包括可膨胀蓄积器和存储器组件的能量存储系统的制作方法

文档序号:4227644阅读:114来源:国知局
专利名称:包括可膨胀蓄积器和存储器组件的能量存储系统的制作方法
技术领域
本发明涉及一种用于车辆的混合驱动系统,更具体地讲,涉及一种用于车辆的混合液压驱动系统。
背景技术
典型的车辆混合液压驱动系统使用可逆泵/马达吸收来自常规车辆驱动系统的动力以及将动力加入到常规车辆驱动系统或者辅助常规车辆驱动系统。该系统通过将液压流体从低压存储器抽吸到混合能量存储系统来吸收动力。这种液压能量存储系统通常包括一个或多个充氮液压蓄积器。混合液压驱动系统通常通过使用存储在液压蓄积器中的液压能驱动作为发动机的可逆泵/马达把动力加入到常规车辆驱动系统。

发明内容
在一个方面,本发明提供一种可膨胀蓄积器和存储器组件,包括存储器,限定内部室,该内部室中包含工作流体;和可膨胀蓄积器,至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中。蓄积器构造为与存储器交换工作流体。在另一方面,本发明提供一种能量存储系统,包括存储器,限定内部室,该内部室中包含工作流体;可逆泵/马达,与存储器流体连通;和可膨胀蓄积器,至少部分地位于存储器中并且至少部分地浸入在内部室内所包含的工作流体中。蓄积器包含工作流体,并与可逆泵/马达选择性地流体连通,以在可逆泵/马达作为马达工作时将加压工作流体传送到可逆泵/马达,并且在可逆泵/马达作为泵工作时接收由可逆泵/马达排出的加压工作流体。在另一方面,本发明提供一种操作能量存储系统的方法。该方法包括提供限定内部室的存储器,该内部室中包含工作流体;将可膨胀蓄积器至少部分地布置在内部室内; 将可膨胀蓄积器至少部分地浸入在内部室内所包含的工作流体中;在可逆泵/马达作为马达工作时利用可逆泵/马达使工作流体返回到存储器,并且在可逆泵/马达作为泵工作时从存储器抽出工作流体。在另一方面,本发明提供一种可膨胀蓄积器,该可膨胀蓄积器包括主体,主体具有限定内部空间的内层和至少部分地围绕内层的外层。蓄积器还包括与内部空间流体连通的入口 /出口。内层具有比外层高的断裂应变。在另一方面,本发明提供一种可膨胀蓄积器和存储器组件,包括存储器,限定内部室,该内部室中包含工作流体;和可膨胀蓄积器。可膨胀蓄积器包括内层和至少部分地围绕内层的外层。内层具有比外层高的断裂应变。蓄积器至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中。蓄积器构造为与存储器交换工作流体。在另一方面,本发明提供一种可膨胀蓄积器和存储器组件,包括存储器,限定中心轴线和内部室,该内部室中包含工作流体;可膨胀蓄积器,与中心轴线同轴,至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中。蓄积器构造为与存储器交换工作流体。该组件还包括支撑件,与存储器同轴并延伸至少蓄积器的长度。该支撑件与蓄积器的外周接合,以限制当从存储器接收加压工作流体时蓄积器的膨胀。在另一方面,本发明提供一种可膨胀蓄积器和存储器组件,包括存储器,限定内部室,该内部室中包含工作流体;和单个可膨胀蓄积器,至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中。蓄积器构造为与存储器交换工作流体。存储器具有内部体积,并且蓄积器根据蓄积器中的工作流体的量而占据存储器的大约40%和大约70%之间的内部体积。通过考虑下面的详细描述和附图,本发明的其它特征和方面将会变得清楚。


图1是本发明的能量存储系统的第一构造的示意图,示出存储器和位于存储器内的可膨胀蓄积器。图2是图1的能量存储系统的示意图,示出当可逆泵/马达作为泵工作时响应于从可逆泵/马达接收加压工作流体而处于膨胀结构的蓄积器。图3是本发明的能量存储系统的第二构造的示意图,示出存储器和位于存储器内的多个蓄积器。图4是能够在图1-3的可膨胀蓄积器中使用的多层囊的截面图。图5是能够在图1-3的可膨胀蓄积器中使用的多层管或囊的截面图。图6是具有非圆形内表面的能够在图1-3的可膨胀蓄积器中使用的管或囊的截面图。图7是存储器和可膨胀蓄积器组件的透视图。图8是图7的组件的分解透视图,示出可膨胀蓄积器的几种构造。图9是沿线9-9的图7的组件的截面图,示出处于未膨胀状态的蓄积器。图10是图9的组件的截面图,示出处于部分膨胀状态的蓄积器。图11是图9的组件的截面图,示出处于完全膨胀状态的蓄积器。图12是具有构造为多层囊的蓄积器的图7的组件的截面图,示出处于未膨胀状态的囊。图13是图12的组件的截面图,示出处于部分膨胀状态的囊。图14是图12的组件的截面图,示出处于完全膨胀状态的囊。在详细解释本发明的任何实施例之前,应该理解,本发明在它的应用中不限于在下面的描述中阐述或者在下面的附图中示出的部件的构造和布置的细节。本发明能够具有其它实施例并且能够以各种方法实施或者执行。此外,应该理解,本文使用的用语和术语是为了描述的目的而不应该视为是限制性的。
