用于构建复合材料叠铺的预浸渍体及其制造方法

文档序号:4427338阅读:241来源:国知局
专利名称:用于构建复合材料叠铺的预浸渍体及其制造方法
技术领域
本发明涉及复合材料并且特别是涉及预浸渍体,该预浸渍体可用于构建经压模并固化的这种预浸渍体的复合材料叠铺(lay-ups)。
复合材料,特别是增强热固性复合材料的使用在不断地增加;这种材料的一种新应用是用于风能工厂(wind energy plant)中的风车叶片。
用于此目的的已知预浸渍体,其由可热固化的树脂和纤维构成并且还可包括增强粗纱(reinforcing rovings)的粗网。将这样的预浸渍体出售给消费者,消费者可通过构建这种预浸渍体的叠铺,例如50和更多的预浸渍体层,并且压模和加热这些叠铺以得到适当的形状并固化树脂,来形成不同形状的复合材料。
在高应力部件中,这种层压材料的空隙量对性能并因此对这种部件的尺寸形成是重要的,因为每个空隙是一个降低机械性能的缺陷点。由于这个原因,消费者需要产生低的可再生空隙量而同时又具有良好的加工性能的预浸渍体。
由于空气往往会被俘获在预浸渍体的几层之间,已经习惯于在真空下加工该预浸渍体的叠铺。还已经知道,可在树脂层之间断续地插入例如无树脂纤网(resin-free web)的干燥透气层以便当施加真空时空气通过这些干燥层散出。该技术相当麻烦并且不能产生可重复的效果,因为在加热步骤中树脂不规则地穿过透气层。在DE 202 01 902 U1中描述了这种技术,其中将预浸渍体与纤网结合,该纤网在其整个厚度上仅被部分浸渍。不在顶部叠置另外的树脂层的情况下,可能地使用另一固定元件将该厚纤网固定到预浸渍体上是困难的,否则在该预浸渍体的外侧将存在松弛的细线,其会破坏加工性能。
本发明人已经发现一种简单但非常有效的方法,利用稀松布(scrim)或面纱状材料作为提供气体散出通道的方式使空气在压模步骤中散出。惊奇地发现,层压材料空隙量减少并因此机械性能提高。热塑性稀松布或面纱是优选的材料,尽管替代物例如玻璃或天然纤维稀松布、纤维或绒头织物(fleece)也是适合的。线网重(grid weight)为60gsm或更小是理想的。
因此,本发明以其常规形式提供了一种用于构建低孔隙率叠铺的稀松布增强预浸渍体(scrim-reinforced prepreg)的制造方法,其中常规预浸渍体由增强体和可热固化的树脂形成,该预浸渍体具有适当的粘度和足够的粘性以保持住仅通过施加轻微压力粘附到预浸渍体上的稀松布,以致于该稀松布被压到预浸渍体上的程度是使得小于该稀松布股线(scrim strand)周长的一半,优选小于30%,更优选小于25%涂布有该预浸渍体树脂,即稀松布主要位于该预浸渍体纤网的表面上。这种树脂的标准粘度曲线示于图表1(图4)。粘性是预浸渍体板层(prepreg ply)对工具表面或对组件中其它预浸渍体板层的附着力的量度,它是基体树脂的粘合特性,对其进行控制以便容易进行层切割和叠铺操作。如果必要的话,应该能够将这些板层取出和复位。为达到本发明目的,合适的粘性程度是当用手将一个预浸渍体板层置于平面上的另一个预浸渍体板层之上时,能使两个预浸渍体板层粘在一起,并且通过轻微手压(light hand pressure)能使两个板层随后分开的粘性。
该工序使大于稀松网上半部的部分没有涂布树脂,以致当下一个预浸渍体置于较低的预浸渍体的稀松布之上时,沿着该稀松布股线形成了通道,当在进一步加工期间以及在通过模塑压力密封这些通道之前施加真空时,空气可以通过这些通道散出。
通过在收卷步骤期间在预浸渍机上只是将稀松布层压到预浸渍体上,能够容易和有效地得到为将稀松布压到预浸渍体上至所需程度而欲施加的轻微压力。收卷辊上有足够的张力以完成部分浸渍入预浸渍体中。对于本领域技术人员,这种技术是众所周知的。
