自动扶梯诊断装置以及自动扶梯诊断方法与流程

文档序号:18194937发布日期:2019-07-17 05:47阅读:563来源:国知局
自动扶梯诊断装置以及自动扶梯诊断方法与流程

本发明的实施方式涉及自动扶梯诊断装置以及自动扶梯诊断方法。



背景技术:

以往,在自动扶梯中,为了确保高安全性,定期地进行保养检修。关于以往的自动扶梯的保养检修为,卸下自动扶梯的乘降板,目视确认各部状态以及动作状态。

然而,在现有技术中,保养检修作业存在进一步高效化的余地。



技术实现要素:

实施方式的自动扶梯诊断装置对梯级驱动部进行诊断,上述梯级驱动部具备:梯级车轮,设置于自动扶梯的梯级,与导轨接触并沿上述导轨行进,由此来使上述梯级升降;以及梯级链,使上述梯级车轮行进,上述自动扶梯诊断装置具备:信号处理部,在保养检修时,对来自在上述导轨的主面上检测在上述导轨产生的形变的形变检测部的输出信号进行处理,当上述输出信号异常的情况下判定为在上述梯级驱动部产生异常;以及外部输出部,当在上述梯级驱动部产生异常的情况下,将在上述梯级驱动部产生异常这一情况输出至外部,上述信号处理部将上述保养检修时的上述输出信号与基准值进行比较,当二者存在预先设定的阈值以上的偏离的情况下,判定为在上述车轮产生异常。

根据上述结构的自动扶梯诊断装置,能够实现保养检修作业的省力化以及时间削减。并且,能够进行早期的异常检测。

附图说明

图1是示出实施方式1所涉及的自动扶梯的简要结构的图。

图2是示出实施方式1所涉及的梯级周边的简要结构以及自动扶梯诊断装置的图。

图3是示出实施方式1所涉及的形变传感器的简要结构的图。

图4是示出实施方式1所涉及的自动扶梯诊断处理的顺序的一例的流程图。

图5是示出实施方式1的变形例1所涉及的梯级周边的简要结构以及自动扶梯诊断装置的图。

图6是示出实施方式1的变形例2所涉及的梯级周边的简要结构以及自动扶梯诊断装置的图。

图7是示出实施方式1的变形例3所涉及的基准梯级周边的简要结构以及自动扶梯诊断装置的图。

图8是示出实施方式1的变形例3所涉及的位置检测部的简要结构的图。

图9是示出实施方式1的变形例3所涉及的自动扶梯诊断处理的顺序的一例的流程图。

图10是示出实施方式2所涉及的自动扶梯诊断处理的顺序的一例的流程图。

图11是示出实施方式4所涉及的梯级周边的简要结构以及自动扶梯诊断装置的图。

图12是示出实施方式4的变形例所涉及的自动扶梯诊断处理的顺序的一例的流程图。

具体实施方式

以下,参照附图对本发明进行详细说明。另外,本发明并不由下述的实施方式限定。并且,下述实施方式中的构成要素中包含本领域技术人员能够容易地想到或者实质上相同的构成要素。

[实施方式1]

(自动扶梯的结构例)

图1是示出实施方式1所涉及的自动扶梯1的简要结构的图。如图1所示,自动扶梯1具备多个梯级100、1对栏杆板101a、101b、扶手带102a、102b、乘降口103a、103b。

多个梯级100连结成环状。各个梯级100是当自动扶梯1的利用者r搭乘自动扶梯1时作为落脚点的部件,且由未图示的桁架带有设定的倾斜角度地支承。未图示的驱动马达使内设于桁架的上下端部的链轮105a、105b旋转,由此,各个梯级100作为与乘降口103a、103b之间的台阶状的搭乘台而循环移动。即、各个梯级100一边在乘降口103a与乘降口103b之间环行一边移动。各个梯级100例如由铸铝形成。

