飞机机翼及其组装方法与流程

文档序号:22680119发布日期:2020-10-28 12:40阅读:1751来源:国知局
飞机机翼及其组装方法与流程

本公开总体上涉及飞机,更具体地,涉及飞机起落架前耳轴支撑组件和相关方法。



背景技术:

飞机(例如商用飞机)通常包括起落架(例如左主起落架、右主起落架等),其可被致动以在展开位置和缩回位置之间移动。例如,飞机的起落架可被致动以在飞机的起飞过程之后和/或与飞机的起飞过程结合地从展开位置移动到缩回位置,并且在飞机的着陆过程之前和/或与飞机的着陆过程结合地从缩回位置移动回到展开位置。起落架连接到飞机的机身和/或机翼中的各种支撑结构。起落架和这些支撑结构承受极高的负载,例如特别是在着陆和制动时。



技术实现要素:

本文公开的实例性飞机机翼包括后翼梁和前耳轴支撑组件,后翼梁具有后侧和与后侧相对的前侧。前耳轴支撑组件包括联接到后翼梁的后侧的第一竖直支撑配件和第二竖直支撑配件,并包括具有轴承的耳轴壳体。耳轴壳体联接在第一竖直支撑配件和第二竖直支撑配件之间。轴承的中心轴线垂直于后翼梁的后侧。前耳轴支撑组件还包括设置在后翼梁的后侧上的侧负载配件。侧负载配件的第一端联接到第二竖直支撑配件,并且侧负载配件的第二端联接到后翼梁。

本文公开的实例性方法包括将耳轴壳体联接在第一竖直支撑配件和第二竖直支撑配件之间。耳轴壳体包括轴承。该实例性方法包括将第一竖直支撑配件和第二竖直支撑配件联接到飞机的机翼的后翼梁的后侧。轴承的中心轴线与后翼梁平行。该实例性方法还包括将侧负载配件的第一端联接到第二竖直支撑配件并且将侧负载配件的第二端联接到后翼梁。

本文公开的实例性飞机机翼包括后翼梁和前耳轴支撑组件,后翼梁具有后侧和与后侧相对的前侧。前耳轴支撑组件包括设置在后翼梁的前侧上的侧负载支持配件、联接到后翼梁的后侧的前耳轴壳体组件以及设置在后翼梁的后侧上的侧负载配件。侧负载配件的第一端联接到前耳轴壳体组件,侧负载配件的第二端经由延伸通过后翼梁的多个第一紧固件联接到侧负载支持配件。该实例性飞机机翼还包括设置在后翼梁的后侧上的上稳定撑杆配件。上稳定撑杆配件经由延伸通过后翼梁的多个第二紧固件联接到侧负载支持配件。

附图说明

图1示出了其中可实现本文公开的实例的实例性飞机。

图2示出了在图1的飞机的实例性机翼上采用的左主起落架。

图3示出了与图2的左主起落架结合使用的已知的前耳轴支撑组件。

图4是图3的已知的前耳轴支撑组件和已知的上稳定撑杆配件的单独透视图。

图5示出了后翼梁上的图4的已知的前耳轴支撑组件和上稳定撑杆配件。

图6示出了根据本公开的教导构造的实例性前耳轴支撑组件和实例性上稳定撑杆配件。图6是透视图,示出了图1的飞机的机翼的后翼梁上的实例性前耳轴支撑组件和上稳定撑杆配件。

图7是后翼梁上的图6的实例性前耳轴支撑组件和实例性上稳定撑杆配件的另一透视图。

图8是图6的后翼梁的前侧的透视图,示出了与实例性前耳轴支撑组件和实例性上稳定撑杆配件结合使用的实例性支持配件。

图9是图6的后翼梁的顶视图,示出了实例性前耳轴支撑组件和实例性上稳定撑杆配件。

图10是形成在图6的实例性前耳轴支撑组件的实例性侧负载配件与实例性竖直支撑配件之间的接头的放大图。

图11a至图11c示出了形成图10的接头的实例性过程。

图12是表示在机翼组装过程中安装和/或组装实例性前耳轴支撑组件和实例性上稳定撑杆配件的实例性方法的流程图。

附图不是按比例绘制的。相反,层或区域的厚度可在附图中增大。通常,在整个附图和所附书面描述中将使用相同的附图标记来表示相同或相似的部件。如在本专利中使用的,陈述了任何部件(例如层、薄膜、区域、区或板)以任何方式在另一部件上(例如定位在另一部件上、位于另一部件上、设置在另一部件上或形成在另一部件上等),表明所引用的部件与另一部件接触,或者所引用的部件在另一部件上方,一个或多个中间部件位于所引用的部件与另一部件之间。任何部件与另一部件接触的陈述意味着在两个部件之间没有中间部件。

当标识可单独提及的多个元件或部件时,在本文中使用叙词“第一”、“第二”、“第三”等。除非基于其使用环境另有规定或理解,否则这种叙词并非旨在归因于列表中的优先级、物理顺序或排列或者时间顺序的任何含义,而是仅用作用于单独引用多个元件或部件的标签,以便于理解所公开的实例。在一些实例中,叙词“第一”可用于指详细描述中的元件,而相同的元件可在权利要求中用诸如“第二”或“第三”的不同叙词来指代。在这种情况中,应理解这种叙词仅用于便于指代多个元件或部件。

具体实施方式

在本文中公开了用于飞机主起落架的实例性前耳轴支撑组件。本文公开的实例性前耳轴支撑组件包括侧负载支持配件,其用作侧负载配件和上稳定撑杆配件的支持配件。因此,本文公开的实例性前耳轴支撑组件与已知的组件相比使用更少的支持配件,这减小了飞机的总重量,从而提高了燃料效率。