具体实施例方式图1示出用于混合动力车辆的能量存储系统10。然而,系统10可用在其它应用 (例如,汽车或工业液压应用等)中。具体地讲,系统10构造为并行液压再生驱动系统10, 并行液压再生驱动系统10包括蓄积器和存储器组件14以及有效结合到组件14的可逆泵 /马达18。另一方面,系统10可构造为串行液压再生驱动系统,其中泵/马达18直接结合到车辆的车轮或者驱动轴。另一方面,系统10可包括超过一个泵/马达18。组件14包括存储器22和经泵/马达18与存储器22选择性流体连通的蓄积器沈。 可逆泵/马达18构造为可变排量、轴向活塞、斜盘设计泵/马达18,诸如Bosch Rexroth型号NO. A4VS0可变排量、轴向活塞可逆泵/马达18。另一方面,可逆泵/马达18可构造为具有恒定排量而非可变排量。可逆泵/马达18以可驱动的方式结合到旋转轴30 (例如,引擎的输出轴、引擎的附属驱动系统、传动装置和轴组件之间的驱动轴、车轮或驱动轴等)。如以下更详细地所述,泵/马达18在作为马达工作时将动力传递给旋转轴30,并且泵/马达18 在作为泵工作时由旋转轴30驱动。继续参照图1,存储器22包含工作流体(例如,液压流体)并通过流体通路34与可逆泵/马达18流体连通。热交换器和/或工作流体过滤器(未示出)可位于流体通路 34中以促进工作流体的冷却和过滤。可逆泵/马达18与存储器22流体连通,以在作为泵工作时经流体通路34从存储器22抽出低压工作流体(沿图2中的箭头A的方向)。可逆泵/马达18还与存储器22流体连通,以在作为马达工作时经流体通路34将低压工作流体 (沿图1中的箭头B的方向)返回给存储器22。可逆泵/马达18经流体通路42与蓄积器沈流体连通,以在作为泵工作时将加压工作流体(沿图2中的箭头A的方向)传送给蓄积器26。可逆泵/马达18还经流体通路 42与蓄积器沈流体连通,以在作为马达工作时从蓄积器沈接收加压工作流体(沿图1中的箭头B的方向)。隔离阀46位于流体通路42中,并在处于关闭结构时阻止工作流体流经通路42,以及在处于打开结构时允许工作流体流经通路42。继续参照图1,存储器22限定内部室50,在内部室50中包含工作流体。在示出的能量存储系统10的构造中,蓄积器沈位于存储器22内并至少部分地浸入在内部室50内包含的工作流体中。另一方面,蓄积器沈可仅至少部分地位于存储器22内,从而与图1中的蓄积器26的位置相比,蓄积器沈的更少的部分浸入在工作流体中。此外,在示出的能量存储系统10的构造中,蓄积器沈包括凸缘54,以方便将蓄积器沈安装到存储器22。许多不同的结构元件(例如,紧固件等)、工艺(例如,焊接、粘接等)中的任何一种或者结构元件和工艺的组合可用于将凸缘M固定到存储器22,并因此将蓄积器沈固定到存储器22。继续参照图1,存储器22包括与流体通路34流体连通的单个低压入口 /出口 58, 工作流体经过低压入口 /出口 58而进入或离开存储器22。同样地,蓄积器沈包括与流体通路42流体连通的单个高压入口 /出口 62,工作流体经过高压入口 /出口 62而进入或离开蓄积器26。另一方面,存储器22可包括超过一个低压入口 /出口 58。在存储器的这种结构中,所述多个低压入口 /出口 58可与各流体通路34配对。在示出的系统10的构造中,存储器22基本上是气密的(即,“密闭”),并且能够将存储器22内的空气保持在大气压(例如,0 psi压力)或者保持在高于大气压的压力。另一方面,存储器22可对于大气是开放的并包括通气管以允许与大气交换空气。存储器22 的内部室50包括在工作流体上方围绕蓄积器沈的气腔66。如前所述,气腔66可包括处于大气压的空气或者处于高于大气压的压力的空气。存储器22的加压(S卩,以高于大气压的压力提供气腔66中的空气)基本上确保在泵/马达18的入口(以及在存储器22的入口 / 出口 58)的工作流体的压力保持在足以在泵/马达18作为泵工作时基本上防止泵/马达 18的气蚀的水平。
