挤压方法

文档序号:4412929阅读:1836来源:国知局
专利名称:挤压方法
技术领域
本发明涉及到生成收缩薄膜的挤压方法。
多年来,人们用来生产收缩薄膜的精选树脂是具有高度支化聚合物的高压低密度聚乙烯。使用高压低密度聚乙烯来生成收缩薄膜,主要是利用了其具有长支链的特点。长支链能够提高高熔融应力,这样在管状薄膜挤压机内,在霜线就能冻结成薄膜。换句话说,在管状薄膜挤压机中,产生了足够的应变硬化,如在薄膜中产生了收缩薄膜所需的冻结应力。在收缩烘道的条件下,冻结应力使得薄膜围绕着其要包装的物品收缩,这样就紧紧地裹住物品。这些树脂同样也具有相应地低应力释放速度,该速度便于保留支撑包装物所需的收缩力。
不同于高压低密度聚乙烯的,通常应用管状薄膜挤压的窄分子量分布的线性低密度聚乙烯仅仅具有短支链,该支链的长度与α-烯烃的相一致,α-烯烃与乙烯共聚便生成了低密度聚乙烯。然而,在熔融挤压中,没有长支链的窄分子量分布的线性低密度聚乙烯应力释放过决以致于不能提供能冻结成薄膜的高熔融应力,对于窄分子量分布的线性低密度聚乙烯薄膜来说,其横向应力更是如上所述那样,并且,在薄膜挤压期间,横向伸展小于加工方向的,在该方向实际上没有收缩。结果,窄分子量分布的线性低密度聚乙烯不能用于收缩薄膜,这是因为低密度聚乙烯围绕包装材料下垂而不能紧紧地裹住它的缘故。
因而,制造线性低密度聚乙烯(LLDPE),首先设法鉴定LLDPE是适用于收缩薄膜的,并且与高压低密度聚乙烯树脂相比容易加工,最后,所生成的薄膜的工作性能要比高压树脂薄膜的好,而这些工作性能是收缩膜必需的。
因而,本发明的目的是提供了一个利用一特殊的LLDPE挤压成薄膜特别是适用于收缩薄膜的挤压方法。
其他的目的和优点将在下文中体现。
按照本发明,实现上述目的挤压方法包括在生成一收缩薄膜的条件挤压,一个由乙烯和至少一个具有3-6个碳原子的α-烯烃构成的-线性低密度共聚物。所说的共聚物包括(I)密度范围为0.915-0.932g/cm3,(II)重均分子量至少为250,000,(III)重均分子量与数均分子量之比至少为6,(IV)共聚物类的分子量至少为500,000,相当的占共聚物重量的至少8%。
收缩薄膜可由各种挤压技术生产,如吹塑薄膜挤压成形,和开槽铸模双轴向挤压成形。最好采用管状薄膜挤压成形,特别是冷空气吹塑管状薄膜挤压成形。吹塑管状薄膜挤压成形的典型设备和加工过程将在下面的实例中描述。临界收缩薄膜性能的最小值,是由下述主要加工方法达到(I)在135℃时(接近收缩烘道温度),加工方向的收缩率至少大约为30%,而在横向至少大约为10%,(II)相对溶融应力的收缩力为0或正千帕斯卡,相对冷却应力的收缩力至少大约为600千帕斯卡,(III)加工方向和横向熔融强度至少大约为7秒。最佳的熔融应力大约5-30千帕斯卡,最佳的冷却应力至少大约是900千帕斯卡,以及最佳的熔融强度至少大约为10秒。这些薄膜性能仅仅是上限可由实际达到。
术语限定如下1.如工方向是薄膜坯料从薄膜挤压机的模子拉出的方向。
2.横向是薄膜坯料的方向,其垂直诩庸し较蚱叫杏诒∧づ 料。
3.收缩率(其百分比变化随薄膜尺寸)由下式决定
其中LiMD=加工方向初始长度LsMD=收缩后加工方向长度LiTD=横向初始长度LsTD=收缩后横向长度4.熔融应力是在霜线冻结成薄膜的应力。
5.冷却应力是保留在固化薄膜中的结晶应力。
6.熔融强度是熔料对变形的阻力。