本文公开的实例性前耳轴支撑组件包括耳轴壳体,耳轴壳体平行于后翼梁而不是如已知组件中那样相对于后翼梁成角度。通过将耳轴壳体平行于后翼梁定位,实例性侧负载配件可设置在耳轴壳体的内侧,同时仍提供耳轴壳体与后翼梁之间的有效负载路径。这使得侧负载支持配件能够相对于耳轴壳体定位在内侧,使得侧负载支持配件也可支撑上稳定撑杆配件。此外,通过使耳轴壳体平行于后翼梁,与相对于后翼梁成角度并且需要难以接近的隐藏紧固件的已知耳轴壳体相比,实例性前耳轴支撑组件更容易安装在后翼梁上。

本文还公开了组装和/或安装前耳轴支撑组件和上稳定撑杆配件的相关方法。本文公开的实例性前耳轴支撑组件和上稳定撑杆配件比已知的组件安装起来更容易且更快,这减少了总组装时间和成本。

现在转向附图,图1示出了实例性飞机100,其中可实现本文公开的实例。飞机100包括机身102、联接到机身102并从其向外延伸的第一机翼104(左机翼),以及联接到机身102并从其向外延伸的第二机翼106(右机翼)。在所示实例中,飞机100包括由第一机翼104承载的第一发动机108和由第二机翼106承载的第二发动机110。在其他实例中,飞机100可包括仅一个发动机或者可包括多于两个发动机,并且发动机可联接到第一和/或第二机翼104、106和/或飞机100上的另一结构(例如,在机身102的尾部上)。

飞机100包括用于滑行、起飞和着陆的起落架。飞机100的起落架可具有许多不同的布置。典型的飞机采用三轮车起落架布置,其包括左主起落架(lmlg)、右主起落架(rmlg),以及机身102的前端附近的前轮。lmlg在第一机翼104的根部处或附近联接到第一机翼104的底部,在该根部处,第一机翼104联接到机身102。类似地,rmlg在第二机翼106的根部处或附近联接到第二机翼106的底部,在该处,第二机翼106联接到机身102。前轮在前端附近联接到机身102的底部。lmlg、rmlg和前轮可在展开状态与缩回状态之间移动。

lmlg经由形成着陆装置三角部(geartriangle)112的一个或多个结构(例如,翼梁、横梁等)联接第一机翼104和机身102。在图1中示出了着陆装置三角部112的实例性位置。在一些实例中,如本文进一步详细公开的,着陆装置三角部112由后翼梁、着陆装置梁和机身的侧面形成。rmlg类似地经由另一着陆装置三角部联接到第二机翼106和机身102。结合lmlg描述了本文公开的实例。然而,应理解,结合lmlg在本文公开的任何实例同样可适用于rmlg。

图2示出了第一机翼104的着陆装置三角部112。在图2中,第一机翼104的顶部和底部蒙皮(例如面板)和控制表面已经被移除以暴露第一机翼104的形成着陆装置三角部112的内部结构。第一机翼104包括后翼梁200。后翼梁200是第一机翼104中的主要负载承载构件中的一个。后翼梁200从机身102向外延伸到第一机翼104的翼尖。在此实例中,后翼梁200具有c形或u形横截面或轮廓。在一些实例中,后翼梁200由复合材料构成,例如碳纤维。第一机翼104还具有前翼梁,其从机身102向外延伸并且沿着第一机翼104的前侧(正面)延伸。多个肋联接在后翼梁200和前翼梁之间。在所示实例中,第一机翼104还包括着陆装置梁202。着陆装置梁202联接在后翼梁200和机身102之间。

如图2所示,着陆装置三角部112由三个主要结构形成,包括(1)着陆装置梁202,(2)后翼梁200的位于机身102和着陆装置梁202之间的部分,以及(3)机身102的位于后翼梁200和着陆装置梁202之间的部分。图2中还示出了实例性lmlg204(有时称为起落架组件)。lmlg204联接到着陆装置三角部112。lmlg204可在展开状态(如图2所示)与缩回或收起状态之间移动。lmlg204包括减震支柱206(有时称为柱、外部柱状件和/或油压减震器)以及一个或多个联接到减震支柱206的轮208。在所示实例中,lmlg204包括四个轮208(其中的一个在图2中被引用)。然而,在其他实例中,lmlg204可包括更多或更少的轮(例如,一个轮、两个轮、三个轮、五个轮等)。lmlg204包括致动器210,以使减震支柱206在展开位置与缩回位置之间旋转。

图2的lmlg204还包括后撑杆214(第一撑杆)和侧撑杆216(第二撑杆),其用于将水平负载从减震支柱206转移走。后撑杆214联接在减震支柱206和后翼梁200之间(靠近机身102)。侧撑杆216联接在减震支柱206和着陆装置梁202之间(靠近机身102)。后撑杆214和侧撑杆216可各自包括两个或更多个连杆(支柱),其使得当lmlg204缩回时,后撑杆214和侧撑杆216能够分别折叠。

图3是lmlg204处于展开状态的另一透视图。在图3中,为了清楚起见,已将致动器212(图2)移除。减震支柱206经由耳轴300可枢转地联接到后翼梁200和着陆装置梁202。在展开状态下,如图3所示,减震支柱206基本上竖直地定向,使得轮208(图2)位于飞机100(图1)下方。为了缩回lmlg204(例如,在起飞之后),减震支柱206朝向机身102向上旋转(经由耳轴300),这将轮208移动到形成在机身102的底部中的井302中。为了展开lmlg204(例如,在着陆之前),将减震支柱206向下旋转(经由耳轴300)到图3所示的竖直取向。

耳轴300在后翼梁200和着陆装置梁202之间延伸。在图3中,耳轴300经由后翼梁200上的前耳轴支撑组件304可旋转地联接到后翼梁200。图3所示的前耳轴支撑组件304是已知的前耳轴支撑组件。耳轴300的相对端类似地经由着陆装置梁202上的后耳轴支撑组件可旋转地联接到着陆装置梁202。前耳轴支撑组件304和后耳轴支撑组件使得耳轴300(及因此减震支柱206)能够围绕轴线枢转/旋转。