在示出的系统10的构造中,存储器22示意性地示出为具有大体上圆柱形。然而, 存储器22可构造为具有许多不同形状中的任何形状,以符合存储器22所在的混合动力车辆的结构。另外,存储器22可由许多不同材料(例如,金属、塑料、复合材料等)中的任何材料制成。此外,在示出的系统10的构造中,存储器22示意性地示出为处于垂直方向。然而,存储器22可在包括系统10的混合动力车辆中按照许多不同方向中的任何方向布置。例如,存储器22可在车辆中直立布置(即,垂直)、平放(即,水平)或者以存储器22的水平方向和存储器22的垂直方向之间的任何角度倾斜地放置。继续参照图1,蓄积器沈构造为可膨胀蓄积器沈,其中蓄积器沈的内部体积或空间根据蓄积器26内包含的工作流体的量是可变的。在示出的系统10的构造中,蓄积器沈具有可膨胀管70,可膨胀管70具有相对端74、78和位于末端74、78之间的内部空间82。入口 /出口 62位于管70的顶端74 (从图1可看见),并且夹具86将入口 /出口 62结合到管70。夹具86也用作密封件以基本上防止工作流体在顶端74和入口 /出口 62之间泄漏。 一个或多个密封件(例如,0形环、垫圈等)也可用于将夹具86密封到入口 /出口 62以及将夹具86密封到管70的顶端74。另一夹具90结合到管70的底端78(从图1可看见), 以封闭管70的底端78并防止工作流体经底端78在蓄积器沈和存储器22之间交换。一个或多个密封件(例如,0形环、垫圈等)可用于将夹具90密封到管70的底端78。另一方面,仅具有单个开口端(g卩,与入口 /出口 62相邻的末端)的囊118可替代于管70与蓄积器26 —起使用(图4)。参照图1,蓄积器沈可包括除气阀94,除气阀94结合到夹具90并与管70的内部空间82流体连通。这种除气阀94(例如,弹簧偏置球阀)在蓄积器沈未被加压时采用打开结构,以允许混入的空气从蓄积器沈逸出到存储器22,在存储器22,所述混入的空气被允许经工作流体上升到气腔66。除气阀94随后在蓄积器沈被加压时采用关闭结构,以防止蓄积器26中的加压工作流体泄漏到存储器22中。继续参照图1,蓄积器沈包括多个支撑件98,所述多个支撑件98与管70的外周接合,以限制当加压工作流体从存储器22转移到蓄积器沈时管70可能膨胀的程度。虽然对于示出的蓄积器26显示了分离的支撑件98“平滑成形器”,但另一方面,单个笼子可位于管70的外周周围并与管70的外周分隔开与管70可膨胀的所希望的程度对应的特定距离。 也可对这种笼子确定形状,以限定并限制蓄积器沈的膨胀形状(例如,限制为图2中显示的蓄积器26的膨胀形状)。可膨胀管70或囊由弹性体材料(例如,聚氨酯、天然橡胶、聚异戊二烯、含氟聚合物、腈等)制成,以方便当可逆泵/马达18作为泵工作时响应于加压工作流体被抽吸到蓄积器沈中的管70的变形。具体地讲,如图2中所示,与管70的中间部分的外径对应的径向尺寸D响应于加压工作流体填充和离开蓄积器沈而变化。然而,与每个末端74、78相邻的管70的外径由各个夹具86、90保持基本上恒定。蓄积器沈用于在径向尺寸D从与未拉伸或未变形的管70(参见图1)对应的值增加时将压缩力施加于管70中的工作流体。换句话说,进入蓄积器26的加压工作流体作用于管70以使管70拉伸或膨胀至图2中显示的形状。这种能量在分子水平存储在管70中,并与由管70经受的应变的量成比例。申请人:通过试验发现当均质管70 ( S卩,仅具有单一层并且没有强化纤维的管70) 的内部被加压时,存储在管70中的应变能的大部分集中在管70的内表面附近。申请人还发现存储在管70中的应变能的集中沿着管70的厚度随着增加的径向位置而减小。换句话说,与接近管70的内表面的材料相比,接近管70的外表面的材料对应变能的存储的贡献较小。为了增加沿着管70的厚度的应变能的分布的均勻性,可使用多层构造,在多层构造中,管的最内层具有比最外层高的断裂应变(即,在拉伸试验期间发生断裂时的应变)并且最外层具有比最内层高的刚度。因为这种多层管能够更有效地沿着它的厚度存储应变能, 所以与单层管70相比,该多层管能够应付的最大内压也将会增加。如图4中所示,囊118包括内层122,限定包含工作流体的内部空间126 ;和外层 130,围绕内层122。还应该理解,能够实现与具有相对的开口端的管相同的构造。当囊118 用于蓄积器并且蓄积器26浸入在存储器22中的工作流体中时,外层130与该工作流体接触。