在链轮105a设置有脉冲发生器106。脉冲发生器106以与梯级100的移动速度相应的预定间隔产生脉冲。通过对上述脉冲数进行计数,能够计算各个梯级100的移动距离。

栏杆板101a、101b在自动扶梯1的宽度方向上设置在多个梯级100的两侧。栏杆板101a、101b夹着多个梯级100对置设置。栏杆板101a、101b例如由透明的玻璃或丙烯等形成。

扶手带102a、102b是供利用者r用手抓住的部件。扶手带102a、102b是环状的带、且以能够移动的方式卷绕在栏杆板101a、101b的各自的周缘部。扶手带102a、102b借助驱动马达而与各个梯级100的移动同步地移动。扶手带102a、102b例如由橡胶等形成。

乘降口103a、103b分别具备乘降板104a、104b。乘降板104a、104b是利用者r相对于自动扶梯1乘降时的落脚点。并且,乘降板104a、104b设置成能够拆卸。在乘降板104a、104b的下方收纳有驱动马达以及折叠后的梯级100等。

(梯级驱动部的结构例)

其次,使用图2对驱动梯级100的梯级驱动部200的结构进行说明。图2是示出实施方式1所涉及的梯级100周边的简要结构以及自动扶梯诊断装置10的图。

如图2所示,梯级100由梯级支承部250从下方支承。由此,梯级100作为台阶状的搭乘台发挥功能。

在梯级100,在导轨300上设置有梯级驱动部200。梯级驱动部200具备梯级前车轮220、梯级后车轮230、以及梯级链240。

导轨300在未图示的桁架上以沿着桁架的倾斜角度的方式设置,在梯级100的两侧形成1对。导轨300具备板状的部件以及屹立在该部件的短边方向两侧的1对侧壁。导轨300所具备的板状的部件构成导轨300的主面。即、导轨300的上表面(后述的梯级前车轮220等接触的面)和下表面是导轨300的主面。

梯级前车轮220例如是由车轴221连接的2对车轮。这2对梯级前车轮220以与梯级100两侧的导轨300分别接触的方式设置。梯级后车轮230例如是由车轴231连接的1对车轮。这1对梯级后车轮230位于梯级前车轮220的内侧(靠近梯级100)、且以与梯级100两侧的导轨300分别接触的方式设置。主要利用2对梯级前车轮220以及1对梯级后车轮230构成梯级车轮。

梯级链240例如由将2对梯级前车轮220彼此连结的1对链、以及将2对梯级前车轮220与1对梯级后车轮230连结的1对链构成。1对梯级链240连接于2对梯级前车轮220的轮轴由此将这2对梯级前车轮220彼此连结。另1对梯级链240连接于2对梯级前车轮220以及1对梯级后车轮230的轮轴,由此将该梯级前车轮220与梯级后车轮230连结。

在梯级驱动部200中,利用未图示的驱动马达使梯级链240进行进给动作。由此,2对梯级前车轮220和1对梯级后车轮230沿着导轨300行进,从而使梯级100沿着桁架的倾斜角度升降。另外,导轨300、梯级前车轮220、梯级后车轮230、以及梯级链240的个数或配置能够进行各种变更,并不限于上述的说明中的结构。

在导轨300的上表面设置有形变检测部40。形变检测部40包含检测因梯级车轮通过而导致的导轨300的形变的多个形变传感器40a。具体地说,形变传感器40a针对1个导轨300例如设置在梯级前车轮220所通过的轨道220t上以及梯级后车轮230所通过的轨道230t上这2处。即、形变传感器40a在梯级100两侧的导轨300上各设置1对,总计设置有2对。形变传感器40a的详细结构后述。

(自动扶梯诊断装置的结构例)

其次,继续使用图2对自动扶梯诊断装置10的结构进行说明。

在自动扶梯1中,为了确保高安全性,定期地进行保养检修。保养检修例如在自动扶梯1所被设置的设施的开始营业前或结束营业后等没有利用者r时通过手动地或者定时的自动运转等进行。自动扶梯1构成为能够在通常运行时的运行模式和保养检修时的检修模式之间切换状态。在保养检修时,以检修模式使自动扶梯1工作,在没有利用者r的状态下取得来自形变检测部40的输出信号。

