处理复合活塞销的方法和经表面处理的复合活塞销与流程

文档序号:13549208阅读:212来源:国知局
处理复合活塞销的方法和经表面处理的复合活塞销与流程

本发明涉及处理复合活塞销的方法,其配置成通过改进复合活塞销的表面的粗糙度减小摩擦力并在表面上进行涂布处理。



背景技术:

仅由钢材料(如smc415钢)制得的现有活塞销具有较大重量,因此在应用至车辆时不利于燃料效率的改进,且在活塞销所需的环形方向上的抗弯强度和长度方向上的抗弯强度方面不具有令人满意的性质。因此,需要制造可以替代现有活塞销的活塞销。

因此,提出了在将活塞销应用至发动机时使用轻质并具有优秀强度的活塞销并且处理由复合材料制得的活塞销的表面以改进燃料效率的方法。

公开于该发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。



技术实现要素:

本发明的各个方面旨在提供一种处理复合活塞销的方法,其配置成通过改进复合活塞销的表面的粗糙度减小摩擦力并在表面上进行涂布处理。

根据本发明的示例性实施方案,提供一种处理复合活塞销的方法,其包括:制备活塞销,所述活塞销至少表面层包括复合材料,所述复合材料包括增强纤维和树脂;通过加工活塞销的表面层改进粗糙度;以及在经加工的表面层上形成涂布层以减少活塞销的摩擦系数。

制备可以包括:卷曲包括增强纤维和树脂的第一预浸渍体以围绕圆柱形模具的外表面的第一卷曲步骤;卷曲包括具有比第一预浸渍体的增强纤维更高弹性的增强纤维和树脂的第二预浸渍体以围绕第一预浸渍体的外表面的第二卷曲步骤;以及将卷曲在圆柱形模具上的第一预浸渍体和第二预浸渍体放置在烘箱中并整体模制第一预浸渍体和第二预浸渍体的模制步骤。

改进可以包括:磨光活塞销的表面层的磨光步骤;使用具有等于或小于6μm的ra的抛光液抛光活塞销经磨光的表面层的第一抛光步骤;以及使用具有等于或小于1μm的ra的抛光液抛光活塞销的表面层的第二抛光步骤。

形成涂布层可以包括:将由cr或ti制得的粘接层沉积在表面层上的第一涂布步骤;将由crn或wc制得的支撑层沉积在粘接层上的第二涂布步骤;以及将由(sio)类金刚石碳(dlc)制得的功能层沉积在支撑层上的第三涂布步骤。

涂布层的形成可以在100至240℃的温度下进行。

根据本发明的另一示例性实施方案,提供一种经表面处理的复合活塞销,其包括:复合内层,其具有管状,并包含增强纤维和树脂;复合外层,其配置成沿着内层的外表面连接至内层,其具有等于或小于0.42μm的表面粗糙度ra,并包含具有比内层的增强纤维更高弹性的增强纤维和树脂;以及涂布层,其配置成涂布在外层的表面上以减少摩擦系数。

涂布层可以包括:粘接层,其配置成沉积在外层的表面上,并由cr或ti制得;支撑层,其配置成沉积在粘接层上,并由crn或wc制得;以及功能层,其配置成沉积在支撑层上,并由(sio)-dlc制得。

包含在内层和外层中的树脂可以包括环氧混合物和氰酸酯。

外层的增强纤维可以与管道的纵向方向平行地排列,内层可以包括:第一层,其配置成包括与外层的增强纤维垂直排列的增强纤维,并沿着外层的内侧表面连接至外层;以及第二层,其配置成包括与外层的增强纤维平行排列的增强纤维,并沿着第一层的内侧表面连接至第一层。

本发明的方法和装置具有其它特征和优点,这些特征和优点将在纳入本文的附图以及随后与附图一起用于解释本发明的某些原理的具体实施方式中显现或更详细地阐明。

附图说明

图1为显示根据本发明的示例性实施方案的涂布层的外观的视图。

图2为显示根据本发明的示例性实施方案的第一卷曲步骤和第二卷曲步骤的视图。

图3为显示根据本发明的示例性实施方案的经表面处理的复合活塞销的视图。

应了解,附图并不必须按比例绘制,其示出了某种程度上经过简化了的本发明的基本原理的各个特征。在此所公开的本发明的特定的设计特征,包括例如特定的尺寸、定向、位置和形状,将部分地由特定目的的应用和使用环境加以确定。