选择合适的可热固化的树脂用于制备预浸渍体。本发明的可热固化的树脂混合物包括树脂组分和固化剂组分。该树脂组分包括一种或多种热固性树脂。典型的树脂包括环氧、氰酸酯、聚酯、乙烯基酯和双马来酰亚胺树脂。典型的环氧和氰酸酯树脂包括缩水甘油胺型环氧树脂,例如三缩水甘油基对氨基苯酚、四缩水甘油基二氨基二苯基甲烷;缩水甘油醚型环氧树脂,例如双酚A型环氧树脂,双酚F型环氧树脂,双酚S型环氧树脂,线性酚醛树脂型环氧树脂,甲酚醛树脂型环氧树脂和间苯二酚型环氧树脂;以及氰酸酯,例如1,1’-二(4-氰酰苯基)乙烷(例如AroCy L-10,可从Vantico,Inc.,Brewster,NY获得),1,3-二(4-氰酰苯基-1-1-(1-甲基亚乙基))苯(1,3-Bis(4-cyanateophenyl-1-1-(1-methylethylidene)benzene)(例如RTX366,可从Vantico,Inc.,Brewster,NY获得)。
环氧树脂是优选的。该环氧树脂可以是由三官能环氧、二官能环氧以及三官能与二官能环氧的各种组合构成。也可以使用四官能环氧,如可以是脂族和脂环族环氧类。典型的三官能环氧包括三缩水甘油基对氨基苯酚、N,N’-二缩水甘油基-4-缩水甘油基氧苯胺(N,N-Diglycidyl-4-glycidyloxyaniline)(MY-0510或MY-0500,可从Vantico,Inc.,Brewster,NY获得)。可用于该树脂中的典型的二官能环氧类包括Bis-F环氧类,例如可从Vantico,Inc.,Brewster,NY获得的GY-281、LY-9703和GY-285。Bis-A环氧类,例如GY-6010(Vantico,Inc.,Brewster,NY)、Epon 828(ResolutionPerformance Products)和DER 331(Dow Chemical,Midland,MI)是合适的双酚A型环氧树脂并且也可以使用。一种典型的四官能环氧是四缩水甘油基二氨基二苯基甲烷(MY-721,MY-720和MY-9512,可从Vantico,Inc.,Brewster,NY获得)。优选的Bis-F环氧类包括可从Vantico,Inc.,Brewster,NY获得的GY-281和GY-285。已经用于制造复合材料的其它市售环氧类也是合适的。
固化剂组分可包括用于使树脂热固化的任何已知固化剂。众所周知,固化剂可以单独使用或者组合使用。合适的固化剂包括酸酐类;路易斯酸,例如BF3;胺类,如双氰胺;3,3-二氨基二苯基砜(3,3-DDS);氨基或缩水甘油基硅烷,例如3-氨基丙基三乙氧基硅烷;CuAcAc/壬基苯酚(1/0.1);4,4’-二氨基二苯基砜(4,4’-DDS);4,4’-亚甲基二(2-异丙基-6-甲基苯胺),例如Lonzacure M-MIPA(Lonza Corporation,Fair Lawn,NJ);4,4’-亚甲基二(2,6-二异丙基苯胺),例如Lonzacure M-DIPA(Lonza Corp.,Fair Lawn,NJ)。被取代的尿素或咪唑也可以用作固化剂。
可固化树脂混合物的固化温度将取决于所使用的特定固化剂和树脂以及各自的相对量。通常,选择树脂和固化剂以使固化温度低于200℃。优选的固化温度范围为75-120℃。
可在基体树脂组合物中加入另外的少量组分作为性能增强或改性剂,例如以下任何一种促进剂;热塑性塑料和核壳橡胶(core shell rubber);阻燃剂;润湿剂;颜料/染料;UV吸收剂;抗真菌化合物;填料;增韧颗粒和粘度改进剂。