如图2所示,自动扶梯诊断装置10与形变检测部40电连接,具备控制部20以及存储部30。自动扶梯诊断装置10所具备的各部分经由任意的通信线路以能够通信的方式连接。

存储部30例如是ram(randomaccessmemory,随机访问存储器)、rom(readonlymemory,只读存储器)等存储器装置、硬盘之类的固定盘片装置、软盘、或者光盘等。在存储部30收纳有设置时检修模式数据31。设置时检修模式数据31是在自动扶梯1的设置时以检修模式使自动扶梯1工作,在没有利用者r的状态下从形变检测部40取得的输出信号的数据。设置时检修模式数据31是相对于后述的保养检修时的输出信号的基准值。

控制部20具备微型计算机以及驱动电路,微型计算机具有由通常形式的双向共用总线相互连结的cpu(中央运算处理装置)、预先存储预定的控制程序等的rom(readonlymemory,只读存储器)、暂时存储cpu的运算结果的ram(randomaccessmemory,随机访问存储器)、备份ram、以及输入输出端口装置。控制部20在功能概念上包括输入部21、信号处理部22、以及外部输出部23。

输入部21取得来自形变检测部40的输出信号。

信号处理部22在保养检修时若取得来自形变检测部40的输出信号则对上述输出信号进行处理,判定输出信号是否异常。具体地说,信号处理部22对收纳于存储部30的设置时检修模式数据31(基准值)和在保养检修时取得的输出信号的数据进行比较,判定保养检修时的输出信号是否异常。当保养检修时的输出信号异常的情况下,意味着在自动扶梯1的梯级驱动部200产生某种异常。

作为异常的检测例,例如存在如下的情况:在梯级前车轮220以及梯级后车轮230的任意一个或者多个车轮产生从预定的轨道脱离的横向偏移。在该情况下,梯级前车轮220或者梯级后车轮230与形变检测部40接触的部分成为一部分。因此,即便梯级前车轮220或者梯级后车轮230通过形变检测部40,形变检测部40的形变量也比通常时小,输出信号也变小。作为异常检测的其他例,例如存在如下的情况:梯级前车轮220以及梯级后车轮230的任意一个或者多个车轮破损。在该情况下,来自形变检测部40的输出信号变小、或者完全检测不到。当在破损的车轮产生突起那样的缺陷时,也有可能产生输出信号突发性地变大的情况。

即、当正常的车轮在形变检测部40上通过时,形变检测部40的输出信号以大致恒定的强度推移。车轮的异常作为从恒定强度突出的凸峰值、或者凹峰值被检测到。当在这样的峰值与基准值上存在预先设定的阈值以上的偏离的情况下,判定为保养检修时的输出信号异常。阈值例如根据自动扶梯1的规格值等求出。信号处理部22当保养检修时的输出信号异常的情况下判定为在自动扶梯1的梯级驱动部200产生某种异常。

外部输出部23当判定为来自形变检测部40的输出信号异常的情况下将在梯级驱动部200产生异常这一情况输出至外部。朝外部的输出例如为针对监视担当人员的警报的发报或者广播、针对未图示的监视中心的警告显示、针对保养担当人员的邮件发送等。

(形变传感器的结构例)

此处,使用图3,对形变检测部40所包含的形变传感器40a的详细结构进行说明。图3是示出实施方式1所涉及的形变传感器40a的简要结构的图。

如图3所示,形变传感器40a是金属形变测量仪,具备:一边呈之字状地蜿蜒一边沿一个方向延伸的测量仪40g;支承测量仪40g的基座40b;以及从测量仪40g引出输出信号的导线40l。将测量仪40g所延伸的方向的长度称为测量仪长l、将与测量仪40g延伸的方向正交的方向的长度称为测量仪宽w。测量仪40g通过被施加载荷等而自身变形来产生与形变量相应的预定的电压。