在这些图形中,附图标记在贯穿附图的多幅图形中指代本发明的同样的或等同的部件。

具体实施方式

现在将详细提及本发明的各个实施方案,这些实施方案的示例显示在附图中并描述如下。尽管本发明将与示例性实施方案结合加以描述,但是应当理解,本说明书并非旨在将本发明限制为那些示例性实施方案。相反,本发明旨在不但覆盖这些示例性实施方案,而且覆盖可以被包括在由所附权利要求所限定的本发明的精神和范围之内的各种选择形式、修改形式、等价形式及其它实施方案。

下面将参考所附附图对本发明的示例性实施方案进行描述。

根据本发明示例性的实施方案的处理复合材料活塞销的方法包括:制备活塞销,所述活塞销至少表面层包括复合材料,所述复合材料包括增强纤维和树脂;通过加工活塞销的表面层改进粗糙度;以及在经加工的表面层上形成涂布层以减少活塞销的摩擦系数。

在制备中,制备包含含有增强纤维和树脂的复合材料的活塞销。本发明的各个实施方案涉及加工作为待加工物的复合材料的表面的方法,因此可以制备包含复合材料的表面层形成活塞销的最外侧的活塞销。

当制备至少表面层包含复合材料的活塞销时,通过加工活塞销的表面层进行粗糙度的改进。在涂布层涂布在经加工的表面层上以减小摩擦力时,这可以进行以增加表面层和涂布层之间的粘合力。

改进可以包括:磨光活塞销的表面层的磨光步骤;使用具有等于或小于6μm的ra的抛光液抛光活塞销经磨光的表面的第一抛光步骤;以及使用具有等于或小于1μm的ra的抛光液抛光活塞销的表面层的第二抛光步骤。

首先,使用磨光工具(所谓的磨石)磨光至少表面层包含复合材料的活塞销的表面层。通过加工,表面层的粗糙度可以形成为等于或小于约0.63μm。

当完成磨光步骤时,可以进行并可以在多个步骤中连续地进行抛光经磨光表面层的工序。

在第一抛光步骤中,可以使用抛光液,其为98%或更高的高纯度氧化铝,并可以具有ra等于或小于6μm的颗粒尺寸,表面层可以通过如下方案抛光:将活塞销置入抛光装置,然后在一个方向上以约200至400rpm的速度旋转活塞销。

第一抛光步骤可以使用具有ra(表面层的粗糙度)等于或小于6μm的抛光液在外直径为约20mm且长度为约50mm的活塞销上进行约30秒,并可以在外直径为约40mm且长度为约90mm的活塞销上进行约60秒。

当完成第一抛光步骤时,第一抛光步骤后粗糙度低于预定水平的表面层可以通过第二抛光步骤以如下方案再次抛光:将活塞销置入抛光装置,使用98%或更大的高纯度氧化铝并具有ra等于或小于6μm的颗粒尺寸的抛光液,然后在一个方向上以约200至400rpm的速度旋转活塞销。

第二抛光步骤可以使用具有ra(表面层的粗糙度)等于或小于1μm的抛光液在外直径为约20mm且长度为约50mm的活塞销上进行约20秒,并可以在外直径为约40mm且长度为约90mm的活塞销上进行约40秒。

参考图1,当完成改进表面层的粗糙度时,进行用于减小表面层的摩擦系数的涂布。在涂布层的形成中,涂布层310形成在表面层上以减小活塞销的摩擦系数。

形成涂布层可以包括:将由cr或ti制得的粘接层310沉积在表面层上的第一涂布步骤;将由crn或wc制得的支撑层320沉积在粘接层310上的第二涂布步骤;以及将由(sio)类金刚石碳(dlc)制得的功能层330沉积在支撑层320上的第三涂布步骤。

表面层通过如下步骤活化:通过将具有改进的表面层的粗糙度的活塞销置入具有真空室的涂布设备中,通过氩(ar)气使得该室形成等离子态,然后将该室加热至约80℃。通过在经活化的表面层上碰撞氩(ar)离子以施加偏压(bias)至经活化的表面层从而首先进行表面层的清洁工序。