增强纤维可以是合成或天然纤维或任何其它形式的材料或组合材料,其与本发明树脂组合物组合形成一种复合材料产品。可由退绕的纤维线轴或由织物卷来提供增强纤网。典型的纤维包括玻璃、碳、石墨、硼、陶瓷和聚芳基酰胺纤维。优选的纤维是碳和玻璃纤维。也可以设想混杂或混合纤维体系。使用破碎(即拉断)或选择性非连续纤维可有助于形成本发明产品的叠铺及改善其成型能力。虽然单向纤维排列是优选的,其它形式也可以使用。典型的织物形式包括简单织物、针织物、斜纹织物和缎纹织物。也可以设想使用无纺或无卷曲纤维层。纤维增强材料内的纤维的表面质量通常为80-4000g/m2,优选为100-2500g/m2,并且特别优选150-2000g/m2。每个丝束的碳素长丝数可从3000到320,000不等,优选为从6,000到160,000不等,最优选为从12,000到48,000不等。对于玻璃纤维增强材料,600-2400tex的纤维是特别适合的。
纤维长丝的厚度可以是10-100微米。
预浸渍体中的树脂含量具有一定的重要性,并且优选应为25-45wt%,最优选为29-35wt%。树脂含量还取决于预浸渍体中的纤维材料。通常玻璃纤维需要的树脂含量低于碳纤维。对于玻璃纤维,树脂含量优选为25-38wt%,而对于碳纤维,树脂含量优选为27-42wt%。
虽然树脂的粘度范围可相当宽,然而在20-25℃的室温下,树脂的粘度通常为5×103-5×105Pas sec.。
大网眼稀松布或线网可以由任何合适的材料制成,但优选热塑性纱线。对纱线材料的基本要求是其具有类似于或高于预浸渍体凝胶化温度的熔点以使该稀松布纱线在固化过程中不熔化。优选地,纱线熔点和基体凝胶点之差应当至少为10℃。适用于稀松布的材料包括聚酯(76-1100dtex),例如聚对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯及其共聚物;聚酰胺(110-700dtex),例如尼龙6、尼龙66、尼龙10、尼龙11和尼龙12;聚醚砜;聚丙烯;粘胶短纤维(143-1000dtex),间-和对聚芳基酰胺纤维(Kevlar29 220-1100dtex和NomexT-430 220-1300dtex,glass 220-1360dtex),黄麻(2000dtex),亚麻(250-500dtex),棉(200-500dtex),以及其中一种或多种的组合。这种材料可以从Bellingroth GmbH,Wipperfuerth,Germany以商品名Bafatex购得。
形成稀松布的股线优选具有大体上圆形的横截面。可优选这些股线的直径为100-1000μm,优选200-600μm,并且更优选300-400μm。如果稀松布股线的直径太长,则固化层压材料的机械性能可能会受到不利的影响。例如发现层间切变强力和抗压强度都降低。
本发明的基本特征是稀松布股线没有被预浸渍体树脂完全浸渍。稀松布股线被树脂涂布的程度可表示为浸渍程度(DI)。DI表示稀松布股线周长被树脂覆盖的程度。因此,浸渍指数为1.0表示股线完全被树脂浸渍,浸渍指数为0.5表示线网股线周长的一半涂布有树脂。本发明需要稀松布股线被预浸渍体树脂覆盖的程度达到最小值,刚好足够将稀松布附着到预浸渍体上以保证安全加工。但是,被树脂覆盖的程度不能达到股线周长的50%或更多,以保证适当提供空气散出通道。因此,以“浸渍程度”表示,本发明要求浸渍程度为>0和<0.5之间,并且优选为0.2-0.3。
为保证沿稀松布股线设置的空气通道外端不被预浸渍体树脂堵塞,稀松布应该向外延伸超过预浸渍体的边缘。优选该稀松布伸出预浸渍体边缘2-30,特别是10-20mm。
可以将聚乙烯或者硅树脂涂布的剥离纸作为保护层置于预浸渍体-稀松布组件的一面或两面上。
制造预浸渍体通常是通过运行缠绕在辊上的薄布(sheet)来进行的,但是也可以提供切割薄布。材料的宽度可以是10-2000mm,优选为200-1100mm。常规长度为几百米。
