,所述控制装置600处理所述漏气声音数据,确定出风管是否漏气,并进一步确定出漏气的具体位置的方法包括如下步骤:

s1110,对待检测车辆进行建模,形成待检测车辆模型;

s1120,识别所述待检测车辆检查项点区域的漏气声音;

s1130,确定所述漏气声音的声源位置;以及

s1140,根据所述声源位置与待检测车辆模型,判断所述待检测车辆是否漏气;

s1150,标识出所述声源位置在所述待检测车辆模型中的位置。

本实施例提供的所述方法通过将所述待检测车辆模型与待检测车辆检测项点区域的漏气声音声源位置进行匹配,能够有效排除将待检测项点周围的漏气声音判定为待检测车辆漏气的可能性,提高了检测的准确性,从而为车辆的检修和维护提供可靠的依据。同时,通过对待检测车辆进行建模,并将漏气声音与所述待检测车辆模型进行匹配,使得对车辆气密性检测过程和检测结果更加直观。

所述温度检测装置用于实现对所述待检测车辆待检测工件温度的检测。所述温度检测装置的具体结构的选择不做限定。在一个具体的实施例中,所述温度检测装置包括热成像仪。所述热成像仪用于对所述待测工件的温度分布进行检测,并形成对应的温度分布图像。所述热成像仪检测的所述温度分布图像传输至所述控制装置600。所述控制装置600对所述温度分布图像进行进一步处理。在又一个实施例中,所述温度检测装置还进一步包括非接触式红外温度传感器。所述非接触式红外温度传感器用于检测待测工件表面温度。检测实施前,所述控制装置600可以选择对所述待检测车辆进行3d建模。将待检查项和待测量点的位置在3d模型上进行标注。其中,一个所述待检查项包括多个所述待测量点。所述机械臂420夹持所述非接触式红外温度传感器运动到所述待检查项,并将所述非接触式红外温度传感器光线指向所述待检查项外表面。所述机械臂420改变位姿,依次调整测量所述待测量点的温度。完成对所述待测量点的温度测量。所述非接触式红外温度传感器测量的数据传输至所述控制装置600。所述控制装置600可以采用取中间值、取期望值等方法对所述数据进行处理,并与所述3d模型进行匹配,得到反应所述待检查项温度的模型图。

可以理解,所述待测量点的确定可以是基于所述热成像仪检测的结果,将感兴趣区域或点设置为所述待测量点进行进一步检测,得到感兴趣区域的具体温度。

所述尺寸检测装置用于检测所述待检测量相关的距离信息。所述尺寸检测装置可以包括轮缘轮辋测量工具和/或轮对间距测量工具。所述轮缘轮辋测量工具用于对所述待检测车辆的轮缘轮辋相关尺寸进行测量。所述轮对间距测量工具用于对所述待检测车辆的轮对间距进行测量。

在一个实施例中,所述轮对间距测量工具包括2个激光距离传感器和一个测量杆。所述轮对间距测量工具测量得到的距离信息传输至所述控制装置600。所述控制装置600对所述距离信息进行处理,得到所述轮对尺寸。具体的过程包括但不限于以下步骤:

s2210,对待检测轮对的检测项点的标准轮廓尺寸进行建模,形成轮对模型。

首先,所述控制装置600根据标准轮对轮缘、轮辋截面相对轴心的尺寸位置关系,以轮对对称中心为原点建立轮对坐标系,并建立描述轮对外形3d模型。其次,确定所述巡检机器人400测量采样时,相应的所述巡检机器人400的所述作业行走装置410的基座坐标系相对轮对中心坐标系的相对位置,以及所述机械臂420末端采样点的相对位置,并建立测量点3d模型数据库。

s2220,对所述待检测轮对的位置和所述巡检机器人400的位置进行精确标定。

所述巡检机器人400检测前,通过轮轴视觉特征或轮对辅助定位标记点进行定位,获取所述巡检机器人400在轮对坐标系的实际位姿信息。所述巡检机器人400通过所述机械臂420末端位姿的调整,对实际位姿进行补偿,以与测量点3d模型数据库相符合。

s2230,所述巡检机器人400进行采样测量。

所述巡检机器人400末端夹持所述激光测距传感器,对轮对检查项轮廓外形的距离尺寸进行采点测量,将数据传到所述控制装置600。

s2240,计算目标尺寸值

所述巡检机器人400将采集到的外形尺寸点,结合所述巡检机器人400的运行轨迹点位置,绘制轮对检查项的实际外形轮廓,并将检测到的实际外形轮廓和标准轮廓进行比对,得到实际轮对检查项的尺寸值。

上述各所述检测装置430可以单独设置于所述机械臂420末端,也可以多项组合设置于所述机械臂420末端。在一个实施例中,将所述2d图像采集器、漏气检测装置、温度检测装置进行组合,设置于所述机械臂420末端,以实现对所述待检测车辆存在检测、形状检测、位姿检测、漏气检测、温度检测等多种项目的同时检测。

在又一个实施例中,将所述3d图像采集器、漏气检测装置、温度检测装置进行组合,设置于所述机械臂420的末端,实现对所述待检测车辆螺栓紧固检测、裂纹检测、轮对踏面质量检测、漏气检测、温度检测等多种项目的同时检测。

以上实施例中,通过在所述机械臂420末端设置所述检测装置430,对所述待检测车辆进行各种项目的检查,使得所述巡检机器人400具备多项巡检功能,增加了所述巡检机器人400的功能的全面性和智能性。

在一个实施例中,所述巡检机器人400还包括对接装置440。所述对接装置440设置于所述车体411。所述对接装置440用于实现与其他设备的对接。所述对接装置440可以用于实现与其他设备的机械对接,也可以用于实现与其他设备的电气对接。根据需求的不同所述对接装置440的结构可以有不同设计。以所述对接装置440实现与救援设备或巡检辅助装置的机械对接为例。所述对接装置440可以设置于所述车体411的车头和/或车尾一端。所述对接装置440可以包括环状或方形的对接口等,以供所述救援设备或所述巡检辅助装置与其连接实现对所述巡检机器人400的拉动或拖曳。本实施例中,通过所述对接装置440进一步完善了所述巡检机器人400的功能,提高了所述轨道交通机车车辆巡检装置10的实用性。

在一个实施例中,所述巡检机器人400还包括快换装置431。所述快换装置431连接于所述机械臂420末端与所述检测装置430之间。也就是说,所述检测装置430通过所述快换装置431连接于所述机械臂420末端。通过所述快换装置431实现所述检测装置430和所述机械臂420的电气连接和机械连接。

请参见图7,在一个实施例中,所述巡检机器人400还包括辅助充电端450。所述辅助充电端450设置于所述车体411。所述辅助充电端450可以是充电头或充电座,还可以是充电毛刷或充电导电轨等任何能够实现电路导通的装置。所述辅助充电端450与所述巡检机器人400的电源设备连接,用于通过与外部的充电装置接通,实现对所述巡检机器人400的充电。本实施例中,通过所述辅助充电端450能够对所述巡检机器人400及时补充电能,提高了所述巡检机器人400的巡检工作能力。

在一个实施例中,所述轨道交通机车车辆巡检装置10还包括辅助充电装置800。所述辅助充电装置800设置于所述轨道100。所述辅助充电装置100与所述辅助充电端450匹配,用于向所述辅助充电端450提供电源,进而向所述巡检机器人400充电。所述辅助充电装置800的具体形态、结构等不做限定,只要可以实现与所述辅助充电端配合,实现充电即可。以下提供两个所述辅助充电装置800和所述辅助充电端450的实施例。