接着,在第一涂布步骤中,由cr或ti制得的粘结层310通过pvd法沉积在表面层上。粘结层310用作改进活塞销的表面层和待沉积在粘结层310上的支撑层320之间的粘合力。粘结层310的厚度可以形成为0.01至0.5μm。当厚度小于0.01μm时,改进粘结力的效果不大,而当厚度超过0.5μm时,粘结层310的厚度相当厚,因此可能减少粘附力。

在第二涂布步骤中,由crn或wc制得的支撑层320通过pvd法沉积在粘结层310上。通过让加工气体n2流入室,crn层可以通过使用cr目标形成,wc层可以使用wc目标形成。支撑层320用于改进粘结层310和待沉积在支撑层320上的功能层330之间的耐疲劳性和耐冲击性。支撑层320的厚度可以形成为0.1至0.5μm。当厚度小于0.1μm时,支撑层在施加负载时可能剥离,而当厚度超过0.5μm时,内部压力增加,因此可能减少韧性、硬度等。

在第三涂布步骤中,由(sio)-dlc制得的功能层330通过pvd法或pacvd法沉积在支撑层320上。使用si目标或c目标、碳化气体和六甲基乙硅氧烷(hmdso)气体进行化学反应,形成功能层330。功能层330用于改进耐磨性、低摩擦性质、耐热性等。功能层330的厚度可以形成为0.1至10μm。当厚度小于0.1μm时,耐磨性、低摩擦性质、耐热性等的改进的效果不大,而当厚度超过10μm时,可能引起剥离现象。

涂布层的形成可以在100至240℃的温度下进行。当涂布处理在小于100℃下进行时,当活塞销应用至发动机时,在对应的环境下耐磨性可能不适当,当涂布处理在超过240℃下进行时,可能产生磨损。

详细说明制备,所述制备可以包括:卷曲包括增强纤维和树脂的第一预浸渍体10以围绕圆柱形模具30的外表面的第一卷曲步骤;卷曲包括具有比第一预浸渍体10的增强纤维更高弹性的增强纤维和树脂的第二预浸渍体20以围绕第一预浸渍体10的外表面的第二卷曲步骤;以及将卷曲在模具30上的第一预浸渍体10和第二预浸渍体20放置在烘箱中并整体模制第一预浸渍体和第二预浸渍体的模制步骤。

首先,通过第一卷曲步骤在圆柱形模具30的外表面上卷曲第一预浸渍体10。在宽广铺展具有预定宽度的片状第一预浸渍体10之后,模具30位于端部,卷曲第一预浸渍体10并因此围绕模具30的外表面。

接着,通过第二卷曲步骤将具有弹性较高的增强纤维的第二预浸渍体20在第一预浸渍体10的外表面上卷曲。在宽广铺展具有预定宽度的片状第二预浸渍体20之后,用第一预浸渍体10围绕的模具30位于端部,卷曲第二预浸渍体20并因此围绕第一预浸渍体10的外表面。

具有较高弹性的增强纤维的第二预浸渍体20通过第一卷曲步骤和第二卷曲步骤可以设置在外层,具有较低弹性的增强纤维的第一预浸渍体10可以设置在内层。

如图2中所示,第一预浸渍体10和第二预浸渍体20宽广地铺展,第一预浸渍体10的端部和第二预浸渍体20的端部连接以相互重叠,然后通过模具30可以卷曲第一预浸渍体10和第二预浸渍体20。

在第二卷曲步骤后,耐热薄膜可以包裹在卷曲的第二预浸渍体20的外表面上。薄膜可以配置为具有耐热性的热收缩薄膜。

接着,在模制步骤中,将薄膜包裹的第一预浸渍体10和第二预浸渍体20放置在烘箱中并整体模制。耐热薄膜包裹在第二预浸渍体20的外表面上,因此在第一和第二预浸渍体在烘箱中模制时受热收缩,从而可以去除存在于第一预浸渍体10和第二预浸渍体20中的孔。在烘箱中的模制可以在约200至250℃的温度下进行约1小时。

在模制步骤后,可以进行将耐热薄膜和模具30从模制的第一预浸渍体10和第二预浸渍体20分离然后将其以预定长度切割的步骤。模制的第一预浸渍体10和第二预浸渍体20从烘箱中取出,然后去除包裹在第二预浸渍体20的外表面上的耐热薄膜,分离用第一预浸渍体10围绕的模具30以切割经模制的第一预浸渍体10和第二预浸渍体20以待用。