若使自动扶梯1工作,则梯级前车轮220和梯级后车轮230沿着导轨300行进。此时,在导轨300产生预定量的形变。若梯级前车轮220和梯级后车轮230分别在形变传感器40a上通过,则在导轨300产生的形变传递至形变传感器40a,预定量的形变被作为输出信号检测。

另外,形变传感器40a例如也可以是使用了压电元件的半导体体形变测量仪等。

并且,形变传感器40a设置于导轨300的上表面,但也可以设置于下表面。由此,能够抑制因梯级车轮等而导致形变传感器40a损伤这一情况。这样,形变传感器40a(形变检测部40)可以设置于导轨300的主面、即上表面或者下表面的任一个。但是,因梯级车轮等而产生的导轨300的形变量在导轨300的上表面较大。因此,通过形变传感器40a设置于导轨300的上表面,输出信号变大,能够检测更微小的形变。

(自动扶梯诊断处理的例子)

其次,使用图4对自动扶梯诊断装置10的诊断处理进行说明。图4是示出实施方式1所涉及的自动扶梯诊断处理的顺序的一例的流程图。

在步骤s11中,自动扶梯诊断装置10的控制部20所具备的输入部21取得在自动扶梯1的设置时检测到的来自形变检测部40的输出信号,并作为设置时检修模式数据31存储于存储部30。

在步骤s12中,控制部20的输入部21取得在自动扶梯1的保养检修时检测到的来自形变检测部40的输出信号。

在步骤s13中,控制部20的信号处理部22将自动扶梯1的设置时的输出信号与保养检修时的输出信号进行比较。

在步骤s14中,若2个输出信号的偏离小于阈值(否),则返回步骤s12,反复进行以下的流程。在步骤s14中,若2个输出信号的偏离为阈值以上(是),则在步骤15中,控制部20的外部输出部23将自动扶梯1的异常输出至外部。

综上,自动扶梯诊断装置10的诊断处理结束。当自动扶梯1的异常被输出至外部的情况下,例如作业者将自动扶梯1的乘降板104a、104b卸下,目视确认各部状态以及动作状态,进行必要的维修作业。

在以往的自动扶梯中,在保养检修时,作业者必须将自动扶梯的乘降板卸下,目视确认各部状态以及动作状态。为了确保自动扶梯的安全性,保养检修是日常进行的,作业者的负担大。并且,目视的确认耗费时间,自动扶梯的运行时间减少。

根据实施方式1的自动扶梯诊断装置10,即便不将乘降板104a、104b卸下而进行确认,也能够检测自动扶梯1内部的梯级前车轮220以及梯级后车轮230的异常。由此,能够实现保养检修作业的省力化以及时间削减。并且,能够进行早期的异常检测。

另外,在上述的说明中,在自动扶梯1设置时取得来自形变检测部40的输出信号,并将其作为针对保养检修时的输出信号的基准值。但是,代替自动扶梯1设置时的输出信号,也可以将具有相同规格的自动扶梯的输出信号例如基于规格值进行一般化,并将该值作为基准值。或者,也可以将保养检修时的输出信号中的稳定值或者平均值作为基准值。这点对于以下的各种变形例也同样。

(变形例1)

其次,对实施方式1的变形例1进行说明。变形例1的自动扶梯诊断装置的形变检测部的结构与实施方式1的自动扶梯诊断装置10不同。以下,使用图5,仅对与实施方式1的自动扶梯诊断装置10的不同点进行说明。图5是示出实施方式1的变形例1所涉及的梯级100周边的简要结构以及自动扶梯诊断装置10的图。

如图5所示,变形例1的形变检测部41所包含的多个形变传感器40a例如设置成在导轨300的两端部附近和由导轨300的两端部夹持的区域等间隔地配置。即、形变传感器40a设置在梯级前车轮220所通过的轨道220t上的多个部位。并且,形变传感器40a设置在梯级后车轮230所通过的轨道230t上的多个部位。这样,在变形例1的自动扶梯诊断装置10中,多个形变传感器40a遍及导轨300的整个区域以散布的方式配置。