在一个实施例中,所述辅助充电端450为导电刷。所述辅助充电装置800为导电轨。所述导电刷呈毛刷结构。所述导电刷可以通过可外伸悬臂结构设置于所述车体411的一侧。所述可外伸悬臂可以为转角接触结构。所述可外伸悬臂与所述车体411之间可以设置弹簧或其他弹性装置,以提高所述导电刷的活动弹性和灵活度,同时,方便所述导电刷不使用时收回贴合于所述车体411,节省空间。所述导电刷的数量可以是一个,设置于所述车体411一侧,也可以是2个,分别设置于所述车体411两侧。当然,所述导电刷的数量也可以是2个以上,分别设置于车体411需要的位置。

所述轨道100靠近所述巡检机器人400行走的一侧设置所述导电轨。所述导电轨呈长条状。所述导电轨可以采用对地安全电压供电。所述导电轨可以采用pvc型材、铝型材或铜带复合结构等。所述导电轨数量可以为多个。多个所述导电轨沿所述轨道100间隔设置。当所述车体411两侧均设置所述导电刷时,多个所述导电轨也可分别设置于所述轨道100的2个所述铁轨内侧。对于多个所述导电轨,可以分别控制其接通和断开。

由于所述巡检机器人400整个作业过程中,停靠在目标位置后进行检测时,所述机械臂420工作量大,工作时间长,因此,检测过程中耗电量最大。所以,往往需要在检测过程中对所述巡检机器人400进行充电。本实施例中,当所述巡检机器人400行走并停靠在目标位置,即将开始检测时,所述巡检机器人400通过所述可外伸悬臂将所述导电刷伸出,并与所述导电轨接触。对所述导电轨通电,即可通过所述导电刷向所述巡检机器人400充电。当所述巡检机器人400即将完成检测任务,将要移动到下一个检测位置时,对所述导电轨断电,停止对所述导电刷充电,并通过所述可外伸悬臂收回所述导电刷,所述巡检机器人400继续行走至下一个检测位置。

在另一个实施例中,所述辅助充电端450为导电刷,所述辅助充电装置800为导电刷。所述导电刷、所述导电轨的设置于上个实施例设置刚好相反。其实现方法、原理及设置方式类似。在此不再赘述。

以上两个实施例中,通过所述导电刷与所述导电轨配合,实现对所述巡检机器人400的辅助充电,保障了所述巡检机器人400的工作电量,提高了所述轨道交通机车车辆巡检装置10的可靠性和稳定性。同时,所述导电轨为长条状,因此,在所述巡检机器人400或所述待检测车辆停靠定位偏差的情况下,仍然能够实现与所述导电刷配合,完成对所述巡检辅助装置900的充电,减小了充电误差。

请参见图8和图9,在一个实施例中,所述快换装置431包括两部分:机械臂端433和工具端435。所述机械臂端433与所述工具端435对应匹配。所述机械臂端433与所述机械臂420电气连接和机械连接。所述工具端435与所述检测装置430电气连接和机械连接。所述机械臂端433与所述工具端435插接可实现电气连接和机械连接,进而实现所述机械臂420与所述检测装置430的电气连接和机械连接。

上述两个实施例中,通过所述快换装置431实现所述检测装置430与所述机械臂420末端的电气连接和机械连接,简单方便,且通用性强。

在一个实施例中,所述轨道交通机车车辆巡检装置10还包括轨道交通机车车辆巡检辅助装置。所述轨道交通机车车辆巡检辅助装置以下均简称巡检辅助装置900。所述巡检辅助装置900用于辅助所述巡检机器人400完成所述检测装置430的更换,及能源供应、检修、应急救援更功能。以下结合实施例对所述巡检辅助装置900进行进一步说明。

在一个实施例中,所述巡检辅助装置900包括辅助行走装置910和工具架920。所述工具架920设置于所述辅助行走装置910。所述工具架920用于放置待替换检测装置。

所述轨道交通机车车辆巡检装置10的所述巡检机器人400在巡检过程中,有时为了完成不同的检测项目,需要对所述机械臂420末端的所述检测装置430进行更换。为了方便说明,替换的所述检测装置命名为所述待替换检测装置。被替换的所述检测装置命名为原检测装置。

所述辅助行走装置910用于完成行走,并带动在其上设置的设备行走。所述辅助行走装置910的结构、实现原理、控制方式等于所述作业行走装置410类似,在此不再赘述。

所述工具架920可以设置于所述辅助行走装置910的车体顶部。所述工具架920的具体结构不做限定,可以根据需要放置的工具的结构、尺寸等进行设置。所述待替换检测装置放置于所述工具架920。当需要替换所述原检测装置时,控制所述辅助行走装置910行走至所述巡检机器人400旁边。将所述原检测装置替换为所述工具架920上的所述待替换检测装置。替换的方法可以为自动,也可以为手动,本申请不做限定。

本实施例中,所述轨道交通机车车辆巡检装置10包括所述巡检辅助装置900。所述巡检辅助装置900设置所述工具架920,从而能够将所述待替换检测装置运输至所述巡检机器人400处,实现对所述检测装置430的替换。本实施例提供的所述巡检辅助装置900提高了所述轨道交通机车车辆巡检装置10功能的全面性,同时,提高了其智能性。

在一个实施例中,所述工具架920的形状和尺寸与所述待替换检测装置的形状和尺寸相匹配。也就是说,所述工具架920模仿所述待替换检测装置的形状设计,从而使得所述待替换检测装置能够更稳妥、更贴合的放置于所述工具架920。

在一个实施例中,所述巡检辅助装置900的所述工具架920上设置有所述待替换检测装置。所述待替换检测装置的一端连接有所述工具端435。所述待替换检测装置与所述工具端435电气连接和机械连接。所述工具端435用于与所述机械臂端433连接实现所述待替换检测装置与所述机械臂420末端的连接。替换所述检测装置430时,拆卸掉原所述检测装置430及与其连接的所述工具端435。将所述待替换检测装置的所述工具端435与所述机械臂420末端的机械臂端433连接,从而实现所述待替换检测装置与所述机械臂420的电气连接和机械连接。本实施例中,通过在所述待替换检测装置上设置所述工具端435,实现对所述检测装置的快速更换,提高工作效率。

在一个实施例中,所述巡检辅助装置900还包括能源供给装置930。所述能源供给装置930设置于所述辅助行走装置。所述能源供给装置用于向轨道交通机车车辆巡检设备提供能源。所述轨道交通机车车辆巡检设备包括但不限于所述巡检机器人400。所述能源供给装置930可以包括电源供给装置931,也可以包括气源供给装置932,还可以为其他任何所述巡检机器人400所需能源的装置。本实例中,所述能源供给装置930能够向所述巡检机器人400提供和补充能源,保证了所述巡检机器人400能源供给,提高了所述巡检机器人400工作的稳定性和可靠性,从而提高了所述轨道交通机车车辆巡检装置10的稳定性和可靠性。

在一个实施例中,所述能源供给装置930包括电源供给装置931。所述电源供给装置931包括电源和电源接口。所述电源设置于所述辅助行走装置910。所述电源接口与所述电源电连接,用于实现所述电源与所述巡检机器人400的电连接。也就是说,通过所述电源接口,所述电源向所述巡检机器人400供电。所述电源和所述电源接口的具体结构、安装方式等本申请均不作限定,只要可以实现其功能即可。当所述巡检机器人400电能耗尽时,所述巡检辅助装置900携带所述电源供给装置行走至所述巡检机器人400,并向其供电。本实施例中,通过所述电源和所述电源接口,实现对所述巡检机器人400的供电功能,增加了所述巡检辅助装置900的功能,提高了实用性。