根据处理根据本发明的示例性实施方案的复合活塞销的方法,当复合活塞销应用于车辆时,摩擦力可以由于摩擦系数的减小而减小,并改进燃料效率。

参考图3,根据本发明的示例性实施方案的经表面处理的复合活塞销包括:复合内层100,其具有管状,并包含增强纤维和树脂;复合外层200,其沿着内层100的外表面连接至内层100,其具有等于或小于0.42μm的表面粗糙度ra,并包含弹性比内层100的增强纤维更高的增强纤维和树脂;以及涂布层310,其涂布在外表面200的表面上以减小摩擦系数。

包含在内层100和外层200中的树脂可以包括环氧混合物和氰酸酯。

此外,外层200的增强纤维与管的纵向方向平行地排列,内层100可以包括:第一层110,其包括与外层200的增强纤维处置排列的第一层110,第一层110沿着外层200的内表面连接至外层200;以及第二层120,其具有与外层200的增强纤维平行排列的增强纤维,并沿着第一层110的内表面连接至第一层110。

根据上述制造方法,内层100可以对应于包含具有较低弹性的增强纤维的第一预浸渍体10。增强纤维可以包括碳纤维、玻璃纤维、芳族聚酰胺纤维和天然纤维的至少一种。然而,增强纤维不仅限于此。树脂可以包括如聚氨酯的热固性树脂和如聚丙烯的热塑性树脂的至少一种。

根据上述制造方法,外层200可以对应于包含具有较高弹性的增强纤维的第二预浸渍体20。此外,通过改进步骤,表面粗糙度ra可以形成为等于或小于0.42μm。增强纤维为碳纤维、玻璃纤维、芳族聚酰胺纤维和天然纤维的至少一种。然而,增强纤维不仅限于此。树脂可以包括如聚氨酯的热固性树脂和如聚丙烯的热塑性树脂的至少一种。

根据本发明的示例性的实施方案外层200和内层100形成不同的弹性,外层200和内层100的增强纤维包括碳纤维,外层200的碳纤维可以为沥青基碳纤维,内层100的碳纤维可以为pan基碳纤维。

沥青基碳纤维可以具有约640gpa或更大的弹性模量。沥青基碳纤维可以具有高碳比例,因此具有高弹性,并因此增加环形方向上的抗弯强度和材料强度,抑制椭圆情况(在对沥青基纤维施加负载时取决于负载而引起销的形变),并抑制弯曲形变。

pan基碳纤维可以具有约240gpa或更大的弹性模量。通常,pan基碳纤维具有高压缩强度特性,因此设置在复合活塞销的最内侧用于支撑外层200并承受负载,增加环形方向上的抗弯强度。因此,可以抑制取决于负载的椭圆情况。pan基碳纤维价格较低,因此可以节约成本。

当内层100和外层200的树脂包括环氧混合物和氰酸酯时,耐热性得以改进,当添加增加树脂流动性的氰酸酯以浸渍增强纤维时,空气间隙减少,增强纤维的均匀性得以改进。

由于添加氰酸酯,玻璃化转变温度tg增加。此处,玻璃化转变温度tg为与聚合物材料从固态转变成液态的玻璃化有关的温度。因此,可以理解玻璃化转变温度tg越高,耐热性变得越好。当浸渍增强纤维的树脂中的耐热性改进时,在模制步骤中不发生意外的燃烧,因此空气间隙可以减少,增强纤维的均匀性可以改进。

树脂中环氧混合物和氰酸酯的混合比例可以在1:0.82至1:1.22的范围内。当氰酸酯相对于环氧混合物的混合比例达不到0.82时,玻璃化转变温度tg减小,因此当浸渍增强纤维时,空气间隙可能大量发生,纤维的均匀性可能减小。另一方面,当氰酸酯的混合比例超过1.22时,树脂的流动性增加,因此可模制性不佳,树脂的粘度过低,从而难以制造具有均一形状的复合部件。因此,树脂中环氧混合物和氰酸酯的混合物比例可以在1:0.82至1:1.22的范围内。