稀松布的结构是重要的,其由两个主要部分构成。在0°或经向上的纱线主要被用于稳定那些在其它方向上排列的纱线,甚至在受到收卷辊中的张力时。在与经纱交叉的方向上运行的其它纱线形成了平行四边形。通常该线网形成粗网,其中平行四边形中平行股线彼此之间的距离为3-60,优选为10-35,最优选为20-30mm。
为使空气散出,由大约沿横向的股线形成的通向预浸渍体侧边的短通道是重要的。优选该稀松布应当包括边长为10-35mm的平行四边形,其中该平行四边形的较小角为50-80°,优选为65-75°。因此该稀松布优选应当包括纵向股线,该方向为薄布的运行方向,以及包括相对于薄布的运行方向大约为横向的股线。在对预浸渍体叠铺进行压模期间,借助于这样的稀松布结构,空气首先沿着纵向股线前进直到纵向股线与横向股线交叉的点,空气从此处沿着横向股线向外散出,此外空气还沿纵向前进。这些横向股线形成了向外的短通道。就此而论,纵向股线和大约沿横向的股线之间的角度具有实际的重要性。
在一个优选实施例中,预浸渍体由充分浸渍有29-35重量份热固性树脂的65-71重量份单向排列碳纤维组成,在该预浸渍体上压有一种稀松布,该稀松布由以下股线组成a)彼此之间距离为3-12mm的纵向即经向股线,以及b)大约沿横向的、形成较小角为65-75°并且边长为10-35mm的平行四边形的股线,该股线具有大体上圆形的横截面并且直径为200-600μm,该稀松布股线被压到预浸渍体上的程度是使得其周长的2-40%被预浸渍体的树脂浸渍,并且线网从预浸渍体的侧边伸出10-20mm。
本发明预浸渍体对制造用于风车叶片的低孔隙率叠铺特别有用。
对比实验通过以下四个对比实验证明本发明的优点,其中将本发明实验C的结果与根据现有技术的实验A,B和D的结果相比较。
实验A将两种碳预浸渍体板层交替叠放(每种预浸渍体为50层,因此总共为100层)以形成叠铺,其中碳预浸渍体的树脂含量分别为40重量%和24重量%,且都含有150g/m2的碳UD纤维。基体树脂类型为可从Hexcel,Pasching,Austria获得的M9.6,纤维类型为可从Soficar,Abidos,France获得的T600S。随后将该叠铺预压缩并且在真空下固化,然后切割并且测试空隙的存在量。使用两步固化循环,其中经过2小时15分钟将温度缓慢升高到85℃,然后在85℃再保持1.5小时。接着经过1.5小时将温度进一步升至120℃,在120℃下再次保持1小时。在将固化层压材料从模具中取出之前,冷却至90℃,优选冷却至60℃以下是理想的。
实验B
重复实验A,唯一的差别是将树脂含量为33重量%且碳UD纤维含量为300g/m2的50层碳预浸渍体层压叠放。
实验C完全像实验A一样由100层碳预浸渍体层形成叠铺,唯一的差别是当由预浸渍体形成叠铺时,将聚酯稀松布附着到每个预浸渍体上。该聚酯线网在0°方向上具有每100cm 160根纱线的结构,其中斜纱线成70°角并且间距为25mm。将该稀松布压到预浸渍体上以得到0.2-0.4的浸渍程度。
实验D制备预浸渍体,其由与实验C所使用的相同的聚酯稀松布、含量为500g/m2的碳UD纤维以及32重量%的相同树脂组成。稀松布和纤维被树脂完全浸渍。利用该预浸渍体材料形成了50层叠铺并且将其固化以及按照实验A和C进行测试。
结果将来自以上实验的固化层压材料穿过其厚度切片,表面精细研磨并且对空隙含量进行目测。实验A和实验B结果造成固化叠铺中空隙量低。实验C结果得到几乎没有空隙的层压材料,在实验D的层压材料中可见许多大空隙。
由附

图1-3可进一步证明本发明。
图1所示为由单向排列纤维(2)和树脂(3)构成的预浸渍体(1)的横截面,压在该预浸渍体上的是股线(4)构成的稀松布。
图2所示为与图1所示预浸渍体相同的预浸渍体(1.1),在其上面有同种类的第二预浸渍体(1.2),由此已经施加了一些压力,以致于稀松布股线(4)侧面的空气通道变得可见。