在一个实施例中,所述巡检辅助装置900还包括应急装置940。所述应急装置940设置于所述辅助行走装置910。所述应急装置用于向所述巡检机器人400提供应急救援。

所述巡检机器人400在巡检作业过程中,可能会遇到突发故障,导致所述作业行走装置410无法行走、所述机械臂420无法动作或所述机械臂420卡死等紧急情况。此时,控制所述巡检辅助装置900携带所述应急装置940行走至所述巡检机器人400附近,向所述巡检机器人400提供应急救援。本实施例中,通过所述应急装置940进一步增加了所述巡检辅助装置900的功能,保证了所述巡检机器人400的安全性和稳定性。

在一个实施例中,所述应急装置940可以包括机械应急装置941。所述机械应急装置941设置于所述辅助行走装置910。所述机械应急装置941用于实现与所述巡检机器人400的机械对接。所述机械应急装置941的具体结构不做限定,只要可以实现其功能即可。在一个实施例中,所述机械应急装置941的结构与所述对接装置440的结构相匹配,以实现与所述巡检机器人400的机械对接,进而实现所述巡检辅助装置900对所述巡检机器人400的拖拽、移动等。本实施例中提供的所述巡检辅助装置900能够在所述巡检机器人400出现故障时,将其拖离所述巡检现场,提高所述轨道交通机车车辆巡检装置10的自动化程度和智能性。

在一个实施例中,所述应急装置940还包括电气应急装置942。所述电气应急装置942设置于所述辅助行走装置910。具体的,所述电气应急装置942可以设置于所述机械应急装置941。所述电气应急装置942用于实现与所述巡检机器人400的电气对接,实现对所述巡检机器人400的电气应急救援。进一步的,所述应急装置940还可以包括通信应急装置。所述通信应急装置用于实现对所述巡检机器人400的通信应急救援。

在一个实施例中,所述巡检辅助装置900还包括检修装置(图中未示出)。所述检修装置设置于所述辅助行走装置910。所述检修装置用于检查所述巡检机器人400的故障信息,并维修。例如,当所述巡检机器人400的所述机械臂420无法动作,所述检修装置可以将所述巡检机器人400的电气通信控制线连接于所述检修装置。所述检修装置对所述巡检机器人400进行调试,根据调试结果,进行进一步维修。本实施例中,通过所述检修装置进一步完善了所述巡检辅助装置900的功能,提高了所述巡检机器人400的安全性和可靠性。

利用如上所述的轨道交通机车车辆巡检装置10进行巡检工作时,所述巡检机器人400要对所述待检测车辆进行定位,以实现准确的检测和测量。而所述巡检机器人400在确定与所述待检测车辆位置时,由于存在多方面的误差,会导致定位偏差。首先,所述巡检机器人400由于自身导航系统的误差、行走地面的不平整、车轮打滑、车轮磨损等造成自身定位的误差,无法准确到达预定的位置。另外,所述待检测车辆由于车轮磨损、导航误差等,会造成所述待检测车辆实际停车位置与预设停车位置的误差。两方面的误差均会导致两者相对位置的误差,最终所述巡检机器人400在对所述待检测车辆进行巡检工作时,检测不准确。因此,需要对轨道交通机车车辆巡检过程中的误差进行检测,从而可以依据误差进行进一步定位校正。

请参见图10,在一个实施例中,所述轨道交通机车车辆巡检装置10还包括轨道交通机车车辆巡检位姿检测系统。所述轨道交通机车车辆巡检位姿检测系统以下均简称巡检位姿检测系统30。以下结合实施例对所述巡检位姿检测系统30进行进一步说明。

请参见图10,在一个实施例中,所述巡检位姿检测系统30包括参考基准310、位姿检测装置320和处理装置330。

所述参考基准310沿所述待检测车辆停放的所述轨道100延伸方向设置于所述轨道100的一侧。所述参考基准310的长度与所述巡检机器人400走行工作面的长度匹配。所述参考基准310可以为型材制成的参考物。所述参考基准310包括沿所述轨道100延伸方向的绝对位置信息和基准面信息等。所述参考基准310可以通过刻度信息、图像信息等体现所述绝对位置信息和所述基准面信息等。

所述位姿检测装置320用于检测所述巡检机器人400相对于所述参考基准310的距离信息。所述位姿检测装置320设置于所述巡检机器人400,从而可以随所述巡检机器人400的移动,实时检测所述巡检机器人400相对于所述参考基准310的距离信息,进而得到所述巡检机器人400的位姿偏移量。所述位姿检测装置320可以根据需求检测参数的不同,设置于所述巡检机器人400的所述车体411的不同位置。所述位姿检测装置320包括但不限于距离检测装置。

所述处理装置330与所述位姿检测装置320通信连接。所述位姿检测装置320检测到的所述巡检机器人400相对于所述参考基准310的距离信息传输至所述处理装置330。所述处理装置330根据所述巡检机器人400相对于所述参考基准310的距离信息计算所述巡检机器人400相对于基准坐标的位姿偏移量。

请参见图11,所述基准坐标可以包括第一坐标轴、第二坐标轴和第三坐标轴构成的坐标系中的一个或多个基准面及基准方向。在一个实施例中,所述第一坐标轴为图11所示的y轴,即与所述巡检机器人400行走方向垂直,与所述巡检机器人400行走地面平行或近似平行的轴。所述第二坐标轴为图11所示的z轴,即与所述巡检机器人400行走方向和所述第二坐标轴垂直的轴。所述第三坐标轴为图11所示的x轴,即平行于所述巡检机器人400行走方向的轴。

在一个实施例中,用于计算位姿偏移量的所述基准坐标包括第一基准面、第二基准面、第三基准面、第一方向、第二方向和第三方向。所述第一基准面为与x轴和z轴形成的平面平行的面。所述第一方向为平行于y轴的方向。所述第一基准面沿y轴的具体位置可以根据实际需求设定。例如,所述第一基准面可以为所述巡检凹槽300沿横向的对称面,即,所述第一基准面为与x轴和z轴形成的平面平行的面,且所述第一基准面位于所述巡检凹槽300垂直所述轨道100延伸方向的中点。所述第二基准面为与x轴和y轴形成的平面平行的面。所述第二方向为平行于z轴的方向。所述第二基准面沿z轴的具体位置可以根据实际需求设定。例如,假设所述巡检机器人400行走地面与x轴和y轴形成的平面平行,所述第二基准面可以为所述巡检机器人400行走地面。所述第三基准面为与y轴和z轴形成的平面平行的面。所述第三方向为平行于x轴的方向。所述第三基准面沿x轴的具体位置可以根据实际需求设定。例如,所述第三基准面可以位于所述巡检凹槽300沿所述轨道100延伸方向的起始位置。

所述巡检机器人400相对于所述基准坐标的位姿偏移量可以包括但不限于所述巡检机器人400相对于所述第一基准面沿所述第一方向的偏移量,相对于所述第二基准面沿所述第二方向的偏移量,相对于所述第三基准面沿所述第三方向的偏移量,以及绕所述第一方向的旋转角度、绕所述第二方向的旋转角度、绕所述第三方向的旋转角度。

本实施例中,通过所述参考基准310与所述位姿检测装置320配合,检测所述巡检机器人400相对于所述参考基准310的距离信息,然后通过所述处理装置330实现对所述巡检机器人400位姿的检测。所述参考基准310为距离检测提供了稳定准确的参考基准,从而提高了位姿检测的精确度,进而提高后续所述巡检机器人400定位的精确性。