外层200的增强纤维的定向与管的纵向方向品行,内层100配置成具有多层结构,在连接至外层200的内表面的第一层110的情况中,增强纤维与外层200的增强纤维垂直排列,在连接至第一层110的内表面的第二层120的情况中,增强纤维与外层200的增强纤维平行排列,使得外层200、第一层110、第二层120的增强纤维与外层具有0°、90°和0°的定向。因此,复合活塞销的刚度可以改进,可以对从复合活塞销的纵向方向上施加的负载和从宽度方向上施加的负载有所准备。

涂布在外层200的表面上以减小摩擦系数的涂布层310可以包括:粘接层310,其沉积在外层200的表面上,并由cr或ti制得;支撑层320,其沉积在粘接层310上,并由crn或wc制得;以及功能层330,其沉积在支撑层320上并由(sio)-dlc制得。涂布层310的说明将用制造方法中涂布层形成的说明代替。

内层100和外层200的厚度比例分别可以为7:3至4:6。当内层100的厚度设定为1时,厚度比例可以由1:0.429至1:1.5表示.

下表1显示刚度(stiffness)、韧性(toughness)、耐热性和摩擦系数的比较,同时使得内层100和外层200的厚度比例不同。

[表1]

参考上表1,可以确定摩擦系数在厚度比例8:2和7:3的界限处明显减小,摩擦系数在厚度比例4:6和3:7的界限处略微增加。

下表2显示在不同条件下实施例和比较实施例的粗糙度、摩擦系数、耐热性评估、摩擦和磨损的情况的比较。

[表2]

在实施例1和2中,复合活塞销通过根据本发明的示例性实施方案的处理方法进行表面处理。在实施例1中,通过在约120℃下进行涂布层的形成来进行评估,在实施例2中,通过在约190℃下进行涂布层的形成来进行评估。

在现有材料的情况中,通过使用包含钢材料的活塞销进行评估,比较实施例1通过磨光复合活塞销的表面,然后对复合活塞销喷砂进行评估,比较实施例2通过磨光复合活塞销的表面进行评估。

此外,比较实施例3通过磨光根据本发明的改进步骤的复合活塞销,然后抛光经磨光的复合活塞销来进行评估,比较实施例4通过省略本发明的改进步骤并进行在复合活塞销上形成涂布层来进行评估,比较实施例5通过根据本发明的处理方法表面处理复合活塞销,并在约250℃进行在经表面处理的复合活塞销上形成涂布层来进行评估。

通过对实施例进行比较,可以理解现有材料具有高摩擦系数,在通过评估发动机的耐久性(约320小时)来确认摩擦或磨损是否发生的测试时发生磨损。

通过对实施例进行比较,在比较实施例1的情况中,粗糙度和摩擦系数较高,在确认是否发生摩擦和磨损的测试时发生磨损。

在比较实施例2的情况中,在确认是否发生摩擦和磨损的测试时不发生磨损,但与实施例相比,粗糙度和摩擦系数较高。

在比较实施例3的情况中,不存在涂布层310,因此与实施例相比,粗糙度较低,但摩擦系数较高。

在比较实施例4的情况中,摩擦系数与实施例水平相同,但粗糙度较高,因为没有进行改进步骤。

通过对实施例进行比较,在比较实施例5的情况中,粗糙度和摩擦系数较高,在确认是否发生摩擦和磨损的测试时发生磨损。

如上所述,根据本发明的示例性实施方案,处理复合活塞销的方法可以改进复合活塞销的表面的粗糙度,并在表面上进行涂布处理以减小摩擦力,由此在将活塞销应用至车辆时改进燃料效率。

为了方便解释和精确限定所附权利要求,术语“上部”、“下部”、“内”、“外”、“上”、“下”、“向上”、“向下”、“前”、“后”、“背部”、“内侧”、“外侧”、“向内”、“向外”、“内部”、“外部”、“内”、“外”、“向前”和“向后”被用于参考附图中所显示的这些特征的位置来描述示例性实施方式的特征。

前面对本发明具体示例性实施方案所呈现的描述是出于说明和描述的目的。它们并不会毫无遗漏,也不会将本发明限制为所公开的精确形式,显然,根据上述教导很多修改和变化都是可能的。选择示例性实施方案并进行描述是为了解释本发明的特定原理及其它们的实际应用,从而使得本领域的其它技术人员能够实现并利用本发明的各种示例性实施方案及其不同的选择形式和修改形式。本发明的范围旨在由所附权利要求书及其等同方案加以限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1