内层122具有比外层130高的断裂应变,并且外层130具有比内层122高的刚度(即, 弹性模量)。在在大约3000psi和大约6000psi之间的内压可存储至少200kJ的应变能的囊118的构造中,内层122的断裂应变可在大约30%和大约70%之间高于外层130的断裂应变(与外层130的断裂应变相比,内层122的断裂应变可以高出大约30%和大约70%之间)。 同样地,在相同的条件下,外层130的刚度可在大约30%和大约70%之间高于内层122的刚度(与内层122的刚度相比,外层130的刚度可高出大约30%和大约70%之间)。除了提供以上讨论的性能特性之外,可选择包括囊118的内层122和外层130的材料,以使层122、130中的每一层可以对工作流体有抵抗能力,从而基本上阻止了在长期接触工作流体之后的层122、130中的任一层的劣化。例如,囊118的内层122和外层130 可由包括丁腈橡胶(NBR)的弹性体、含氟聚合物弹性体(例如,VIT0N)、聚氨酯聚合物、弹性碳氢聚合物(例如,天然橡胶)等等制成。内层122和外层130中的每一层可由同一材料族内的不同等级的材料制成。另一方面,内层122和外层130可由具有明显不同的化学组成和性质的材料制成。继续参照图4,囊118的内层122和外层130可分开地形成并组装,以使外层130 的内表面与内层122的外表面一致。外层130可连接到内层122(例如,使用粘合剂等)或者可以不连接到内层122。另一方面,囊118的内层122和外层130可共成型,从而不需要随后的层122、130的组装。例如,多层管的同心的内层和外层(未示出)可逐层地共挤压成型。参照图5,显示了可在图1-3的蓄积器沈中使用的管或囊134的另一多层构造。 管或囊134包括四层一内层138、外层142和两个内部层146、150。像图4的囊118—样, 内层138包括比外层142高的断裂应变,并且外层142具有比内层138高的刚度。在管或囊134的一些构造中,层138、146、150、142的断裂应变可从内层138到外层142渐次地减小。例如,层138、146、150、142的断裂应变可根据线性或非线性(例如,二阶、三阶等)关系渐次地减小。同样地,层138、146、150、142的刚度可根据线性或非线性(例如,二阶、三阶等)关系从内层138到外层142渐次地增加。层138、146、150、142可由以上参照图4的囊118讨论的相同材料制成。然而,仅管或囊134的内层138和外层142需要由对工作流体有抵抗能力的材料制成,这是因为当蓄积器26浸入在工作流体中时内部层146、150不与工作流体接触。如此,内部层146、150 可由这样的材料制成该材料具有所希望的应变能性质,但缺少对工作流体的抵抗能力。在管或囊134的一种构造中,与内部层146、150的厚度相比,层138、142的厚度可相对较小,从而内部层146、150主要用于能量存储,而内层138和外层142主要用作保护内部层146、 150不受工作流体伤害的屏障。在这种构造中,层138、142对管或囊134的总体能量存储能力的贡献量可以很小或者可忽略,从而不需要相对于内部层146、150的断裂应变或刚度值选择层138、142的断裂应变或刚度值。换句话说,“内”内部层146可具有比“外”内部层 150高的断裂应变,然而,内层138不需要具有比内部层146高的断裂应变。各层138、146、150、142可分开地形成并组装,以使层138、146、150、142的配合表面彼此一致。层138、146、150、142可结合在一起或者可以不结合在一起。另一方面,层138、 146、150、142可共成型,从而不需要随后的层138、146、150、142的组装。例如,当构造为管 134时,层138、146、150、142可逐层地共挤压成型。参照图6,显示了具有单一层的管或囊154的另一构造,所述单一层具有限定非圆形横截面形状的内表面158。特别地,管或囊IM的内表面158包括跨越管或囊IM的长度 (即,进入到图6的页中)的交替的峰162和谷166。管或囊154的这种构造也将会增加沿着管或囊154的厚度的应变能的分布的均勻性。在工作中,当系统10从旋转轴30重新获得动能时,泵/马达18作为泵工作,以沿箭头A的方向(参见图幻从存储器22 (经入口 /出口 58)抽出工作流体,对工作流体加压, 并通过隔离阀46和入口 /出口 62将加压工作流体抽吸到管70的内部空间82中。