根据变形例1的自动扶梯诊断装置10,在1个轨道220t(或者轨道230t)上设置有多个形变传感器40a,异常检测的精度更高。

(变形例2)

其次,对实施方式1的变形例2进行说明。变形例2的自动扶梯诊断装置的形变检测部的结构与实施方式1的自动扶梯诊断装置10不同。以下,使用图6,仅对与实施方式1的自动扶梯诊断装置10的不同点进行说明。图6是示出实施方式1的变形例2所涉及的梯级100周边的简要结构以及自动扶梯诊断装置10的图。

如图6所示,变形例2的形变检测部42所包含的多个形变传感器42a具有比实施方式1的形变传感器40a长的测量仪长。形变传感器42a的测量仪长例如为梯级前车轮220(或者梯级后车轮230)旋转1周时所前进的距离ro以上。但是,并不限于图6的例子,也可以将多个实施方式1的形变传感器40a连结起来而使得整体的测量仪长为距离ro以上。

根据变形例2的自动扶梯诊断装置10,由于使形变传感器42a的测量仪长为梯级前车轮220(或者梯级后车轮230)旋转1周时所前进的距离ro以上,因此,能够检测梯级前车轮220(或者梯级后车轮230)与导轨300接触的接触面整体的异常。由此,例如即便在梯级前车轮220(或者梯级后车轮230)的一部分缺损那样的情况下等也能够检测异常。即、异常检测的精度更高。

(变形例3)

其次,对实施方式1的变形例3进行说明。变形例3的自动扶梯诊断装置在具备检测梯级100的位置的位置检测部这点上与实施方式1的自动扶梯诊断装置10不同。以下,使用图7~图9,仅对与实施方式1的自动扶梯诊断装置10的不同点进行说明。图7是示出实施方式1的变形例3所涉及的基准梯级100s周边的简要结构以及自动扶梯诊断装置10的图。

变形例3的位置检测部也能够应用于上述的实施方式1以及变形例1、2的任一个自动扶梯诊断装置10。在图7中,示出在实施方式1的自动扶梯诊断装置10应用位置检测部50的情况。如图7所示,在变形例3的自动扶梯1中,设置有在梯级支承部250具备基准梯级检测部51的基准梯级100s。变形例3的自动扶梯诊断装置10根据基准梯级检测部51的检测信号和来自设置于上述的链轮105a(参照图1)的脉冲发生器106的脉冲信号来确定发生异常的梯级100的位置。发生异常的梯级100的位置信息例如作为异常梯级位置信息50i被收纳于存储部30。包含基准梯级检测部51以及脉冲发生器106的位置检测部以及形变检测部40连接于变形例3的自动扶梯诊断装置10。

图8是示出实施方式1的变形例3所涉及的位置检测部50的简要结构的图。如图8所示,位置检测部50具备基准梯级100s的基准梯级检测部51、基准点开关51a、开关支承部51b、以及脉冲发生器106。

基准梯级检测部51、基准点开关51a、以及开关支承部51b与基准梯级100s以及多个梯级100的梯级前车轮220、梯级后车轮230、导轨300等一并被收纳于基准梯级100s下方的机械室107。

基准梯级100s的基准梯级检测部51是设置在梯级支承部250的下端的板状的部件。基准点开关51a呈框架的一边敞开的形状(u字形)。基准梯级检测部51在基准点开关51a的u字构造的内侧通过,由此检测到基准梯级100s的通过。开关支承部51b的一端被安装在导轨300的下表面,在另一端安装有基准点开关51a。由此,开关支承部51b将基准点开关51a配置在基准梯级检测部51的通过位置。基准点开关51a以及开关支承部51b例如在与基准梯级100s的行进方向正交的方向上配置在与形变传感器40a并排的位置。