基于上述实施例,请参见图12和图13,在一个实施例中,所述基准坐标包括所述第一基准面和所述第一方向。所述参考基准310包括基准标尺311。所述基准标尺311沿所述轨道100延伸方向贴合于所述轨道100靠近所述巡检机器人400行走的一侧。

请一并参见图14,所述位姿检测装置320包括第一距离检测装置321。所述第一距离检测装置321包括但不限于激光测距仪。所述第一距离检测装置321设置于所述巡检机器人400的所述车体411靠近所述基准标尺311一侧的第一位置。所述第一位置可以根据实际需求设置。所述第一距离检测装置321用于检测所述第一位置相对于所述基准标尺311沿所述第一方向的距离信息,得到第一检测距离。所述第一距离检测装置321与所述处理装置330通信连接。所述第一距离检测装置321检测的所述第一检测距离传输至所述处理装置330。

所述处理装置330根据所述第一检测距离计算所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。所述处理装置330计算所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量的方法可以有多种。在一个实施例中,所述处理装置330获取所述第一检测距离,并获取所述基准标尺311相对于所述第一基准面沿所述第一方向的距离信息,从而计算得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的距离信息,得到第一距离信息。所述处理装置330进一步获取所述巡检机器人400的所述第一记录信息,根据所述第一记录信息和所述第一距离信息计算得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的位姿偏移量。其中,所述第一记录信息可以通过所述巡检机器人400的所述车体411的编码器等位置采集模块获得。

本实施例中,通过所述第一距离检测装置321检测得到所述巡检机器人400相对于所述基准标尺311的距离信息,进而通过所述处理装置330计算得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的位姿偏移量。本实施例实现了所述巡检机器人400沿y轴偏移量的检测,为后续y轴方向的定位和校正提供依据,进而消除所述巡检机器人400因行走地面不平整、车轮磨损、导航系统偏差等因素引起的y轴偏差,实现巡检的准确定位。

在一个实施例中,所述基准坐标包括所述第二基准面和所述第二方向。所述参考基准310还包括基准斜面312。所述基准斜面312沿所述轨道100延伸方向设置于所述基准标尺311远离所述巡检机器人400行走地面的一端。也就是说,所述基准斜面312设置于所述基准标尺311的顶部。且所述基准斜面312相对于所述基准标尺311倾斜设置。所述基准斜面312与所述基准标尺311的夹角可以根据需要设置。在一个具体的实施例中,所述基准斜面312与所述基准标尺311的夹角为45°。

所述位姿检测装置320还包括第二距离检测装置322。所述第二距离检测装置322设置于所述巡检机器人400的所述车体411的第二位置。所述第二位置与所述第一位置位于所述巡检机器人400的所述车体411的同一个面。也就是说,所述第二位置也设置于所述车体411靠近所述基准标尺的一侧。所述第二位置所述第二距离检测装置322包括但不限于激光测距仪。所述第二距离检测装置322用于检测所述第二位置相对于所述基准斜面312沿所述第一方向的距离信息,得到第二检测距离。所述第二位置的具体设置可以根据所述基准斜面312的设置位置进行调整和选择,以保证所述第二距离检测装置322能够检测到所述第二位置相对于所述基准斜面312沿所述第一方向的距离信息。例如,所述第二位置位于所述第一位置的上方,且所述第二位置高于所述基准斜面312的最低点,以使得所述第二距离检测装置322能够检测到所述第二位置相对于所述基准斜面的距离信息。

所述第二距离检测装置322与所述处理装置330通信连接。所述处理装置330根据所述第一检测距离和所述第二检测距离计算所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量。

以所述基准斜面312与所述基准标尺311的夹角为45°为例,所述第一检测距离为y1,所述第二检测距离为y2。假设所述巡检机器人400相对于所述第二基准面沿所述第二方向无偏移量时,所述第二检测距离y2=y1,则所述第一检测距离和所述第二检测距离的差y1-y2即为所述巡检机器人400相对于所述第二基准面沿第z轴方向的位姿偏移量。

本实施例提供的所述巡检位姿检测系统30通过所述第二距离检测装置322和所述基准斜面312实现所述第二检测距离的检测,进而计算得到所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量。本实施例提供的所述系统简单有效,且能准确的检测和计算所述巡检机器人400沿z轴方向的偏移量,从而可以消除因所述巡检机器人400车轮磨损、行走地面不平整等造成的z轴方向上的误差。

在一个实施例中,所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上。也就是说,所述第一位置和所述第二位置设置与所述第二方向平行的直线上,使得所述第一位置和所述第二位置在所述第三方向的位置差为零,从而在计算y轴方向上位姿偏移量时,排除所述巡检机器人400车体倾斜造成的影响,提高了z轴方向上位姿偏移量检测和计算的准确性。

在一个实施例中,所述基准坐标包括所述第二方向。所述位姿检测装置320还包括第三距离检测装置323。所述第三距离检测装置323设置于所述巡检机器人的第三位置。所述第三距离检测装置323包括但不限于激光测距仪。所述第三距离检测装置323用于检测所述第三位置相对于所述基准标尺311沿所述第一方向的距离信息,得到所述第三检测距离。所述第三位置与所述第一位置及所述第二位置位于同一个平面。所述第三位置和所述第一位置分别设置于沿所述轨道100延伸方向的不同位置。也就是说,所述第三位置和所述第一位置在所述第三坐标轴的坐标值不同。所述第一位置和所述第三位置一前一后的设置于所述巡检机器人400的所述车体411的侧面。

所述第三距离检测装置323与所述处理装置330通信连接。所述处理装置330根据所述第一检测距离和所述第三检测距离计算所述巡检机器人400绕所述第二方向的旋转角度。所述巡检机器人400绕所述第二方向的旋转角度也即所述巡检机器人400的所述车体411的倾斜角度。

请参见图15,所述第一检测距离为y1,所述第三检测距离为y3,所述第一位置和所述第三位置之间的距离为d,则,根据d、y3-y1可以算出∠1的度数,即为所述巡检机器人400绕所述第二方向的旋转角度。

本实施例中,通过所述第三距离检测装置323检测第三检测距离,并根据所述第一检测距离和所述第三检测距离计算得到所述巡检机器人400绕所述第二方向的旋转角度,从而可以消除所述巡检机器人400因行走地面不平整、车轮磨损、车轮打滑等造成的车体倾斜,提高定位的准确性。

请参见图12,在一个实施例中,所述基准坐标包括所述第三基准面和所述第三方向。所述参考基准310包括所述基准标尺311。所述基准标尺311包括刻度信息。所述位姿检测装置320还包括识别装置324。所述识别装置用于设备所述基准标尺的刻度信息,从而获得所述巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。也就是说,所述识别装置324识别所述基准标尺311的刻度信息,得到所述巡检机器人400沿行走方向的位置信息,进而可以得到所述巡检机器人400相对于所述第三基准面沿所述第三方向的位置信息。本实施例提供的所述系统能够进一步检测所述巡检机器人400因车轮打滑、导航系统偏差等造成的在所述第三方向上的实际行走位置与目标位置产生的偏差,从而可以提高后续定位的准确性,提高巡检工作的质量和效率。