蓄积器 26响应于进入管70的加压工作流体而膨胀或拉伸。当工作流体以基本上恒定的压力被抽吸到蓄积器26中(例如,参见图9-11和12-13中的蓄积器的膨胀)时,蓄积器沈的膨胀沿着蓄积器26的长度渐次地发生。当工作流体离开存储器22时,工作流体上方的气腔66的体积基本上不改变,这是因为工作流体仅从管70外面(如图1中所示)转移到管70里面(如图2中所示)。换句话说,蓄积器26和存储器22的组合基本上模拟控制体积,其中离开存储器22的工作流体的体积基本上等于进入蓄积器沈的工作流体的体积。同样地,离开蓄积器沈的工作流体的体积基本上等于返回到存储器22的工作流体的体积。因此,在系统10的工作期间的任何给定时间在蓄积器沈和存储器22内保持的工作流体的总体积基本上是恒定的。另外,因为气腔66的体积在系统10的工作期间保持基本上恒定,所以工作流体可以被从存储器22抽出以及返回到存储器22而没有与大气交换气体或空气(即,从大气抽取替换空气或者将空气排出到大气)。在重新获得旋转轴30的动能之后,隔离阀46被启动至关闭结构,并且管70对工作流体施加压缩力以在蓄积器沈内将工作流体保持在高压。当混合动力车辆需要推进辅助时,隔离阀46被启动至打开结构,以允许加压工作流体从蓄积器26沿箭头B的方向(参见图1)的流动。如上所述,用于推进辅助的能量在分子水平存储在管70中,并与由管70经受的应变的量成比例。高压工作流体从蓄积器沈流经流体通路42并流入到泵/马达18中,以使泵/马达18用作用于驱动轴30的马达。泵/ 马达18随后经流体通路34和入口 /出口 58使低压工作流体返回到存储器22。当工作流体返回到存储器22时,工作流体上方的气腔66的体积基本上不改变,这是因为工作流体仅从管70里面(如图2中所示)转移到管70外面(如图1中所示)。如前所述,蓄积器沈和存储器22的组合基本上模拟控制体积,其中在系统10的工作期间的任何给定时间在蓄积器26和存储器22内保持的工作流体的总体积基本上是恒定的。
参照图3,显示了包括组件114的能量存储系统110的第二构造,组件114具有位于存储器22中的双蓄积器沈,以增强系统110的能量存储能力。以相似标号标记相似部件并且将不会再次详细描述相似部件。图7和8示出可在图1和2的系统10中使用的蓄积器和存储器组件14a。以具有字母“a”的标号标记相似部件。在示出的存储器22a的构造中,凸缘5 紧固(例如,使用螺栓168)到存储器2 上的对应凸缘170,以密封内部室50a(图8)。垫圈174位于凸缘5 和存储器2 之间,以方便将凸缘5 密封到存储器22a。另一方面,许多不同密封件(例如,0形环等)中的任何一种可位于凸缘5 和存储器2 之间以方便密封。另一方面,许多不同紧固件或快速释放装置中的任何一种可用于将凸缘Ma固定到存储器22a。参照图9,可膨胀蓄积器26a构造为单层囊178,囊178具有与高压入口 /出口 6 流体连通的开口端182和封闭端186。另一方面,蓄积器26a可构造为具有如以上所讨论的材料性质的多层囊190、单层管194或者多层管198(图8)。参照图9,组件1 还包括与存储器2 和入口 /出口 6 的中心轴线206(图8)同轴的支撑件或笼子202。在示出的组件14a的构造中,笼子202构造为延伸囊178的长度的圆柱形、刚性管。凸缘Ma紧固 (即,使用螺栓168)到笼子上的对应凸缘210(图8)上,以保持笼子202与存储器22a同轴。夹具86a也紧固(即,使用螺栓)到凸缘Ma,以保持蓄积器与存储器2 和笼子 202同轴。在如图9中所示的组件14a的示出的构造中,夹具86a构造为环,该环构造为将蓄积器^a的端部或唇部214固定在夹具86a和凸缘5 之间。另一方面,夹具86a可以以许多不同方法中的任何一种方法构造,以将蓄积器26a固定到凸缘5 并因此将蓄积器 26a固定到存储器22a。如以上所讨论,笼子202与囊178的外周隔开与囊178可膨胀的所希望的程度对应的特定距离。笼子202的接近低压入口 /出口 58a的末端也与存储器22a的末端隔开充分距离,以允许笼子202里面和笼子202外面的内部室50a中的位置之间的工作流体的自由流动。参照图7-9,存储器2 包括与内部室50a流体连通的填充口 218,以允许存储器 2 根据需要重新填充工作流体。虽然未示出,但盖子可固定到填充口 218以密封存储器
