具有内部负载支撑件的复合压力容器的制作方法

文档序号:15234146发布日期:2018-08-21 20:10阅读:331来源:国知局

本申请要求2015年11月24日申请的美国临时专利申请第62/259,490号的优先权,其中的内容在此被完整地包括,就像在本文被充分地叙述一样。

压力容器轴向负载处理。



背景技术:

对于用于存储h2和cng的便携式或重量轻的压力容器的传统设计是昂贵的。纤维缠绕复合包装(overwrap)压力容器(copv)由厚的外包装、塑料衬垫和金属配件构成。包装结构是结构纤维和树脂的结合。连续纤维为结构完整提供抗拉强度,而树脂承载复合材料中的剪切负载并维持纤维位置。由于纤维/树脂复合材料通常不被认为是耐压密封的,所以该复合材料被应用在充当复合材料内部衬垫的流体-保持(fluid-retention)屏障之上。这些流体-保持屏障可以是橡胶、塑料或薄韧性金属衬垫。这些衬垫用于维持可接受的泄漏率和流体纯度,而且增加少许(如果有的话)结构的完整性。对于重量轻、高-效率的应用,copv提供了重要的重量优势,可比较的金属罐的大约一半重量。大部分高性能、成本效益好的罐设计努力主要集中使用成本更低的碳纤维或混合(碳+玻璃)纤维。

取得了一些研究成果,包括加强在缠绕过程期间使用的树脂。大多数纤维缠绕使用包括环和螺旋层的类似缠绕模式来制作。环层接受周向负载,而螺旋层接受轴向负载。纤维缠绕过程还包括使用高角度螺旋层,该高角度螺旋层接受环向和轴向负载。高角度层加强穹顶-圆筒(dome-cylinder)过渡区域。环层在周向负载加强圆筒部分方面是非常有效的;然而,它们在轴向负载加强圆筒方面是非常低效的。它们难以缠绕在相当普遍的网格球顶式等张压(geodesicisotensoid)穹顶形状上方。螺旋层用来克服环层的缺点并通过复合包装提高轴向应力承载能力。螺旋层的数量通常超过罐中所需的数量。螺旋层是低或高角度螺旋层两者中的任一者。低角度螺旋层主要承受轴向负载并用来保持靠近copv的极点开口的金属配件。连续纤维缠绕过程迫使罐制造器在圆筒部分之上缠绕低角度螺旋层。这些低角度螺旋层增加不必要的重量并降低罐的存储容积(对于固定的外部罐尺寸)。



技术实现要素:

由于在copv制造中的一个主要成本因素是碳纤维(60%-75%),因此具有目前典型的碳纤维成本(26.50美元/公斤-33.10美元/公斤,按2015年的美元计算)的一小部分的高强度、高模量的碳纤维将会是理想的。几家碳纤维供应商正在该方面努力。

纤维缠绕由湿式(树脂浸渍纤维)和干式(丝束预浸)缠绕类型组成。与湿式缠绕相比,干式缠绕是非常昂贵的工艺;然而,它允许更多的控制和一致的缠绕模式。复合壳体的湿式和干式缠绕都涉及在衬垫上缠绕环和螺旋层。环缠绕支撑环应力并且限定罐的破裂能力并加强压力容器的圆筒部分。螺旋缠绕支撑压力容器上的轴向负载。螺旋缠绕主要加强压力容器的穹顶部分。螺旋缠绕由高角度螺旋缠绕和低角度螺旋缠绕组成。高角度螺旋缠绕和环缠绕一起加强圆筒-穹顶过渡区域。低角度螺旋缠绕保持极点凸出部(polarboss)靠近开口。极点开口部分通常是压力容器中最厚的部分,因为它靠近极点开口加入了厚度。内部压力越高,需要越多的低角度螺旋层来加强极点开口区域以保持金属凸出部。需要低角度螺旋层来加强穹顶部分以及小批量用于圆筒部分。圆筒部分中的大部分低角度螺旋层只增加了罐的重量并导致罐的储存密度降低。例如,优化后的122l氢罐设计(500mm×1000mm)由总共95层的环组成,其中包括52个螺旋层和仅仅43个环层。