此处,基准梯级100s的通过由基准点开关51a检测到。然后,假设在脉冲发生器106的计数例如达到100计数值后,基准点开关51a上方的形变传感器40a检测到异常。根据位置检测部50,能够知晓在基准梯级100s的通过后达到100计数值时基准梯级100s前进了多少距离。即、像当形变传感器40a检测到异常时位于形变传感器40a的上方的梯级100例如是从基准梯级100s起的第5个梯级100这样,能够确定检测到异常的梯级100。来自上述脉冲发生器106以及基准点开关51a的信号由自动扶梯诊断装置10的输入部21取得,这样确定出的存在异常的梯级100的位置信息(异常梯级位置信息50i)例如被存储于存储部30。

若在预定的梯级100检测到异常,则立刻进行保养检修。该情况下的保养检修是作业人员介入的保养检修。自动扶梯诊断装置10在人介入的下次的保养检修时、即检测到异常后的最近的保养检修时,基于异常梯级位置信息50i,使检测到异常的梯级100移动至预定的检修位置。预定的检修位置例如是指乘降板104a、104b的正下方的位置等。

另外,虽然假设基准梯级检测部51设置在基准梯级100s的梯级支承部250,但也可以设置于梯级前车轮220以及梯级后车轮230的任一个车轮。在该情况下,基准梯级检测部51是不会使基准梯级100s产生振动的程度的微小的突起状的部件(未图示)。基准梯级100s作为预定的形变传感器40a的输出信号的变化而被检测。由此,不需要基准点开关51a以及开关支承部51b。即、在上述结构中,基准梯级检测部51、形变传感器40a、以及脉冲发生器106作为位置检测部50发挥功能。

其次,使用图9说明变形例3的自动扶梯诊断装置10的诊断处理。图9是示出实施方式1的变形例3所涉及的自动扶梯诊断处理的顺序的一例的流程图。此处,对步骤s11~步骤s13结束后的处理进行说明。

在步骤s14中,若2个输出信号的偏离为阈值以上(是),则在步骤s31中,与位置检测部50检测到的位置信息对照而确定检测到异常的梯级100的位置。输入部21所取得的位置信息作为异常梯级位置信息50i被存储于存储部30。

在步骤s32中,在下次的保养检修时,变形例3的自动扶梯诊断装置10读出所存储的位置信息。基于上述位置信息,变形例3的自动扶梯诊断装置10使发生异常的梯级100移动至预定的检修位置。

根据变形例3的自动扶梯诊断装置10,能够容易地确定发生异常的部位。并且,由于使异常发生部位自动地移动至预定的检修位置,因此能够实现保养检修时间的削減并抑制异常部位的看漏。

[实施方式2]

其次,对实施方式2进行说明。实施方式2的自动扶梯诊断装置在诊断梯级链240的伸长这点上与实施方式1的自动扶梯诊断装置10不同。以下,使用图10,仅对与实施方式1的自动扶梯诊断装置10的不同点进行说明。图10是示出实施方式2所涉及的自动扶梯诊断处理的顺序的一例的流程图。

实施方式2的自动扶梯诊断装置10也能够应用于上述的实施方式1以及变形例1~3的任一个自动扶梯诊断装置10。以下,说明针对实施方式1的自动扶梯诊断装置10的应用例。

在步骤s41中,自动扶梯诊断装置10的控制部20所具备的输入部21取得在自动扶梯1的设置时检测到的来自形变检测部40的输出信号,并作为设置时检修模式数据31存储于存储部30。在该设置时检修模式数据31中,作为数据也包含输出信号的输出周期。输出信号的输出周期是指预定的梯级100的车轮在预定的形变传感器40a上通过时的输出信号的峰、与随后的梯级100的车轮在该形变传感器40a上通过时的输出信号的峰之间的长度。该输出信号的输出周期是相对于后述的保养检修时的输出信号的输出周期的规定值。