22 ο参照图9,囊178包括可变内部体积222,当以相对恒定的压力在囊178内接收工作流体时,可变内部体积222增加。如以上所讨论,申请人通过试验发现存储在囊178中的应变能的大部分集中在囊178的内表面附近。换句话说,当在囊178中接收加压工作流体(参见图10和11)时,接近囊178的内表面的材料被沿径向向外方向压缩,有效地引起囊178的内部体积222沿着囊178的长度渐次地增加。在囊178的一些构造中,可变内部体积222构造为增加至与囊178的未膨胀状态(图9)对应的初始内部体积的直至大约13 倍。结果,当囊178从它的未膨胀状态(图9)膨胀至它的完全膨胀状态(图11)时,能够与囊178交换存储器2 中的工作流体的直至大约75%。在示出的组件1 的构造中,存储器2 构造为包含30升的工作流体,而囊178构造为在它如图11中所示完全膨胀时包含至少22升的工作流体。另一方面,可对存储器2 合适地确定尺寸以包含更多或更少的工作流体。参照图9和11,根据囊178中的工作流体的量,囊178可占据存储器22a的内部体积(内部体积由内部室50a限定)的大约40%和大约70%之间。例如,如图9中所示,囊178在处于其未膨胀状态时占据存储器22a的内部体积的大约40%。然而,当囊178如图11中所示充满工作流体时,囊178占据存储器22a的内部体积的大约70%。当于大约 3000psi的系统压力工作时,囊178构造为在如图11中所示完全充满工作流体时存储至少大约150000ft-lbs的能量,该能量足以为两吨车辆(例如,汽车或小型货车)提供推进辅助。当于大约6000psi的系统压力工作时,囊178构造为在如图11中所示完全充满工作流体时存储至少大约750000 ft-lbs的能量,该能量足以为十吨车辆(例如,单轴运货车)提供推进辅助。在一种构造中,组件1 仅占据大约3. 6立方英尺的空间。作为在存储器22a内布置囊178的结果以及通过在囊178完全充满加压工作流体时允许囊178占据存储器22a 的内部体积的大约70%,这种相对较小的封装是可能的。利用当于2000psi和6000psi的系统压力之间工作时的组件Ha的可用能量存储能力,组件1 的能量密度(即,存储的能量除以存储装置的占用空间)可以在大约41500ft-lbs/立方英尺和大约208500ft-lbs/ 立方英尺之间。相比之下,包括充气蓄积器和单独的低压存储器的常规混合液压系统的能量密度是组件14a的能量密度的大约三分之一至大约五分之一。因为组件Ha的能量密度比包括充气蓄积器和单独的低压存储器的常规混合液压系统的能量密度高得多,所以组件 14a可更加高效地封装在与组件1 一起使用的车辆或其它机器中。图12-14示出可在图1和2的系统10中使用的蓄积器和存储器组件14b的另一构造。以具有字母“b”的标号标记相似部件。组件14b与图7-11的组件1 相同,然而, 多层囊190(诸如,在图4中显示并在以上描述的囊118)取代单层囊178。囊190包括内层 226和外层230,并且可以按照与以上参照囊118描述的方式类似的方式制造。另一方面, 囊190可构造为具有超过两层,诸如图5中显示的管或囊134。在申请人已试验的多层囊190的一种构造中,内层2 具有大约2. 25英寸的内径 Dl和大约10. 25英寸的外径D2,并且外层230具有大约10. 25英寸的内径D3和大约13. 25 英寸的外径D4。因此,内层226的壁厚度Tl为大约4英寸,而外层230的壁厚度T2为大约 1.5英寸。这些尺寸D1-D4、T1、T2的值对应于囊190的未膨胀状态,如图12中所示。在以大约5000psi的压力利用工作流体充冲囊190之后,申请人测量到每个尺寸D1-D4的增加和每个厚度T1、T2的减小。特别地,申请人测量到大约47%的厚度Tl的减小和大约21%的厚度Τ2的减小。考虑与尺寸Τ1、Τ2关联的厚度的总体减小,减小的厚度的总量的直至大约 85%发生在内层226中。因此,减小的厚度的总量的仅大约15%发生在外层230中。因此, 可选择制成内层2 和外层230的特定材料或者相同材料的等级,以增加沿着囊190的厚度的应变能的分布的均勻性,由此导致组件14b的增加的性能和更加可预测的操作。组件14a、14b中的任一个的操作基本上类似于如上所述的组件14的操作。本发明的各种特征阐述于下面的权利要求中。
权利要求