所公开的方法、系统和装置对于复合压力容器重量减少和强度是具有成本效益的解决方案。通过在罐内使用结构,将减少为支撑压力负载所需要的总体结构。轴向杆(沿着罐的轴线定向,由此碳纤维杆可以有效地承受罐内的轴向负载)将被放置在压力容器的内部以减少罐外部上所需的碳量。轴向杆将取代压力容器构造中通常需要的一些螺旋纤维缠绕层。该杆将附连到容器的两个末端并允许气体充满和排空。

本文公开的方法、系统和装置,包括以下方面:用被轴向地固定在存储容器内部的固定在每个末端处的轴向杆/管来支撑圆柱形的复合加压存储容器的两个末端;以及提供从两个末端的至少一个末端进入到容器中的流体路径,该两个末端中的至少一个末端不被轴向杆/管道堵塞。在一些情况下,轴向杆是碳。

本文公开的方法、系统和装置,包括以下方面:用被轴向地固定在存储容器内部的固定在每个末端处的轴向碳杆/管来支持圆柱形的复合加压存储容器的两个末端;以及提供从两个末端的至少一个末端进入到容器中的流体路径,该两末端的至少一个末端不被轴向杆/管道堵塞,并且其中经由通过轴向杆提供的额外的支撑,在容器的高角度和低角度部分中的至少一个部分的周围的纤维包装材料(wrapping)的总量减少,从而减少容器的总重量。

本文公开的方法、系统和装置,包括以下方面:在包含衬垫的复合压力容器内固定轴向杆;在衬垫周围包裹纤维;用粘合树脂固定包装材料;在压力容器的每个末端上提供开口;将碳杆固定装置固定于在每个末端的开口内;将内基座固定在每个开口内并使它与每个碳杆固定装置配合;以及,由此将轴向杆轴向地固定在所述压力容器内。

本文公开的方法、系统和装置,包括以下方面:将轴向杆固定在包括在每个末端上带有开口的衬垫的复合压力容器内;用粘合树脂固定被包裹在衬垫周围的纤维;在每个末端处的开口内的碳杆固定装置;在每个开口内的内基座与每个碳杆固定装置配合;以及,由此将轴向杆轴向地固定在压力容器内。在一些情况下形成从两个末端的至少一个末端进入到所述容器中的流体路径,该两末端的至少一个末端不被所述轴向杆/管道堵塞。借助上面的系统,经由通过轴向杆提供的额外的支撑,在容器的高角度和低角度部分的至少一个部分周围的纤维包装材料的总量被减少,从而减少容器的总重量。

附图说明

通过参照附图,本发明可以被更好的理解。图中的部件不一定按照比例,而着重于强调阐明本发明的原理上。在图中,贯穿不同的视图的相同的附图标记指定相应的部件。

图1阐明在传统复合压力容器和轴向碳杆复合压力容器之间的比较。

图2和图3阐明带有轴向碳杆的复合压力的各个方面。

图中所有的内容、描述和标注在此通过引用而被合并,犹如在本文被全部叙述。

具体实施方式

在该方法和系统的实践中一些低角度螺旋层被直的预制轴向杆/管5所取代,该轴向杆/管5被置于复合压力容器(罐)10的内部8,从一个末端到另一末端地用于轴向支撑。罐内部是衬垫12。由于轴向杆被沿着罐的轴线定向,因此碳纤维杆可以高效地承受罐内的轴向负载。点线示出的传统外轮廓15显示从复合压力容器的传统的外部包装材料轮廓到带有轴向支撑件20的新轮廓的纤维包装材料的质量减少的图画。罐的穹顶末端具有高角度25包装材料和低角度包装材料30。图1阐明了这些概念的多个方面。