所述基准标尺311上的所述刻度信息的显示形式,以及所述识别装置324的具体结构不做限制,只要二者配合可以实现位置信息的获取即可。在一个实施例中,所述基准标尺311为二维码带。所述二维码带包含y轴信息和x轴信息。所述识别装置324为图像采集装置。所述图像采集装置包括但不限于摄像头等。所述图像采集装置设置于所述巡检机器人400的所述车体411,用于采集所述二维码带的信息,得到图像信息。所述位姿检测装置320还包括第一处理机构325。所述第一处理机构325与所述图像采集装置通信连接。所述第一处理机构325获取所述图像信息并根据所述图像信息得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的位置信息,以及所述巡检机器人400相对于所述第三基准面沿所述第三方向的位置信息。也就是说,所述第一处理机构325根据所述图像采集装置324的获取的所述二维码带的信息,获取当前所述巡检机器人400在y轴方向的位置和在x轴的位置。可以理解,通过所述二维码带和所述图像采集装置进行信息获取时,所述第一距离检测装置321可以不设置。

本实施例中,通过所述二维码带与所述图像采集装置的配合,实现所述巡检机器人400沿x轴方向及沿y轴方向位置的检测,从而可以得到所述巡检机器人400在x轴方向和y轴方向上的位姿偏移量,检测方法简单准确。

在一个实施例中,所述基准标尺311为二维码带或条形码带。所述识别装置324为读码器。所述读码器用于识别所述二维码带或所述条形码带的信息。所述条形码带包括x轴信息。所述位姿检测装置320还包括第二处理机构326。所述第二处理机构326与所述读码器通信连接。所述第二处理机构326用于根据所述二维码带或所述条形码带的信息得到所述巡检机器人400相对于所述第三基准面沿所述第三方向的位置信息。也即是说,通过所述读码器读取所述二维码带或所述条形码带上的x轴信息,得到所述巡检机器人400当前在x轴方向的位置信息。

本实施例中,通过所述二维码带或所述条形码带与所述读码器的配合,实现所述巡检机器人400沿x轴方向的检测,从而可以得到所述巡检机器人400在x轴方向的位姿偏移量,检测方法简单准确。

在一个实施例中,所述位姿检测装置320还包括第四距离检测装置327。所述第四距离检测装置327设置于所述巡检机器人400顶部。所述第四距离检测装置327包括但不限于激光测距仪。所述第四距离检测装置327用于检测所述待检测车辆底部相对于所述第四距离检测装置327的距离信息,得到第四检测距离。所述第四距离检测装置327与所述处理装置330通信连接。所述处理装置330用于根据所述第四检测距离计算所述待检测车辆的位姿偏移量。

所述第四检测距离即为所述待检测车辆车底的高度信息。所述第四距离检测装置327在所述巡检凹槽300内连续移动,从而采集所述待检测车辆底部的高度信息曲线。同时,所述巡检机器人400移动的同时,也可以通过所述识别装置324识别所述基准标尺311的信息,获取所述高度信息对应的x轴方向的位置信息,从而得到所述待检测车辆车底高度长度曲线信息。所述处理装置330根据所述高度长度曲线信息计算所述待检测车辆的位姿偏移量。所述待检测车辆的位姿偏移量包括但不限于所述待检测车辆相对于所述第二基准面沿所述第二方向的位姿偏移量、所述待检测车辆相对于所述第三基准面沿所述第三方向的位姿偏移量,即:所述待检测车辆在z轴方向的偏移量和x轴方向的偏移量。所述处理装置330处理计算的过程可参见下述方法的实施例。

本实施例中,通过所述第四距离检测装置327实现对所述待检测车辆位姿偏移量的检测,从而可以消除因导航误差等导致的所述待检测车辆在x轴方向的停放偏差,以及因所述待检测车辆车轮磨损造成的z轴方向的姿态偏差,进而可以定位的准确性。

请参见图16,本申请一个实施例提供一种轨道交通机车车辆巡检位姿检测方法,可以利用如上所述的巡检位姿检测系统30进行位姿检测。所述方法的执行主体为计算机设备。所述计算机设备可以是所述轨道交通机车车辆巡检位姿检测系统30中的处理装置330,也可以是所述控制装置600,还可以是其他包含存储器和处理器,能够处理计算机程序的任何计算机设备。

所述方法包括:

s10,获取所述待检测车辆相对于所述基准坐标的位姿偏移量,得到车辆位姿偏移量。

s20,获取所述巡检机器人400相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量。

s30,根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作位姿偏移量。

所述基准坐标的定义如上述实施例所述。所述待检测车辆相对于所述基准坐标的位姿偏移量可以通过如上所述的第四距离检测装置327及所述处理装置330、所述识别装置324、所述第一处理机构325和所述第二处理机构326检测得到。所述巡检机器人400相对于所述基准坐标的位姿偏移量,可以通过如上所述的第一距离检测装置321、所述第二距离检测装置322和/或所述第三距离检测装置323,以及所述处理装置330、所述识别装置324、所述第一处理机构325和所述第二处理机构326检测得到。其中,所述车辆位姿偏移量可以在所述待检测车辆停车到位后获取并存储于所述计算机设备的存储器中。所述机器人位姿偏移量在所述巡检机器人400的巡检作业过程中实时获取。

所述计算机设备分别获取所述车辆位姿偏移量和所述机器人位姿偏移量后,根据预设的方法对所述车辆位姿偏移量和所述机器人偏移量进行计算和处理,得到巡检作业过程中的总位姿偏移量,即所述轨道交通机车车辆巡检作业位姿偏移量。计算的方法包括但不限于相同坐标轴位姿偏移量,及其他相关量的求和或加权求和等。具体的计算方法可以根据实际需求设定。

所述轨道交通机车车辆巡检作业位姿偏移量传输至所述控制装置600。所述控制装置600根据位姿偏移量实时校正调整所述巡检机器人400的行走方向,从而对所述待检测车辆准确定位、准确检测。

本实施例中,通过获取所述车辆位姿偏移量和所述机器人位姿偏移量,并根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作过程中的位姿偏移量。本实施例提供的所述方法不仅考虑了轨道交通机车车辆巡检作业过程中所述巡检机器人400的位姿偏差,而且考虑了所述待检测车辆的位姿偏差,多方面消除定位误差,提高定位准确性,进而提高巡检效果。

在一个实施例中,所述基准坐标包括第一基准面和第一方向,s20包括:

s210,获取所述巡检机器人400的第一位置相对于所述第一基准面沿所述第一方向的距离信息,得到第一距离信息。

所述第一距离信息的获得可以包括但不限于通过上述实施例中的所述第一距离检测装置321检测所述第一位置与所述基准标尺311的距离,得到所述第一检测距离。再依据所述基准标尺311相对于所述第一基准面沿所述第一方向的距离,以及所述第一检测距离计算得到所述第一距离信息。当然,所述第一基准面也可以设定为所述基准标尺,则,所述第一距离信息即为所述第一检测距离。

所述第一距离信息表征所述巡检机器人400的所述第一位置相对于所述第一基准面沿所述第一方向的实际距离信息。延续上述实施例,即所述第一距离为所述巡检机器人400的所述第一位置相对于第一基准面沿y轴的距离信息。

s220,获取所述第一位置相对于所述第一基准面沿所述第一方向的记录信息,得到第一记录信息。

所述第一记录信息表征所述巡检机器人400的所述第一位置相对于所述第一基准面沿所述第一方向的理想位置或目标位置。所述第一记录信息可以通过所述巡检机器人400的编码器等导航模块获知。

s230,根据所述第一距离信息和所述第一记录信息计算得到所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。计算的方法包括但不限于两者相减或加入比例系数相减等。

本实施例中,通过获取所述第一距离信息和所述第一记录信息,进而根据所述第一距离信息和所述第一记录信息得到所述巡检机器人400的第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量,即获得所述巡检机器人400沿x轴的姿态偏移量。