1.一种可膨胀蓄积器和存储器组件,包括存储器,限定内部室,该内部室中包含工作流体;和可膨胀蓄积器,包括内层,和外层,至少部分地围绕内层;其中,所述内层具有比外层高的断裂应变,其中,蓄积器至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中,并且其中,蓄积器构造为与存储器交换工作流体。
2.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,在工作流体在存储器和蓄积器之间交换期间,从存储器去除的工作流体的体积基本上等于由蓄积器接收的工作流体的体积。
3.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,在工作流体在蓄积器和存储器之间交换期间,从蓄积器排出的工作流体的体积基本上等于返回到存储器的工作流体的体积。
4.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述蓄积器是第一蓄积器,并且其中所述组件还包括第二可膨胀蓄积器,第二可膨胀蓄积器至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中。
5.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述外层与存储器中的工作流体接触。
6.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述外层具有比内层高的刚度。
7.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述内层和外层对工作流体具有抵抗能力,从而基本上阻止了在长期接触工作流体之后的内层和外层的劣化。
8.如权利要求7所述的可膨胀蓄积器和存储器组件,其特征在于,所述蓄积器包括内层和外层之间的中间层,并且其中所述中间层不需要对工作流体具有抵抗能力。
9.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述外层与内层共挤压成型。
10.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述可膨胀蓄积器包括管和囊中的一个;和支撑件,与所述管和囊中的一个的外周接合,以限制当在所述管和囊中的一个中接收加压工作流体时所述管和囊中的一个的膨胀。
11.如权利要求10所述的可膨胀蓄积器和存储器组件,其特征在于,所述至少一个支撑件构造为基本上围绕所述管和囊中的一个的笼子。
12.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述可膨胀蓄积器包括可膨胀管,限定第一端、第二端以及第一端和第二端之间的内部空间;入口 /出口,与内部空间流体连通并布置为接近所述管的第一端;和除气阀,与内部空间流体连通并布置为接近所述管的第二端。
13.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述可膨胀蓄积器的内层和外层是弹性的,并且其中,所述蓄积器自身构造为将压缩力施加于蓄积器中的加压工作流体。
14.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述蓄积器构造为与存储器交换工作流体而没有与大气进行对应的气体交换。
15.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述可膨胀蓄积器构造为单个囊和单个管中的一个,并且其中,所述单个囊和管中的一个构造为存储至少大约 150000ft-lbs 的能量。
16.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述存储器包括内部体积,并且其中,蓄积器根据蓄积器中的工作流体的量而占据存储器的大约40%和大约 70%之间的内部体积。
17.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,内层的断裂应变在大约30%和大约70%之间大于所述外层的断裂应变。
18.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,外层的刚度在大约 30%和大约70%之间大于所述内层的刚度。