大约12公斤的低角度螺旋层可以用在122l氢罐内的单个碳杆取代,该碳杆沿着罐的轴线从一个极点开口到另一个。为了满足轴向负载需求,需要直径11.2毫米重量大约0.13公斤的碳杆。碳杆可以用高温固化树脂预先制备。若需要,可以允许在衬垫成型过程中放置这些碳杆。应注意塑料衬垫成型温度通常低于高温固化树脂。通过使用沿着罐轴线的0.13公斤碳杆节省的(该碳杆移除了12公斤的低角度螺旋层)潜在成本节约超过200.00美元。通过平衡轴向力得到的公式1可以帮助基于优化的低角螺旋层计算轴向杆直径。

这里r是轴向杆半径,p是内部压力,r1是带有低角度螺旋层的圆筒部分半径,t1和t2是罐中没有和带有轴向杆时的低角度螺旋层厚度,以及σft是来自供应商的杆材料抗张强度,以及θ是极点开口螺旋缠绕角。

图2和图3阐明带有轴向支撑件200的复合压力容器(罐)100的方面。罐具有衬垫102。罐被用树脂粘合的纤维包裹105。同图1所示的旧轮廓相比,高角度包装材料107和低角度包装材料109减少了。罐具有第一极点末端120和第二极点末端122。凸出部(内侧凸缘)130抵靠着衬垫并且被部分包裹。凸出部外部凸缘132附连在包装材料上方并且附件到内部凸缘(凸出部)130。保持轴向杆(或管或碳杆的组合)的锚140附连到轴向杆200,轴向杆200可以是碳或其他适当的材料或材料的组合,配合到罐内。经由以下方法轴向杆的附接可以在第一和第二极点末端完成。螺纹杆适配器142带有开口146,该开口146配合工具,比如六角扳手或其他紧固工具,该螺纹杆适配器142连接到轴向杆200并且在界面147处连接,通过该界面147可以螺纹连接到杆锚140。

适配器150具有螺纹外环形壁152,该螺纹外环形壁152与凸出部130的螺纹内环形壁133形成界面155。适配器密封件154在衬垫102和适配器150之间形成密封。带有螺纹环形壁162的阀160经由螺纹内环形壁137螺纹连接到适配器150中,并且提供带有o型环密封件(o-ringseal)169的界面168。

上流体路径170通过罐连接到下流体路径175,借以气体燃料就可以添加到罐或从罐移除。

在一些情况下,复合压力容器的制造将遵循以下步骤:

1.嵌入衬垫和凸出部内部凸缘。

2.将纤维缠绕在其上。

3.初级固化。

4.次级和最终固化。

5.在罐内部滑动轴向杆以在其中安装轴向杆。软垫充材料可选地可以用在衬垫的内表面上缓冲杆锚。轴向杆必须被涂覆塑料(例如,hdpe),以防止来自轴向杆的任何碎片(环氧树脂)充当储存的气体中的杂质。注意,随着时间的推移,周期负载可以使环氧树脂开裂。

6.在任一开口上螺纹接合适配器。适配器包括o形环以及备份环,并靠近衬垫内表面滑动。适配器具有内部凸缘,抵靠碳纤维杆金属配件并将杆保持在适当的地方,直到进一步的步骤。

7.推入具有内六角形的螺纹杆插入物。该杆插入物将螺旋到轴向杆。这将允许将负载从凸出部转移到轴向杆,反之亦然。

8.安装凸出部外部凸缘。

9.安装阀组装件。

10.可选地,泄漏测试,防护测试以及验证和证明。

对于优化的新包装材料叠层的有限元(fe)分析显示了有限元模型和相应的纤维方向应变轮廓图,表明碳杆支撑与图1所示的旧轮廓相比减少(见图2)的高角度包装材料107和低角度包装材料109。

可以理解,本公开的各个方面或细节可以在不偏离本发明的范围的情况下进行更改、合并或删除。它不是详尽无遗的,也不把请求保护的发明局限于所公开的确切形式。此外,上述描述只是为了说明,而不是为了限制。根据上述描述,修改和变更是可能的,或者可以从实践本发明中得到。权利要求书及其对等物限定了本发明的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1