请参见图18,在一个实施例中,所述基准坐标包括所述第二基准面和所述第二方向,s20包括:

s240,获取所述巡检机器人400的所述第二位置相对于基准斜面沿所述第一方向的距离信息,得到第二距离信息。其中,所述基准斜面相对于所述第二基准面倾斜设置,所述第一位置和所述第二位置位于所述巡检机器人400的同一个面。且所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上。

s250,根据所述第一距离信息和所述第二距离信息,得到所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量。

所述第二距离信息的获取,以及所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量的计算和获取同上述实施例及图14所示。在此不再赘述。

请参见图19,在一个实施例中,所述基准坐标包括所述第二方向。s20包括:

s260,获取所述巡检机器人400的所述第三位置相对于所述第一基准面沿所述第一方向的距离信息,得到第三距离信息。其中,所述第三位置与所述第一位置位于所述巡检机器人400的同一个面,且所述第一位置和所述第三位置分别设置于所述巡检机器人400沿所述轨道100延伸方向的不同位置。

s270,根据所述第一距离信息和所述第三距离信息得到所述巡检机器人400绕所述第二方向的旋转角度。

所述第三距离信息的获取与所述第一距离信息的获取类似。所述巡检机器人400绕所述第二方向的旋转角度的计算和获取同上述实施例及图15所示。在此不再赘述。

请参见图20,在一个实施例中,所述基准坐标包括所述第二基准面、所述第三基准面、所述第二方向和所述第三方向。s10包括:

s110,获取所述待检测车辆车底沿所述第三方向的每个位置相对于所述第二基准面沿所述第二方向的距离信息,并获取所述带检车车辆车底相对于所述第三基准面沿所述第三方向的距离信息,得到车底高度长度曲线信息。

s120,获取所述待检测车辆车底的标准高度长度曲线信息。

s130,根据所述车底高度长度曲线信息和所述标准高度长度曲线信息,得到所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆沿所述第三方向的姿态偏移量。

所述高度长度曲线信息表征所述待检车车辆停放于实际停放位置时,在x轴的位置,车底各组件在z轴的位置,以及z轴和x轴的位置对应关系。所述标准高度长度曲线信息表征所述待检测车辆位于准确的目标停车位置时,在x轴的位置,车底各组件在z轴的位置,以及z轴和x轴的位置对应关系。

请参见图21,所述巡检机器人400承载所述第四距离检测装置沿所述待检测车辆车底运动,获取所述待检测车辆车底高度信息的同时,通过所述识别装置324识别所述基准标尺311的信息,得到所述待检测车底各位置相对于所述第三基准面沿所述第三方向的位置信息。从而得到所述高度长度曲线信息。

根据所述车底高度长度曲线信息和所述标准高度长度曲线信息的对比,可以快速获得所述待检测车辆沿z轴偏差以及沿x轴的停车偏差。

例如,图21中,根据对比图a和图b可知,z轴偏差为z1a-z1b,x轴偏差为x1a-0=x1a。

本实施例提供的所述方法,通过获取所述待检测和车辆车底高度长度曲线信息和所述标准高度长度曲线信息,能够快速准确的获取所述待检测车辆沿z轴的姿态偏差和在x轴方向的停放偏差。

在一个实施例中,s130包括:

s131,根据所述车底高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的距离信息,得到轮对位置信息。

s132,根据所述标准高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的标准距离信息,得到标准轮对信息。

s133,根据所述轮对位置信息和所述标准轮对位置信息,得到所述带检车车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆相对于所述第三基准面沿所述第三方向的姿态偏移量。

请继续参见图21,根据图a中,可以得到轮对的实际停放位置为x轴x1a点,高度为z2a。根据图b,可以得到轮对的理想停放位置为x轴x2b点,高度为z2b。因此,可得所述待检测车辆沿z轴偏移量为z2a-z2b,所述待检测车辆沿x轴偏移量为x2a-x2b。

本实施例中,通过识别轮对的位置,能够快速、准确的获取所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及相对于所述第三基准面沿所述第三方向的姿态偏移量,提高姿态偏移量的计算速度。

在一个实施例中,所述轨道交通机车车辆巡检装置10的所述控制装置600与所述处理装置330通信连接。所述处理装置330计算得到的所述巡检机器人400相对于所述基准坐标的位姿偏移量、所述待检测车辆相对于所述基准坐标的位姿偏移量和/或轨道交通机车车辆巡检作业姿态偏移量传输至所述控制装置600。所述控制装置600根据以上偏移量控制所述巡检机器人400的行走,从而实现准确定位,准确巡检。

请参见图22,本申请一个实施例提供一种轨道交通机车车辆巡检系统1。所述轨道交通机车车辆巡检系统1包括如上所述的轨道交通机车车辆巡检装置10和调度装置20。其中,所述巡检机器人400的数量为至少2个。所述调度装置20与所述巡检机器人400通信连接。所述调度装置20用于调度所述巡检机器人400。

所述轨道交通机车车辆巡检系统1包括多个所述巡检机器人400。每个所述轨道交通机车车辆装置10的所述控制装置600可以分别设置,控制对应的所述巡检机器人400,也可以通过一个所述控制装置600控制多个所述巡检机器人。

同样,所述调度装置20可以为单独设置的装置,也可以为所述控制装置600的一个模块。所述调度装置20用于根据巡检作业内容要求和所述巡检机器人400的状态,制定每个所述巡检机器人400的作业顺序和行走路线。所述调度装置20也可以用于根据所述巡检机器人400的工作需求和工作状态,控制所述升降设备501的升降。另外,所述调度装置20还可以根据所述巡检机器人400的工作需求和工作状态,控制所述巡检辅助装置900的工作。

本实施例中,通过所述调度装置20控制多个所述巡检机器人400工作,从而能够实现多个所述巡检机器人400同时进行巡检作业,大大缩短了巡检作业时间,提高了巡检作业效率。

所述调度装置20控制多个所述巡检机器人400的方式有多种,在一个实施例中,每个所述巡检机器人400可以根据需求设置多个不同的所述检测装置430。所述调度装置20用于控制每个所述巡检机器人400分别完成对一辆所述待检测车辆的多项检测项目。也就是说,所述调度装置20控制每个所述巡检机器人400完成对一辆所述待检测车辆需要的所有检测项目。多个所述巡检机器人400同时完成多辆所述待检测车辆的检测。本实施例中,所述巡检机器人400无需跨轨道检测,节约所述巡检机器人400行走时间,提高检测效率。

在另一个实施例中,多个所述巡检机器人400分别设置不同的所述检测装置430。所述调度装置20用于控制每个所述巡检机器人400分别完成对多辆所述待检测车辆的一项检测项目。也就是说,多个所述巡检机器人400分别安装不同的所述检测装置430,完成不同的检测项目。多个所述巡检机器人400同时巡检作业,每个所述巡检机器人400跨轨道完成对多辆所述待检测车辆的检测,从而,同时完成多辆所述待检测车辆的检测。本实施例中,每个所述巡检机器人400无需更换所述检测装置430,节约了所述巡检机器人400更换所述待检测装置400的时间和资源,提高了巡检效率。

以下结合实施例对所述轨道交通机车车辆巡检装置10及所述轨道交通机车车辆巡检系统1的工作过程进行说明。

请参见图23,所述轨道交通机车车辆巡检系统1包括m5(1)-m5(6)共6台所述巡检机器人400,分别停放与p001-p006位置。所述轨道交通机车车辆巡检系统1还包括m6(1)和m6(2)共2台所述巡检辅助装置900,分别停放于p007和p008位置。图中,pxxx表示位置。用虚线表示的j1-j6为所述待检测车辆的不同车厢。m7(1)和m7(2)表示所述升降装置501。假设所述升降设备501与所述调度装置20通信连接,所述升降设备501的升降动作由所述调度装置20控制。