19.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,能够与蓄积器交换存储器中的直至大约75%的工作流体。
20.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述内层和外层中的每一层是非纤维性的。
21.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述内层具有第一厚度并且外层具有第二厚度,并且其中,当以至少大约5000psi的压力利用工作流体填充蓄积器时,第一厚度减小至少大约40%。
22.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述内层具有第一厚度并且外层具有第二厚度,并且其中,当以至少大约5000psi的压力利用工作流体填充蓄积器时,第二厚度减小至少大约20%。
23.如权利要求22所述的可膨胀蓄积器和存储器组件,其特征在于,当以至少大约 5000psi的压力利用工作流体填充蓄积器时,第一厚度减小至少大约40%。
24.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述内层具有第一未压缩厚度并且外层具有第二未压缩厚度,其中,当以至少大约5000psi的压力利用工作流体填充蓄积器时,第一未压缩厚度和第二未压缩厚度减小一总量,并且其中,减小的厚度的总量的直至大约85%发生在内层中。
25.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述内层具有第一未压缩厚度并且外层具有第二未压缩厚度,其中,当以至少大约5000psi的压力利用工作流体填充蓄积器时,第一未压缩厚度和第二未压缩厚度减小一总量,并且其中,减小的厚度的总量的直至大约15%发生在外层中。
26.如权利要求1所述的可膨胀蓄积器和存储器组件,其特征在于,所述蓄积器具有可变内部体积,并且其中,可变内部体积构造为增加至与蓄积器的未膨胀状态对应的初始内部体积的直至大约13倍。
27.一种可膨胀蓄积器和存储器组件,包括存储器,限定中心轴线和内部室,该内部室中包含工作流体;可膨胀蓄积器,与中心轴线同轴,并且至少部分地位于存储器中并且至少部分地浸入在内部室内所包含的工作流体中,蓄积器构造为与存储器交换工作流体;和支撑件,与存储器同轴并延伸至少蓄积器的长度,该支撑件与蓄积器的外周接合,以限制当从存储器接收加压工作流体时蓄积器的膨胀。
28.如权利要求27所述的可膨胀蓄积器和存储器组件,其特征在于,所述支撑件构造为圆柱形的刚性管。
29.一种可膨胀蓄积器和存储器组件,包括存储器,限定内部室,该内部室中包含工作流体;和单个可膨胀蓄积器,至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中,其中,所述蓄积器构造为与存储器交换工作流体,其中,存储器具有内部体积,并且其中,蓄积器根据蓄积器中的工作流体的量而占据存储器的大约40%和大约70%之间的内部体积。
30.如权利要求四所述的可膨胀蓄积器和存储器组件,其特征在于,能够与蓄积器交换存储器中的直至大约75%的工作流体。
31.如权利要求四所述的可膨胀蓄积器和存储器组件,其特征在于,所述单个可膨胀蓄积器构造为在蓄积器的材料内存储至少大约150000ft-lbs的能量。
32.如权利要求四所述的可膨胀蓄积器和存储器组件,其特征在于,所述蓄积器具有可变内部体积,并且其中,可变内部体积构造为增加至与蓄积器的未膨胀状态对应的初始内部体积的直至大约13倍。
33.如权利要求四所述的可膨胀蓄积器和存储器组件,其特征在于,所述蓄积器包括单一层,所述单一层具有限定非圆形横截面形状的内表面。
全文摘要
一种可膨胀蓄积器和存储器组件,包括存储器,限定内部室,该内部室中包含工作流体;和可膨胀蓄积器。可膨胀蓄积器包括内层和至少部分地围绕内层的外层。内层具有比外层高的断裂应变。蓄积器至少部分地位于存储器中,并且至少部分地浸入在内部室内所包含的工作流体中。蓄积器构造为与存储器交换工作流体。
文档编号B65D90/00GK102597534SQ201080050409
公开日2012年7月18日 申请日期2010年10月4日 优先权日2009年10月5日
发明者S·J·巴赛雷 申请人:罗伯特·博世有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1