这样,输出周期的规定值优选使用设置同一个体的自动扶梯1时的输出信号的数据。这是因为:针对每个自动扶梯1,存在使行进速度的设定不同的情况,在该情况下,输出周期也不同。

在步骤s42中,输入部21取得在自动扶梯1的保养检修时检测到的来自形变检测部40的输出信号。在该保养检修时的取得数据中,作为数据也包含输出信号的输出周期。

在步骤s43中,控制部20的信号处理部22将自动扶梯1的设置时的输出周期(规定值)与保养检修时的输出周期进行比较。

在步骤s44中,若2个输出信号周期的偏离小于阈值(否),则返回步骤s42,反复进行以下的流程。在步骤s44中,若2个输出信号周期的偏离为阈值以上(是),则信号处理部22判定为保养检修时的输出信号周期异常。

自动扶梯1通常以恒定速度运行。各个梯级100的车轮在预定的形变传感器40a上通过的间隔也是恒定的。当针对保养检修时的输出信号周期发现阈值以上的偏离时,各个梯级100在形变传感器40a的上方的通过间隔偏移(延迟)。这意味着因劣化等而在梯级链240产生伸长。上述阈值例如根据自动扶梯1的规格值等求出。信号处理部22当保养检修时的输出信号周期异常的情况下判定为在梯级链240产生伸长。

在步骤45中,控制部20的外部输出部23将自动扶梯1的异常输出至外部。综上,自动扶梯诊断装置10的诊断处理结束。

根据实施方式2的自动扶梯诊断装置10,即便不将乘降板104a、104b卸下而进行确认,也能够检测梯级链240的伸长。由此,能够实现保养检修作业的省力化以及时间削减。并且,能够实现早期的异常检测。

[实施方式3]

其次,对实施方式3的自动扶梯诊断装置进行说明。实施方式3的自动扶梯诊断装置在诊断导轨300的变形这点上与实施方式1的自动扶梯诊断装置10不同。以下,援引图4、图5,仅对与实施方式1的自动扶梯诊断装置10的不同点进行说明。

如所援引的图5所示,在实施方式3的自动扶梯诊断装置10例如应用实施方式1的变形例1所涉及的形变检测部41。并且,作为相对于保养检修时的形变检测部41的输出信号的基准值,优选使用设置同一个体的自动扶梯1时的输出信号的数据。这是因为:在导轨300的设置时,虽然极其稀少,但也存在产生初始形变的情况,存在上述初始形变的量根据各个自动扶梯1而存在偏差的情况。并且还因为:导轨300的变形通常极其微小,要求具有比梯级驱动部200的异常检测更高的精度。

信号处理部22将自动扶梯1设置时的输出信号和保养检修时的输出信号进行比较,当二者存在预先设定的阈值以上的偏离的情况下,判定为在自动扶梯1的导轨300产生变形。阈值例如根据自动扶梯1的规格值等求出。

援引图4,对在发生地震后的保养检修中使用实施方式3的自动扶梯诊断装置10的情况的处理进行说明。

在步骤s11中,自动扶梯诊断装置10的控制部20将来自自动扶梯1的设置时的形变检测部40的输出信号作为设置时检修模式数据31存储于存储部30。

若发生地震,则从未图示的地震检测器发出地震发生信号。

在步骤s12中,接收到地震发生信号的控制部20自动地开始保养检修,输入部21取得来自形变检测部40的输出信号。

在步骤s13中,控制部20的信号处理部22将自动扶梯1的设置时的输出信号和保养检修时的输出信号进行比较。

在步骤s14中,若2个输出信号的偏离小于阈值(否),则返回步骤s12,反复进行以下的流程。在步骤s14中,若2个输出信号的偏离为阈值以上(是),则在步骤15中,控制部20的外部输出部23将自动扶梯1的异常输出至外部。