由于工业安全要求,需要lmlg204能够从着陆装置三角部112切断,而不会使燃料箱(其储存在第一机翼104的内部)破裂,并且不会从第一机翼104移除着陆装置梁202。因此,许多约束规定了前耳轴支撑组件304的设计和功能。前耳轴支撑组件304的一部分构造为在施加足够的竖直负载或侧负载时断裂,这使得减震支柱206(以及lmlg204的其他部分)能够从着陆装置三角部112切断。

为了给着陆装置梁202提供支撑和刚性,第一机翼104包括上稳定撑杆306和下稳定撑杆308。上稳定撑杆306和下稳定撑杆308联接到后翼梁200和着陆装置梁202并且在其之间延伸。上稳定撑杆306位于后翼梁200的顶部处或附近,而下稳定撑杆308位于后翼梁200的底部处或附近。如图3所示,上稳定撑杆306相对于耳轴300位于内侧,并且下稳定撑杆308相对于耳轴300位于外侧。上稳定撑杆306的一端联接到设置在后翼梁200上的上稳定撑杆配件310。上稳定撑杆306的相对端联接到着陆装置梁202上的另一配件。下稳定撑杆308的端部类似地联接到后翼梁200和着陆装置梁202上的配件。

图4是已知的前耳轴支撑组件304和上稳定撑杆配件310的透视图。后翼梁200在图4中未示出。图5是在已知的前耳轴支撑组件304和上稳定撑杆配件310上向下看的后翼梁200的顶部剖视图。后翼梁200具有后侧500(后侧、外侧、外表面)和与后侧500相对的前侧502(前侧、内侧、内表面)。如图4和图5所示,已知的前耳轴支撑组件304包括第一竖直支撑配件400和第二竖直支撑配件402。第一竖直支撑配件400和第二竖直支撑配件402设置在后翼梁200的后侧500上并且联接到该后侧。第一竖直支撑配件400和第二竖直支撑配件402(经由紧固件)联接到设置在后翼梁200的前侧502上的相应的第一竖直支持配件404和第二竖直支持配件406。已知的前耳轴支撑组件304包括具有轴承410的耳轴壳体408。耳轴壳体408联接在第一竖直支撑配件400和第二竖直支撑配件402之间。轴承410形成接收耳轴300(图3)的开口412。

如图5所示,耳轴壳体408(及因此轴承410)相对于后翼梁200成角度。特别地,耳轴壳体408和轴承410的中心轴线504不垂直于后翼梁200的后侧500。因此,后翼梁200的法线(垂直于后翼梁200延伸的线)和耳轴壳体408的法线(垂直于耳轴壳体408延伸的线)不平行。相反,耳轴壳体408和轴承410在向外的方向上成角度。

耳轴壳体408和轴承410可经受来自耳轴300(图3)的显著的左右负载(水平负载)。例如,如果飞行员期望在飞机100在地面上时使飞机100(图1)向左转向,则飞行员可锁定lmlg204(例如,对车轮208施加制动)并且增加对右发动机的推力。这导致飞机100围绕lmlg204枢转,从而使飞机100向左转向。此枢转动作还在耳轴300和耳轴壳体408中引起左右(水平)负载。

为了帮助分配这些左右负载中的一些,已知的前耳轴支撑组件304包括联接在第一竖直支撑配件400和后翼梁200之间的侧负载配件414。因为耳轴壳体408朝向外侧方向成角度,所以侧负载配件414位于耳轴壳体408的外侧,这形成从耳轴壳体408到后翼梁200的更直接的负载路径。侧负载配件414的第一端416联接到第一竖直支撑配件400,并且侧负载配件414的第二端418在第一竖直支撑配件400的外侧联接到后翼梁200。已知的前耳轴支撑组件304包括设置在后翼梁200的前侧502上的侧负载支持配件420。侧负载配件414的第二端418(经由紧固件)通过后翼梁200联接到侧负载支持配件420。侧负载支持配件420是在后翼梁200的前侧502上竖直延伸的竖直构件。侧负载支持配件420沿着后翼梁200的高度分配由侧负载配件414提供的负载。已知的前耳轴支撑组件304还包括联接在第一竖直支撑配件400与第二竖直支撑配件402之间的第一带扣422和第二带扣424。例如,如果在外侧方向上推动耳轴300(图3),则侧负载配件414被置于压缩状态,并且将负载传递到侧负载支持配件420,从而传递到后翼梁200。例如,如果在内侧方向上推动耳轴300,则第一带扣422和第二带扣424将负载从第二竖直支撑配件402传递到第一竖直支撑配件400,这将侧负载配件414置于拉伸状态。将此拉伸负载传递到侧负载支持配件420,该侧负载支持配件沿着后翼梁200分配负载。

图4和图5还示出了已知的上稳定撑杆配件310。已知的上稳定撑杆配件310设置在后翼梁200的后侧500上。已知的上稳定撑杆配件310是在后翼梁200的后侧500上竖直延伸的全高度配件。上稳定撑杆306(图3)将附接到上稳定撑杆配件310。上稳定撑杆配件310将由上稳定撑杆306施加在上稳定撑杆配件310上的任何负载分配在后翼梁200的整个高度上。上稳定撑杆配件310设置在第一竖直支撑配件400和第二竖直支撑配件402以及耳轴壳体408的内侧。