以下对图中p001-p186位置进行说明:

p001-p006:安排在所述待检测车辆车侧l的所述巡检机器人m5(1)-m5(6)待命位。

p007-p008:安排在所述待检测车辆车侧l的所述巡检辅助装置m6(1)-m6(2)待命位。

p120:所述的升降装置m7(1)的升降台上的点(车侧l中部基准点),在所述待检测车辆车侧l所述巡检平台200所在的平面和所述巡检凹槽300所在平面之间移动。

p110、p130:所述待检测车辆车侧l两端的基准点。

p114-p119、p121-p126:所述待检测车辆各节车厢对应的典型的车侧l检测停靠点。

p150:所述巡检凹槽300内的中部基准点。

p140、p160:所述巡检凹槽300内两端的基准点。

p144-p149、p151-p156:所述待检测车辆各节车厢对应的典型的车底巡检凹槽检测停靠点。

p180:所述升降设备m7(2)的升降台上的点(车侧r中部基准点),在所述待检测车辆车侧的所述巡检平台200所在平面和所述巡检凹槽300所在平面之间移动。

p170、p190:所述待检测车辆车侧r两端的基准点。

p174-p179、p181-p186:所述待检测车辆各节车厢对应的典型的车侧r检测停靠点。

在一个实施例中,所述轨道交通机车车辆巡检系统1包括1个所述巡检机器人400,巡检作业过程如下:

s101所述轨道交通机车车辆巡检装置10各工作模块自检正常,各部分功能准备就绪。

s102所述现场工况检测装置700获取所述巡检现场的工况参数。

具体的,所述积液检测机构710检测所述巡检凹槽300内的积液情况,所述入侵检测组件730所述巡检现场是否有入侵等。若有异常,所述现场工况检测装置700或所述控制装置600报警。

同时,所述待检测车辆在位检测组件720检测所述待检测车辆是否停靠到位。若所述导检测车辆停靠到位,则可作为启动使能信号。

s103所述控制装置600根据所述现场工况检测装置700的检测情况,确认确定是否可以启动作业,若是,则发送启动信号。

s104所述调度装置20获取被激活待命的所述巡检机器人400的信息,并分配巡检任务给所述巡检机器人m5(1),并发出作业控制指令。假设所述巡检任务为:完成图中p150处的某一巡检项目。

s105所述巡检机器人m5(1)按照如下4个步骤运行:

1)所述调度装置20控制所述巡检机器人m5(1)从p001行走到p120,准备就绪后,所述巡检机器人m5(1)将状态反馈给所述调度装置20。

2)所述调度装置20发出“下降”指令给所述升降装置m7(1),所述升降装置m7(1)执行下降动作,到位后,反馈给所述调度装置20。

3)所述调度装置20发出指令“p120-->p150”给所述巡检机器人m5(1),所述巡检机器人m5(1)走行到p150时,进入所述巡检凹槽300,并将状态反馈给所述调度装置20。

4)所述调度装置20发出“上升”指令给所述升降设备m7(1),所述升降设备m7(1)执行上升动作。

s106所述控制装置600发出“对所述待检测车辆定位检测”指令给所述巡检机器人m5(1),所述巡检机器人m5(1)沿着“j4-->j5-->j6-->j3-->j2-->j1”方向进行走行测量,得到所述待检测车辆的停靠偏差δx和部件的高度偏差δyn。

s107所述控制装置600发出“对所述待检测车辆进行车底检测”指令给所述巡检机器人m5(1),所述巡检机器人m5(1)沿着“p140-->p150-->p160”方向走行,进行所述待检测车辆车底项目的检测。

s108所述待检测车辆车底项目的检测作业按以下步骤:

1)所述巡检机器人m5(1)在p144停靠,所述控制装置600控制所述巡检机器人m5(1)的所述机械臂420末端到预定的检测位置。

2)安装在所述机械臂420末端的所述检测装置430开始工作,采集检测项目相关信息,并传送至所述控制装置600。

3)所述控制装置600对相关信息进行处理,对是否存在故障进行确认。

4)所述巡检机器人m5(1)走行到下一个检测停靠位,重复以上1)-3)步骤,直到完成p140到p160中所有检测需要位置对应的检测作业。

s109所述巡检机器人m5(1)完成对所述待检测车辆车底检测作业后,回到p150,然后状态反馈给所述控制装置600。

s110假设所述巡检机器人m5(1)当前位于p150位置,所述控制装置600向所述巡检机器人m5(1)发送指令“完成p110处的某一项目检测”,按以下步骤:

1)所述调度装置20发出“下降”指令给所述升降设备m7(1),所述升降设备m7(1)执行下降动作,到位后,反馈所述调度装置20。

2)所述调度装置20发出指令“p150-->p120”给所述巡检机器人m5(1),所述巡检机器人m5(1)走行到p120时,走出所述巡检凹槽300,并将状态反馈给所述控制装置600。

3)所述控制装置600发出“上升”指令给升降设备m7(1),所述升降设备m7(1)执行上升动作,到位后,反馈给所述调度装置20。

4)所述调度装置20发出指令“p120-->p110”给所述巡检机器人m5(1),所述巡检机器人m5(1)走行到p110时,动作完成。

s111所述巡检机器人m5(1)在p110到p130执行对所述待检测车辆车侧l检测作业,其过程与s108相似,在此不再赘述。所述巡检机器人m5(1)完成检测后,到达p130。

s112所述调度装置20向所述巡检机器人m5(1)发送指令“执行p130—>p170动作”,按以下步骤实施:

1)所述调度装置20控制所述巡检机器人m5(1)从p130行走到p120。到位后,所述巡检机器人m5(1)将状态反馈给所述调度装置20。

2)所述调度装置20发出“下降”指令给所述升降设备m7(1)、m7(2),所述升降设备m7(1)和m7(2)执行下降动作,到位后,反馈给所述调度装置20。

3)所述调度装置20发出指令“p120-->p180”给所述巡检机器人m5(1),所述巡检机器人m5(1)走行到p180时,走出地沟,状态反馈给所述调度装置20。

4)所述调度装置20发出“上升”指令给所述升降设备m7(1)和所述升降设备m7(2),所述升降设备m7(1)和所述升降设备m7(2)执行上升动作。到位后,所述升降设备m7(1)和所述升降设备m7(2)将信息反馈给所述调度装置20。

5)所述调度装置20发出指令“p180-->p170”给所述巡检机器人m5(1),所述巡检机器人m5(1)走行到p170时,动作完成。

s113所述巡检机器人m5(1)在p170到p190之间执行车侧r检测作业,过程类似s108,在此不再赘述。

s114以上巡检检测作业过程中,或巡检检测作业完成后,所述检测装置430将采集的信息传输至所述控制装置600进行处理。所述控制装置600将故障信息通过客户端反馈给检修人员进行确认。确认有故障的部件,提示检修人员进行检修。不能确认的,可进行重检后再次确认。重检过程与上述过程类似。

s115人工检修完成后,所述调度装置20控制所述巡检机器人m5(1)走行到被检修过的位置,所述控制装置600控制所述巡检机器人m5(1)进行检修后检测项目的重新信息采集记录。

可以理解,当所述轨道交通机车车辆巡检系统1包括1个所述巡检机器人400时,所述巡检机器人400的行走路线控制和巡检作业控制等也可以都通过所述控制装置600控制。所述升降设备501的升降控制也可以通过所述控制装置600控制。