综上,自动扶梯诊断装置10的诊断处理结束。检测到导轨300的变形的自动扶梯1被设为停止状态,直至由作业者进行的修复作业结束为止。

根据实施方式3的自动扶梯诊断装置10,由于在1个轨道220t(或者轨道230t)上设置有多个形变传感器40a,因此,例如能够容易地检测不仅是梯级前车轮220(或者梯级后车轮230)的形变、还能够容易地检测导轨300的因地震等而导致的残留形变。因此,若如上述那样在地震发生后进行借助实施方式2的自动扶梯诊断装置10进行的保养检修,则能够成为在判断可否进行自动扶梯1的再运行时的帮助。

[实施方式4]

其次,对实施方式4的自动扶梯诊断装置进行说明。实施方式4的自动扶梯诊断装置在判定自动扶梯1的装载状态这点上与实施方式1的自动扶梯诊断装置10不同。以下,使用图11、图12,仅对与实施方式1的自动扶梯诊断装置10的不同点进行说明。图11是示出实施方式4所涉及的梯级100周边的简要结构以及自动扶梯诊断装置10的图。

如图11所示,实施方式4的自动扶梯诊断装置10例如优选应用于实施方式1的变形例1的形变检测部41。并且,在自动扶梯诊断装置10的存储部30收纳有设置时装载载荷数据32。设置时装载载荷数据32是在自动扶梯1的设置时以运行模式使自动扶梯1工作、在对自动扶梯1施加有装载载荷的状态下从形变检测部40取得的输出信号的数据。施加有装载载荷的状态例如能够通过搭乘模仿利用者r的人物来形成。此时,例如优选像使自动扶梯1的搭乘者为1名以上、在多个梯级100上等间隔地搭乘有多名以上、以及搭乘最大装载量的人数那样,分为数个等级来取得数据。若装载载荷变大,则导轨300的形变量也变大,来自形变检测部41的输出信号也变大。

控制部20的输入部21在自动扶梯1的运行时取得来自形变检测部40的输出信号。信号处理部22将上述输出信号的总和与设置时装载载荷数据32的输出信号的总和进行比较。输出信号的总和是指形变检测部40所包含的所有形变传感器40a的总和。由此,信号处理部22判定此时的自动扶梯1的装载状态。装载状态的判定例如有“低载荷”、“中载荷”、“高载荷”等。此时,当运行时的输出信号的总和为预先设定的阈值以上的情况下,控制部20例如使自动扶梯1的行进速度暂时降低等、进行自动扶梯1的运转调整。此时的阈值例如能够设定成设置时装载载荷数据32的数据中的、最大装载载荷附近时的输出信号的总和。

其次,使用图12,对实施方式4的自动扶梯诊断装置10的处理进行说明。图12是示出实施方式4的变形例所涉及的自动扶梯诊断处理的顺序的一例的流程图。

在步骤s51中,自动扶梯诊断装置10的控制部20所具备的输入部21取得自动扶梯1的设置时的装载负荷状态下的来自形变检测部40的输出信号,并作为设置时装载载荷数据32存储于存储部30。

在步骤s52中,输入部21取得在自动扶梯1的运行时来自形变检测部40的输出信号。

在步骤s53中,控制部20的信号处理部22将自动扶梯1的设置时的输出信号的总和与运行时的输出信号的总和进行比较,判定自动扶梯1的装载状态。

在步骤s54中,若运行时的输出信号小于阈值(否),则返回步骤s52,反复进行以下的流程。在步骤s54中,若运行时的输出信号为阈值以上(是),则在步骤55中,控制部20进行自动扶梯1的运转调整。

根据实施方式4的自动扶梯诊断装置10,能够抑制在自动扶梯1施加有过载荷的情况。并且,能够避免为了保护自动扶梯1而使自动扶梯1停止的情况。

如上,对本发明的几个实施方式进行了说明,但上述实施方式只不过是作为例子加以提示,并非意图限定发明的范围。上述新的实施方式能够以其他各种各样的形态实施,能够在不脱离发明的主旨的范围进行各种省略、置换、变更。上述实施方式及其变形也包含于发明的范围或主旨中,且包含于技术方案中记载的发明及其等同的范围中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1