虽然图3至图5的已知的前耳轴支撑组件304是有效的,但是此已知的组件需要使用多个大型结构部件和紧固件。这些部件和紧固件增加了飞机100的重量,这降低了燃料效率。而且,因为侧负载配件414位于后翼梁200的底部附近,所以将侧负载配件414连接到侧负载支持配件420的紧固件经受更高的应力。更具体地,当后翼梁200向上或向下弯曲时(例如,在飞行期间当第一机翼104弯曲时),后翼梁200的下部被置于压缩或拉伸状态。因此,位于后翼梁200的底部附近的任何紧固件都暴露于这些应力。因此,使用更大、更坚固的紧固件以不仅承受来自后翼梁200的这些负载,而且承受来自耳轴300(图3)的负载。这些更大、更重的紧固件更昂贵并且增加了飞机100的重量。

此外,此已知的前耳轴支撑组件304也难以安装。第一竖直支撑配件400和第二竖直支撑配件402从后翼梁200在倾斜方向上(外侧)延伸。由于该角度,延伸通过第一竖直支撑配件400和第二竖直支撑配件402的外侧并进入后翼梁200的紧固件难以安装。这增加了安装时间和成本,而这又增加了飞机100的总体制造成本。此外,所有部件都具有预钻的紧固件开口,包括后翼梁200。因此,为了确保紧固件开口将对准,容许公差必须极小。提供具有这种公差水平的部件增加了生产成本。而且,翼梁200的后侧500上的所有部件(第一竖直支撑配件400和第二竖直支撑配件402、侧负载配件414等)首先组装,然后作为一个单元连接到后翼梁200。所组装的单元相对较重并且难以操纵以及连接到后翼梁200。

本文公开了解决上述缺点的实例性前耳轴支撑组件。图6是根据本公开的教导构造的实例性前耳轴支撑组件600的透视图。实例性前耳轴支撑组件600可在飞机100的第一机翼104上实现,代替图3至图5所示的已知组件304。在图6中,实例性前耳轴支撑组件600示出为联接到第一机翼104(图1)的后翼梁200。

如上所述,后翼梁200具有c形或u形横截面或轮廓。后翼梁200在图6中已经被剖开以示出c形或u形轮廓。后翼梁200包括腹板602、上盖604和下盖606。上盖604和下盖606有时被称为上凸缘和下凸缘。上盖604和下盖606从腹板602向前延伸,并且限定面向向前方向的空腔608。

在所示实例中,实例性前耳轴支撑组件600包括第一竖直支撑配件610(外侧竖直支撑配件)和第二竖直支撑配件612(内侧竖直支撑配件)。第一竖直支撑配件610和第二竖直支撑配件612彼此平行且间隔开。第一竖直支撑配件610和第二竖直支撑配件612设置在后翼梁200的后侧500上。第一竖直支撑配件610和第二竖直支撑配件612经由设置在后翼梁200的前侧502上的竖直支持配件联接到后翼梁200,如结合图8进一步详细示出的。第一竖直支撑配件610经由多个延伸通过后翼梁200的紧固件614(例如,螺栓、螺钉等)(其中一个在图6中被引用)联接到第一竖直支持配件,并且第二竖直支撑配件612经由多个紧固件615(例如,螺栓、螺钉等)(其中一个在图6中被引用)联接到第二竖直支持配件。可使用任何数量的紧固件614、615(例如,一个紧固件、两个紧固件、三个紧固件等)。在此实例中,第一竖直支撑配件610和第二竖直支撑配件612与后翼梁200的后侧500接触。在其他实例中,一个或多个中间结构(例如,垫圈、密封件、垫片等)可设置在第一竖直支撑配件610和/或第二竖直支撑配件612与后翼梁200之间。

在图6的图示实例中,前耳轴支撑组件600包括具有轴承618的耳轴壳体616。在此实例中,轴承618是球面轴承。在其他实例中,可实现其他类型的轴承。耳轴壳体616设置在第一竖直支撑配件610和第二竖直支撑配件612之间并且联接到第一竖直支撑配件610和第二竖直支撑配件612。轴承618形成接收耳轴300(图3)的开口620。轴承618使得耳轴300能够旋转/枢转。在此实例中,耳轴壳体616定向为使得耳轴壳体616和轴承618的中心轴线621垂直于后翼梁200。

在所示实例中,耳轴壳体616经由多个熔丝销(fusepin)622联接到第一竖直支撑配件610和第二竖直支撑配件612。图6中示出了熔丝销622中的一个。图7中示出了另外两个熔丝销622。可使用任何数量的熔丝销622(例如,一个熔丝销、两个熔丝销、三个熔丝销等)。熔丝销622设计为在预定负载下断裂(剪切),这使得lmlg204能够在显著的竖直负载下从第一机翼104切断。在其他实例中,可利用其他类型的紧固件。

在所示实例中,前耳轴支撑组件600包括设置在第一竖直支撑配件610和第二竖直支撑配件612之间并且联接到第一竖直支撑配件610和第二竖直支撑配件612的上壳体624。上壳体624位于耳轴壳体616上方。在此实例中,上壳体624经由多个熔丝销625联接到第一竖直支撑配件610和第二竖直支撑配件612。图6中示出了熔丝销625中的一个,图7中示出了另一熔丝销625。可使用任何数量的熔丝销625(例如,一个熔丝销、两个熔丝销、三个熔丝销等)。如果迫使耳轴壳体616竖直向上移动,则上壳体624在竖直方向上提供额外的阻力。

在所示实例中,前耳轴支撑组件600包括联接在第一竖直支撑配件610和第二竖直支撑配件612之间的第一带扣626(上带扣)和第二带扣628(下带扣)。第一带扣626和第二带扣628在第一竖直支撑配件610和第二竖直支撑配件612之间传递左右负载。

第一竖直支撑配件610和第二竖直支撑配件612、耳轴壳体616、上壳体624以及第一带扣626和第二带扣628形成前耳轴壳体组件629。在一些实例中,首先组装前耳轴壳体组件629,然后前耳轴壳体组件629(例如,经由紧固件614、615)联接到后翼梁200。在其他实例中,前耳轴壳体组件629的一个或多个部件可按不同顺序组装。