图3所示为由纵向股线(41)和大约沿横向的股线(4c)构成的稀松布的结构,这些股线延伸到预浸渍体(1)的边缘之外。
权利要求
1.一种制造用于构建低孔隙率叠铺的稀松布增强预浸渍体的方法,其特征在于由纤维增强材料和可热固化的树脂形成常规预浸渍体,该预浸渍体具有适当的粘度和足够的粘性以保持住通过施加轻微压力附着到所述预浸渍体上的稀松布,以致于该稀松布被压到所述预浸渍体上的程度是使得少于所述稀松布股线的一半周长被所述预浸渍体-树脂涂布。
2.根据权利要求1所述的方法,其特征在于所述轻微压力是通过将一段长度的所述预浸渍体与所述稀松布一起卷到辊上来施加的。
3.根据前述权利要求中任一项所述的方法,其特征在于所述预浸渍体中的增强材料是碳纤维。
4.根据前述权利要求中任一项所述的方法,其特征在于所述预浸渍体中的纤维是单向排列的。
5.根据前述权利要求中任一项所述的方法,其特征在于所述预浸渍体中的可热固化的树脂是热固性树脂。
6.根据前述权利要求中任一项所述的方法,其特征在于所述稀松布纱线是热塑性的。
7.根据前述权利要求中任一项所述的方法,其特征在于形成所述稀松布的股线具有大体上圆形的横截面并且直径为200-600μm,优选为300-400μm。
8.根据前述权利要求中任一项所述的方法,其特征在于形成所述稀松布的股线的间距为3-60mm,优选为10-35mm,最优选为20-30mm。
9.根据前述权利要求中任一项所述的方法,其特征在于所述稀松布包括a)间距为3-12mm的纵向股线以及b)大致沿横向的股线,其形成边长为10-35mm且较小角为50-80°,优选为65-75°的平行四边形。
10.根据前述权利要求中任一项所述的方法,其特征在于所述稀松布的浸渍程度在>0和<0.5之间,优选为0.2-0.3。
11.根据前述权利要求中任一项所述的方法,其特征在于所述稀松布伸出所述预浸渍体边缘2-30mm,优选为10-20mm。
12.根据前述权利要求中任一项所述的方法,其特征在于所述预浸渍体中的树脂含量为25-45重量%,优选为29-35重量%。
13.一种用于构建低孔隙率叠铺的稀松布增强的预浸渍体,其包括由被可热固化树脂完全浸渍的纤维材料构成的预浸渍体,以及一种稀松布,该稀松布被压到所述预浸渍体上的程度是使得所述稀松布被所述预浸渍体的树脂浸渍程度相当于小于0.5的浸渍度。
14.根据权利要求13所述的稀松布增强的预浸渍体,其包括被29-35重量份热固性树脂完全浸渍的65-71重量份单向排列的碳纤维的预浸渍体,在所述预浸渍体上压有稀松布,该稀松布由以下股线组成a)彼此之间距离为3-12mm的纵向股线,以及b)大致沿横向的股线,所述股线形成较小角为65-75°并且边长为10-35mm的平行四边形,该股线具有大体上圆形的横截面并且直径为200-600μm,借此该稀松布的股线被压到所述预浸渍体上的程度是使得其周长的2-40%被所述预浸渍体的树脂浸渍,并且所述稀松布的10-20mm伸出所述预浸渍体的侧边。
15.根据权利要求1-14之一所述的预浸渍体用于制造低孔隙率结构部件的用途。
全文摘要
本发明涉及一种用于构建低孔隙率叠铺的稀松布增强预浸渍体的制造方法,其特征在于由纤维增强材料和可热固化树脂形成常规预浸渍体,该预浸渍体具有适当的粘度和足够的粘性以保持住通过施加轻微压力被附着到所述预浸渍体上的稀松布,以致于该稀松布被压到所述预浸渍体上的程度是使得少于所述稀松布股线的一半周长被所述预浸渍体-树脂涂布。
文档编号B29C70/22GK1721169SQ20051008170
公开日2006年1月18日 申请日期2005年5月11日 优先权日2004年5月11日
发明者斯蒂芬·克鲁格, 格哈德·恩索尔泽 申请人:赫克赛尔控股有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1