在又一个实施例中,所述调度装置20调度3台所述巡检机器人400同时进行巡检作业,巡检作业过程如下:

s201巡检作业前的检查和任务获取,具体包括如下步骤:

s2011所述轨道交通机车车辆巡检系统1各工作模块自检正常,各部分功能准备就绪。

s2012所述现场工况检测装置700获取所述巡检现场的工况参数。具体同步骤s102。

s2013所述控制装置600根据所述现场工况检测装置700的检测情况,确认确定是否可以启动作业,若是,则发送启动信号。

s2014所述调度装置20获取被激活待命的所述巡检机器人400的信息,并分配巡检任务给所述巡检机器人m5(1)、m5(2)和m5(3),并发出作业控制指令。假设所述巡检任务分配为:所述巡检机器人m5(1)完成图中p150处的第一巡检项目;所述巡检机器人m5(2)完成图中p110处的第二巡检项目;所述巡检机器人m5(3)完成图中p170处的第三巡检项目。

s2015所述巡检机器人m5(1)、m5(2)和m5(3)根据所述调度装置20及所述控制装置600的指令分别行走至p150、p110和p170处。

s2016所述控制装置600发出“对所述待检测车辆定位检测”指令给所述巡检机器人m5(1)或m5(2)或m5(3),所述巡检机器人m5(1)或m5(2)或m5(3)沿着“j4-->j5-->j6-->j3-->j2-->j1”方向进行走行测量,得到所述待检测车辆的停靠偏差δx和部件的高度偏差δyn。

s202所述巡检机器人m5(1)、m5(2)和m5(3)行走到位后反馈信息给所述控制装置600。

s203所述控制装置600发出“对所述待检测车辆进行车底检测”指令给所述巡检机器人m5(1),所述巡检机器人m5(1)沿着“p140-->p150-->p160”方向走行,进行车底项目检测。

s204所述控制装置600发出“对所述待检测车辆进行车侧l检测”指令给所述巡检机器人m5(2),所述巡检机器人m5(2)沿着“p110-->p120-->p130”方向走行,进行车侧l项目检测。

s205所述控制装置600发出“对所述待检测车辆进行车侧r检测”指令给所述巡检机器人m5(3),所述巡检机器人m5(3)沿着“p170-->p180-->p190”方向走行,进行车侧r项目检测。

s206同步骤s114到s115。

在一个实施例中,所述调度装置20调度6台所述巡检机器人m5同时对所述待检测车辆进行车侧l的巡检作业,步骤如下:

s211同步骤s201。

s212其中,上述s2014中,所述调度装置20发出“p001-->p110”给所述巡检机器人m5(1);所述调度装置20发出“p002-->p114”给所述巡检机器人m5(2);所述调度装置20发出“p003-->p116”给所述巡检机器人m5(3);所述调度装置20发出“p004-->p118”给所述巡检机器人m5(4);所述调度装置20发出“p005-->p123”给所述巡检机器人m5(5);所述调度装置20发出“p006-->p125”给所述巡检机器人m5(6);所述调度装置20发出“p144-->p125”给所述巡检机器人m5(6)。所述巡检机器人的行走过程类似s110,到位后,反馈信息给所述控制装置600。

s213所述控制装置600发出“车侧l-j1检测”指令给所述巡检机器人m5(2),所述巡检机器人m5(2)沿着“对所述待检测车辆进行p114-->p115”方向走行,进行车侧l-j1项目检测。

s214所述控制装置600发出“对所述待检测车辆进行车侧l-j2检测”指令给所述巡检机器人m5(3),所述巡检机器人m5(3)沿着“p116-->p117”方向走行,进行车侧l-j2项目检测。

s215所述控制装置600发出“对所述待检测车辆进行车侧l-j3检测”指令给所述巡检机器人m5(4),所述巡检机器人m5(4)沿着“p118-->p119”方向走行,进行车侧l-j3项目检测。

s216所述控制装置600发出“对所述待检测车辆进行车侧l-j4检测”指令给所述巡检机器人m5(1),所述巡检机器人m5(1)沿着“p121-->p122”方向走行,进行车侧l-j4项目检测。

s217所述控制装置600发出“对所述待检测车辆进行车侧l-j5检测”指令给所述巡检机器人m5(5),所述巡检机器人m5(5)沿着“p123-->p124”方向走行,进行车侧l-j5项目检测。

s218所述控制装置600发出“对所述待检测车辆进行车侧l-j6检测”指令给所述巡检机器人m5(6),所述巡检机器人m5(6)沿着“p125-->p126”方向走行,进行车侧l-j6项目检测。

s219同步骤s114到s115。

在一个实施例中,所述巡检机器人m5(1)和m5(2)通过所述对接装置440对接并在p122和p123位置进行协同作业的过程如下:

s301所述巡检机器人m5(1)到达检测点p123。

s302所述巡检机器人m5(2)到达检测点p122,并通过实时对接装置440与m5(1)实现机械连接。

s303所述巡检机器人m5(1)和m5(2)按工艺要求,相对位置保持静止状态下,协同配合作业。

s304所述巡检机器人m5(1)和m5(2)作业完成后,所述对接装置440断开连接。

在一个实施例中,所述巡检辅助装置m6(1)对所述巡检机器人m5(1)进行辅助作业过程如下:

s401在上述步骤s108的检测作业过程中(假设停靠位置为p121),所述巡检机器人m5(1)控制所述机械臂420末端到预定检测位置。所述检测装置430开始检测工作。采集检测完成后,需要替换所述检测装置430,进行另一项检测。

s402所述调度装置20发出指令“位置p121替换机械臂末端检测装置”给巡检辅助装置m6(1)。所述巡检辅助装置m6(1)执行“p007-->p121”动作,从p007行走至p121位置。到位后,通过所述对接装置440,与所述巡检机器人m5(1)对接,实现机械连接。完成后,状态反馈到所述控制装置600。

s403所述控制装置600发出替换检测装置指令,所述巡检机器人m5(1)将所述机械臂420末端的所述检测装置与所述巡检辅助装置m6(1)的所述工具架920上的检测装置进行替换。完成后,所述巡检机器人m5(1)与所述巡检辅助装置m6(1)脱离,巡检辅助装置m6(1)返回。

在一个实施例中,所述巡检辅助装置m6(1)对所述巡检机器人m5(1)进行辅助应急救援,步骤如下:

s501在所述巡检机器人m5(1)巡检作业过程中,在位置p121遇到故障,无法正常工作。所述调度装置20获取到异常信息后,发出指令“位置p121救援”给到所述巡检机器人m6(1).

s502所述巡检机器人m6(1)走行到p121,并与发生故障的所述巡检机器人m5(1)进行对接,实现机械和电气连接。

s503通过所述巡检辅助装置m6(1)对所述巡检机器人m5(1)进行诊断,如果是软件故障,则对所述巡检机器人m5(1)进行软件修复和重启。然后判断是否仍然处于故障状态。

s504如果软件修复不成功,通过所述巡检辅助装置m6(1)对所述巡检机器人m5(1)进行电气连接检查,如果是电气故障,则尝试对所述巡检机器人m5(1)进行走行部驱动控制模式切换。使所述巡检机器人m5(1)能自行走行到维修区域。

s505如果所述巡检机器人m5(1)驱动控制模式切换不成功,则直接将所述巡检机器人m5(1)推送到维修区域。

s506所述巡检辅助装置m6(1)与所述巡检机器人m5(1)的所述对接装置440脱离,所述巡检辅助装置m6(1)返回。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1