为了远离耳轴壳体616分配侧负载(内侧/外侧负载),前耳轴支撑组件600包括侧负载配件630。在此实例中,侧负载配件630相对于前耳轴壳体组件629位于内侧(即,第一竖直支撑配件610和第二竖直支撑配件612及耳轴壳体616的内侧)。侧负载配件630具有第一端632和与第一端632相对的第二端634。第一端632联接到前耳轴壳体组件629,并且第二端634联接到后翼梁200。在此实例中,侧负载配件630的第一端632联接到第二竖直支撑配件612(内侧竖直支撑配件)。在一些实例中,侧负载配件630的第一端632经由多个紧固件636(例如,螺栓、螺钉等)(其中一个在图6中被引用)联接到第二竖直支撑配件612。侧负载配件630的第二端634经由多个紧固件638(例如,螺栓、螺钉等)(其中一个在图6中被引用)联接到侧负载支持配件(图8中示出)。紧固件638延伸通过后翼梁200。而且,在此实例中,侧负载配件630经由多个紧固件640(例如,螺栓、螺钉等)(其中一个在图6中被引用)直接联接到后翼梁200。可使用任何数量的紧固件636、638、640(例如,一个紧固件、两个紧固件、三个紧固件等)。在此实例中,侧负载配件630与后翼梁200的后侧500接触。在其他实例中,一个或多个中间结构(例如,垫圈、密封件、垫片等)可设置在侧负载配件630与后翼梁200之间。

在所示实例中,侧负载配件630具有第一腹板641和第二腹板643(有时称为第一凸缘和第二凸缘)。在一些实例中,第二腹板643垂直于第一腹板641。在所示实例中,第二腹板643经由紧固件638、640与后翼梁200接触并联接。第一腹板641与第二竖直支撑配件612接触并联接。结合图10和图11a至图11c更详细地公开了用于将第一腹板641联接到第二竖直支撑配件612的实例性过程。

例如,如果在内侧方向上推动耳轴300(图3),则侧负载配件630被置于压缩状态并且将负载传递到侧负载支持配件,从而传递到后翼梁200。例如,如果在外侧方向上推动耳轴300,则第一带扣626和第二带扣628将负载从第一竖直支撑配件610传递到第二竖直支撑配件612,这将侧负载配件630置于拉伸状态。将此拉伸负载传递到侧负载支持配件,该侧负载支持配件沿着后翼梁200分配负载。因此,侧负载配件630定位为将来自耳轴300(图3)和耳轴壳体616的左右负载分配到后翼梁200。

在所示实例中,侧负载配件630定位为比后翼梁200的顶部或底部更靠近后翼梁200的中心。此中心区域(有时称为中性轴线)比后翼梁200的顶部和底部区域受到更小的弯曲应力。因此,在紧固件636、638、640上施加更小的负载。因此,在一些实例中,可实现紧固件636、638、640中的较小紧固件。较小的紧固件通常更轻且更便宜。此外,侧负载配件630可适应比已知的侧负载配件更大的侧负载,因为紧固件638、640不需要考虑来自后翼梁200的弯曲的应力。因此,实例性前耳轴支撑组件600的负载承载能力高于已知的组件。

侧负载支持配件(图8中示出)经由多个紧固件642(例如,螺栓、螺钉等)(其中一个在图6中被引用)直接联接到后翼梁200。可使用任何数量的紧固件642(例如,一个紧固件、两个紧固件、三个紧固件等)。

图6还示出了实例性上稳定撑杆配件644。上稳定撑杆配件644设置在后翼梁200的后侧500上。上稳定撑杆306(图3)将联接到上稳定撑杆配件644。上稳定撑杆配件644经由多个延伸通过后翼梁200的紧固件646(例如,螺栓、螺钉等)(其中一个在图6中被引用)联接到侧负载支持配件(图8中示出)。可使用任何数量的紧固件646(例如,一个紧固件、两个紧固件、三个紧固件等)。上稳定撑杆配件644设置在后翼梁200的顶部附近。如图6所示,上稳定撑杆配件644是非全高度稳定撑杆配件。换句话说,与图3至图5中的已知的上稳定撑杆配件310相比,上稳定撑杆配件644不沿着后翼梁200的大部分高度延伸。因此,上稳定撑杆配件644更小且更轻,这减小了飞机100(图1)的总重量。

图7是后翼梁200的后侧500的另一透视图,示出了实例性前耳轴支撑组件600和上稳定撑杆配件644。图7中引用了第一竖直支撑配件610和第二竖直支撑配件612、耳轴壳体616、轴承618、上壳体624、第一带扣626和第二带扣628、前耳轴壳体组件629、侧负载配件630以及上稳定撑杆配件644。而且,在图7中引用了紧固件614、615、638、640、646中的每个和熔丝销622、625中的一个。

图7还示出了实例性下稳定撑杆配件700。下稳定撑杆配件700联接到后翼梁200的后侧500。下稳定撑杆配件700经由多个紧固件702(例如,螺栓、螺钉等)(其中一个在图7中被引用)联接到后翼梁200。可使用任何数量的紧固件702(例如,一个紧固件、两个紧固件、三个紧固件等)。下稳定撑杆308(图3)的一端将联接到下稳定撑杆配件700。在此实例中,下稳定撑杆配件700与第一竖直支撑配件610和第二竖直支撑配件612分离。然而,在其他实例中,下稳定撑杆配件700可联接到第一竖直支撑配件610或集成到第一竖直支撑配件610中。

图8是后翼梁200的前侧502的透视图。如图8所示,前耳轴支撑组件600包括第一竖直支持配件800和第二竖直支持配件802。第一竖直支撑配件610(图6和图7)经由紧固件614(其中一个在图8中被引用)联接到第一竖直支持配件800。第二竖直支撑配件612(图6和图7)经由紧固件615(其中一个在图8中被引用)联接到第二竖直支持配件802。如图8所示,第一竖直支持配件800和第二竖直支持配件802是在后翼梁200的上盖604和下盖606之间竖直延伸的全高度配件。

如图8所示,实例性前耳轴支撑组件600包括侧负载支持配件804。侧负载支持配件804设置在后翼梁200的前侧502上。侧负载支持配件804位于第一竖直支持配件800和第二竖直支持配件800的内侧。侧负载支持配件804是在后翼梁200的前侧502上在上盖604和下盖606之间竖直延伸的全高度配件。在此实例中,侧负载支持配件804与后翼梁200的前侧502接触。在其他实例中,一个或多个中间结构(例如,垫圈、密封件、垫片等)可设置在侧负载支持配件804与后翼梁200之间。

如图8所示,侧负载支持配件804经由紧固件642(其中一个在图8中被引用)联接到后翼梁200。如上所述,侧负载配件630(图6)经由延伸通过后翼梁200的紧固件638(其中一个在图8中被引用)联接到侧负载支持配件804。侧负载配件630比后翼梁200的顶部或底部更靠近后翼梁200的中心地联接到侧负载支持配件804。侧负载支持配件804将负载沿着后翼梁200的高度传递到面内方向。另外,上稳定撑杆配件644经由延伸通过后翼梁200的紧固件646(其中一个在图8中被引用)联接到侧负载支持配件804。因此,侧负载支持配件804为侧负载配件630(图6)和上稳定撑杆配件644两者提供支撑。因此,实例性前耳轴支撑组件600使得支撑各种部件所需的配件更少,如在图3至图5中的已知组件304中,其具有用于每个部件的单独/附加的支持配件。通过使用更少的部件,实例性前耳轴支撑组件600比已知组件更轻,这提高了飞机100(图1)的燃料效率。

图9是后翼梁200的顶视图,示出了实例性前耳轴支撑组件600以及上稳定撑杆配件644和下稳定撑杆配件700。如图9所示,耳轴壳体616定向为平行于后翼梁200的后侧500。特别地,耳轴壳体616和轴承618的中心轴线621垂直于后翼梁200的后侧500。换句话说,后翼梁200的法线(垂直于后翼梁200延伸的线)和耳轴壳体616的法线(垂直于耳轴壳体616延伸的线)是平行的。在图9中标记后翼梁200的“法向”。耳轴壳体616的法线与中心轴线621重合。如图所示,这两条线是平行的(在竖直维度和水平维度上)。由于耳轴壳体616的这种定向,侧负载配件630可用在耳轴壳体616的任一侧(内侧或外侧)上,并且仍提供用于将负载传递到后翼梁200的有效负载路径,这与具有向外侧成角度并且仅可在外侧上有效地支撑侧负载配件的耳轴壳体的已知组件相反。这使得侧负载配件630能够用在耳轴壳体616的内侧上,使得侧负载配件630可与上稳定撑杆配件644共用侧负载支持配件804(图8)。而且,因为耳轴壳体616平行于后翼梁200,所以第一竖直支撑配件610和第二竖直支撑配件612可从后翼梁200向外(例如,垂直于后翼梁200)延伸,而不是如图3至图5中所示的已知组件304中那样相对于后翼梁200成角度。这消除了通常难以安装的隐藏的紧固件。这也使得能够更容易地进行维护检查。此外,实例性耳轴壳体616的平行定向使得能够比已知设计更多地使用轴承618的偏离法向旋转能力。

图10示出了在侧负载配件630的第一端632处的第一腹板641与第二竖直支撑配件612之间形成的实例性接头。紧固件636将第一腹板641联接到第二竖直支撑配件612的凸缘或腹板1000。第一腹板641和腹板1000彼此平行。此连接形成单面滑动接头(singlefaceslipjoint)或剪切接头。此类型的接头提供了坚固的连接,并且减少或消除了填隙。而且,通过使用与第二竖直支撑配件612分开的侧负载配件(而不是单个集成部件),侧负载配件630可容易地更换。虽然在此实例中第一腹板641在腹板1000上方,但是在其他实例中,顺序可以颠倒。例如,第一腹板641可设置在腹板1000下方。

图11a至图11c示出了形成图10中的接头以将侧负载配件630的第一腹板641联接到第二竖直支撑配件612的腹板1000的实例性顺序。图11a至图11c是侧负载配件630的第一腹板641和第二竖直支撑配件612的腹板1000的剖视图。如图11a所示,侧负载配件630的第一腹板641放置在腹板1000上。在一些实例中,侧负载配件630首先经由紧固件638、640(图6)联接到后翼梁200(图6)和侧负载支持配件804(图8)。在这种实例中,第一腹板641设置在腹板1000的顶部。在此实例中,在侧负载配件630的第一腹板641中预先钻出紧固件开口1100。然而,紧固件开口没有在第二竖直支撑配件612的腹板1000中预先钻出。相反,一旦第一腹板641和腹板1000对准,就可在腹板1000中钻出紧固件开口。

如图11b所示,在与侧负载配件630中的紧固件开口1100相同的位置中,在在腹板1000中钻出紧固件开口1102。这确保了紧固件开口1100、1102对准,因为紧固件开口是在安装期间产生的。钻出紧固件开口1102还使得在构造和组装部件时能够具有更大的公差。然后,如图11c所示,紧固件636通过紧固件开口1100、1102插入并拧紧以联接侧负载配件630和第二竖直支撑配件612。

在另一实例中,可在腹板1000中预先钻出小的引导开口。因此,如果在紧固件开口1100和引导开口之间存在小的不匹配,则可在腹板1000中的正确位置钻出最终的紧固件开口。在其他实例中,可在腹板1000中预先钻出紧固件开口1102,并且可在安装期间钻出紧固件开口1100。在另一实例中,可在安装期间钻出紧固件开口1100和紧固件开口1102。

本文公开了许多实例性紧固件,其用于连接前耳轴支撑组件600的各个部件,例如紧固件614、615、636、638、640、642、646、702。这些紧固件可以是任何尺寸和/或类型的紧固件,包括诸如螺栓、螺钉、夹具、夹子等的可移除或可反转的紧固件,和/或诸如铆钉的不可反转的紧固件。此外,本文公开的任何实例性紧固件可由其他紧固方式代替,例如焊接、粘合剂等。

图12是表示将实例性前耳轴支撑组件600和实例性上稳定撑杆配件644组装和/或安装在后翼梁200上的实例性方法1200的流程图。实例性方法1200可在飞机100的第一机翼104的组装期间执行。在一些实例中,首先组装飞机的机翼,然后将机翼联接到机身的侧面。实例性方法1200的元件可重新布置、重复和/或省略。实例性方法1200公开了在后翼梁200上安装零件/部件。后翼梁200和各种零件及部件可具有用于接收紧固件的预钻开口。在其他实例中,当将各种零件和部件安装在后翼梁200上时,可钻出一个或多个紧固件开口。

在方框1202,将耳轴壳体616联接在第一竖直支撑配件610和第二竖直支撑配件612之间(例如,经由熔丝销622)。在一些实例中,还将上壳体624以及第一带扣626和第二带扣628联接到第一竖直支撑配件610和第二竖直支撑配件612。

在方框1204,将第一竖直支撑配件610和第二竖直支撑配件612与耳轴壳体616一起联接到后翼梁200的后侧500。在一些实例中,前耳轴壳体组件629首先组装,然后前耳轴壳体组件629作为一个单元安装在后翼梁200上。在其他实例中,耳轴壳体616可在第一竖直支撑配件610和第二竖直支撑配件612联接到后翼梁200之后联接到第一竖直支撑配件610和第二竖直支撑配件612。第一竖直支撑配件610和第二竖直支撑配件612经由紧固件614、615分别联接到后翼梁200的前侧502上的第一竖直支持配件800和第二竖直支持配件802。当前耳轴壳体组件629安装在后翼梁200上时,耳轴壳体616定向为平行于后翼梁200。因此,轴承618的中心轴线621垂直于后翼梁200。

在方框1206,将侧负载支持配件804(例如,经由紧固件642)联接到后翼梁200的前侧502。侧负载支持配件804相对于耳轴壳体616在内侧的位置处联接到后翼梁200。

在方框1208,将侧负载配件630设置在后翼梁200的后侧500上。在方框1210,将侧负载配件630的第二端634联接到侧负载支持配件804。在一些实例中,侧负载配件630的第二端634经由紧固件638联接到侧负载支持配件804。紧固件638延伸通过后翼梁200并且将侧负载配件630联接到侧负载支持配件804。在方框1212,将侧负载配件630联接到后翼梁200。例如,侧负载配件630可经由紧固件640直接联接到后翼梁(没有支持配件)。在其他实例中,侧负载配件630在没有支持配件的情况下可不直接联接到后翼梁200。

在方框1214,将侧负载配件630的第一端632联接到第二竖直支撑配件612。在一些实例中,如结合图11a至图11c公开的,侧负载配件630包括预先钻出的紧固件开口1100。然后,在侧负载配件630中的紧固件开口1100的位置处,在第二竖直支撑配件612的腹板1000中钻出紧固件开口1102。然后,紧固件636通过紧固件开口1100、1102插入并拧紧。这确保紧固件开口总是对准的,而不是试图对准预先钻出的开口。然而,在其他实例中,可在侧负载配件630和第二竖直支撑配件612两者中预先钻出紧固件开口。

在一些实例中,前耳轴壳体组件629首先组装并联接到后翼梁200,然后侧负载配件630联接到后翼梁200和前耳轴壳体组件629。这使得能够制造单独的部件并将其组装在后翼梁200上。这些部件更小且更轻,这使得能够比在其中首先组装大单元然后将其连接到后翼梁200的已知设计中更容易且更快地安装。

在方框1216,将上稳定撑杆配件644设置在后翼梁200的后侧500上并且联接到侧负载支持配件804。在一些实例中,上稳定撑杆配件644经由延伸通过后翼梁200的紧固件646联接到侧负载支持配件804。然后,上稳定撑杆306可联接到上稳定撑杆配件644,并且耳轴300可插入到耳轴壳体616中。

可安装和组装各种其他零件或部件以构造第一机翼104。然后,第一机翼104可联接到机身102的侧面。第二机翼106可类似地组装并联接到机身102。

“包括”和“包含”(及其所有形式和时态)在本文用作开放式术语。因此,无论何时权利要求采用任何形式的“包括”或“包含”(例如,包括、包含、包括、包含、具有等)作为前序部分或在任何种类的权利要求叙述内,应理解,可存在另外的元件、术语等而不落在对应权利要求或叙述的范围之外。如本文使用的,当短语“至少”用作例如权利要求的前序部分中的过渡术语时,其以与术语“包括”和“包含”为开放式的相同方式是开放式的。术语“和/或”当例如以诸如a、b和/或c的形式使用时,是指a、b、c的任何组合或子集,例如(1)单独的a、(2)单独的b、(3)单独的c、(4)a与b、(5)a与c、(6)b与c,以及(7)a与b和c。如在描述结构、部件、项目、物体和/或事物的上下文中使用的,短语“a和b中的至少一个”旨在指代包括(1)至少一个a、(2)至少一个b,以及(3)至少一个a和至少一个b中的任何一个的实现。类似地,如在描述结构、部件、项目、物体和/或事物的上下文中使用的,短语“a或b中的至少一个”旨在指代包括(1)至少一个a、(2)至少一个b,以及(3)至少一个a和至少一个b中的任何一个的实现。如在描述过程、指令、动作、活动和/或步骤的执行或施行的上下文中使用的,短语“a和b中的至少一个”旨在指代包括(1)至少一个a、(2)至少一个b,以及(3)至少一个a和至少一个b中的任何一个的实现。类似地,如在描述过程、指令、动作、活动和/或步骤的执行或施行的上下文中使用的,短语“a或b中的至少一个”旨在指代包括(1)至少一个a、(2)至少一个b,以及(3)至少一个a和至少一个b中的任何一个的实现。

从上述内容中将理解,已经公开了提供更轻和更便宜的前耳轴支撑组件的实例性制造方法、制造设备和制造物品。通过减小飞机的重量,实例性前耳轴支撑组件提高飞机的燃料效率。实例性前耳轴支撑组件利用比已知组件更少的部件,并且减小了后翼梁上的占用面积,这使得实例性前耳轴支撑组件能够在较小的飞机机翼上实施。本文公开的实例性前耳轴支撑组件制造起来也比较便宜,并且更容易安装,这减少了与飞机制造相关的时间和劳动成本。

以下段落提供了本文公开的实例的各种实例。

实例1包括一种飞机机翼,其包括后翼梁和前耳轴支撑组件,后翼梁具有后侧和与后侧相对的前侧。前耳轴支撑组件包括联接到后翼梁的后侧的第一竖直支撑配件和第二竖直支撑配件并包括具有轴承的耳轴壳体。耳轴壳体联接在第一竖直支撑配件和第二竖直支撑配件之间。轴承的中心轴线垂直于后翼梁的后侧。前耳轴支撑组件还包括设置在后翼梁的后侧上的侧负载配件。侧负载配件的第一端联接到第二竖直支撑配件,并且侧负载配件的第二端联接到后翼梁。

实例2包括实例1的飞机机翼,其中,前耳轴支撑组件包括设置在后翼梁的前侧上的侧负载支持配件。侧负载配件经由延伸通过后翼梁的多个第一紧固件联接到侧负载支持配件。

实例3包括实例2的飞机机翼,其中,侧负载配件和侧负载支持配件相对于耳轴壳体位于内侧。

实例4包括实例3的飞机机翼,还包括设置在后翼梁的后侧上的上稳定撑杆配件。上稳定撑杆配件经由延伸通过后翼梁的多个第二紧固件联接到侧负载支持配件。

实例5包括实例4的飞机机翼,其中,上稳定撑杆配件是非全高度稳定撑杆配件。

实例6包括实例4或5的飞机机翼,其中,上稳定撑杆配件位于后翼梁的顶部附近。

实例7包括实例2至6中任一项所述的飞机机翼,其中,侧负载支持配件在后翼梁的前侧上在上盖与下盖之间延伸。

实例8包括实例1至7中任一项所述的飞机机翼,其中,侧负载配件定位成相比于后翼梁的顶部或底部更靠近后翼梁的中心部分。

实例9包括实例1至8中任一项所述的飞机机翼,其中,侧负载配件经由单面滑动接头联接到第二竖直支撑配件。

实例10包括实例1至9中任一项所述的飞机机翼,其中,后翼梁由碳纤维构成。

实例11包括一种方法,包括将耳轴壳体联接在第一竖直支撑配件和第二竖直支撑配件之间。耳轴壳体包括轴承。该方法还包括将第一竖直支撑配件和第二竖直支撑配件联接到飞机的机翼的后翼梁的后侧。轴承的中心轴线垂直于后翼梁。该方法还包括将侧负载配件的第一端联接到第二竖直支撑配件以及将侧负载配件的第二端联接到后翼梁。

实例12包括实例11的方法,其中,侧负载配件相对于耳轴壳体位于内侧。

实例13包括实例12的方法,还包括将侧负载支持配件联接到后翼梁的前侧。

实例14包括实例13的方法,其中,将侧负载配件的第二端联接到后翼梁包括经由延伸通过后翼梁的多个紧固件将侧负载配件的第二端联接到侧负载支持配件。

实例15包括实例13或14的方法,还包括将上稳定撑杆配件设置在后翼梁的后侧上,并且经由延伸通过后翼梁的多个紧固件将上稳定撑杆配件联接到侧负载支持配件。

实例16包括实例11至15中任一项所述的方法,其中,侧负载配件包括具有预先钻出的紧固件开口的第一腹板,并且其中,将侧负载配件的第一端联接到第二竖直支撑配件包括在第二竖直支撑配件的第二腹板中于侧负载配件中的紧固件开口的位置处钻出紧固件开口,并且将多个紧固件通过第一腹板和第二腹板中的紧固件开口插入。

实例17包括实例11至16中任一项的方法,其中,在将耳轴壳体联接到第一竖直支撑配件和第二竖直支撑配件之后,将第一竖直支撑配件和第二竖直支撑配件联接到后翼梁。

实例18包括一种飞机机翼,包括:后翼梁,具有后侧和与后侧相对的前侧;前耳轴支撑组件,包括设置在后翼梁的前侧上的侧负载支持配件、联接到后翼梁的后侧的前耳轴壳体组件,以及设置在后翼梁的后侧上的侧负载配件。侧负载配件的第一端联接到前耳轴壳体组件,并且侧负载配件的第二端经由延伸通过后翼梁的多个第一紧固件联接到侧负载支持配件。飞机机翼还包括设置在后翼梁的后侧上的上稳定撑杆配件。上稳定撑杆配件经由延伸通过后翼梁的多个第二紧固件联接到侧负载支持配件。

实例19包括实例18的飞机机翼,其中,前耳轴壳体组件包括具有轴承的耳轴壳体。轴承的中心轴线垂直于后翼梁。

实例20包括实例18或19的飞机机翼,其中,上稳定撑杆配件是非全高度稳定撑杆配件。

虽然在本文公开了某些实例性制造方法、制造设备和制造物件,但是本专利的覆盖范围不限于此。相反,本专利覆盖了完全落入本专利的权利要求的范围内的所有制造方法、制造设备和制造物件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1