宽分子量分布、高分子量的LLDPE共聚物可在三氯化钒催化剂的作用下,将乙烯与至少一个每个分子中具有3-6个碳原子的α-烯烃聚合而成。使用上述的催化剂来生成这些共聚物的技术在欧州专利申请0120501公开,
公开日为1984年10月3日。该应用和说明书中其它的公开内容在此可以作为参考,并且还可使用利用各种催化剂来准备这些共聚物的其它常见的加工方法,然而必须调整一些条件以达到下述性能(I)密度为0.915-0.932g/cm2,最好是为0.922-0.928g/cm3,(II)重均分子量至少为250,000,最好至少为300,000,(III)重均分子量与数均分子量之比至少为6,最好至少为7,(IV)共聚物类的分子量至少为500,000,相当的占共聚物重量至少为8%,最好是至少为12%。无上限,因此,除了实例的范围,条目(II)(III)(IV)是有关链的。
重均分子量与数均分子量之比是多分散性的,这是公知的,它是测量分子量分布的宽度的。共聚物类百分比是采用尺寸筛析色谱法(SEC)来决定的。典型的SEC条件如下红外线检测器,1,2,4-三氯苯溶液,克/米IBM(离子束加工)包装塔,140℃塔温,250微升样品尺寸,20℃样品准备温度,1.000份/秒,红外线细胞THK(钾盐板)=1.0毫米,流动速度=1.004毫升/分,浓度=0.2018%(重量/体积),稀释=0.100。
由上述加工方法生成的收缩薄膜,除了使用的收缩薄膜必须具有冻结应力外,与其配对物为基础的高压树脂相比,还应当达到高的耐击穿,高抗拉强度和高韧性。
本发明由下述实施例加以说明。
例1-10实例中薄膜由吹塑管状薄膜挤压机来制备,该挤压机带有一个带凹槽的螺旋混合器,其提供能在管状薄膜挤压机中流动的均匀熔融物。在3吋和6吋后部供料的,每个带有一个直径为0.04吋的膜针,螺旋芯轴管状薄膜模子用来挤压聚合物或共聚物。模口的尺寸保持在0.06吋。
采用范围为1.5∶1-3.0∶1的吹胀比(BUR),熔融温度的范围大约为240℃-260℃,并且霜白线高度为12吋,在9磅/小时/吋模的园周模速度下挤压薄膜。
对于拉伸薄膜挤压技术的普通技术人员来说,为了达到最佳薄膜性能,以改变这些挤压条件均不超出本说明书范围。
挤压机具有一个2.5吋(63毫米)的挤压头,其带有一个3吋(75毫米)的模子和一个40密耳(1.0毫米)间隙。试验提供的薄膜厚度,除了例1 和3分别为110,102和110微米外,其它例子的均为100微米。温度如下机筒侧面=200℃,接头=210℃,模子=220℃,以及熔料=260℃。螺旋速度为60转/分(rpm),熔料压力为388巴,挤压速度是34公斤/小时,电机电流是80安培。
在例1,2,9,10和11中使用的聚合物是乙烯的高压低密度均聚物,其是由《聚合物化学入门》一书(Stille,Wiley纽约1962)P149-151页所描述的高压加工方法来制备的。在其它10个例子中使用的聚合物是是乙烯和一个具有高分子量和宽分子量分布的α-烯烃的LLDPE共聚物。它们采用了上述欧州专利申请0120501中所描述的催化剂系统制备。例3和4的聚合物具有一个中间分子量分布,例14的聚合物具有一个窄分子量分布,所剩下的12个例子中的聚合物具有一个宽的分子量分布。
变量和薄膜的性能在图表中示出。
表例子1234567891011121314151.熔料流量(dg/min) 0.2MI 0.2MI 77 6 6 6 60.25MI 0.25MI 0.25MI 6.0 6.0 206.02.密度(kg/m3) 920 920 916 916916 916926 926 920 920 920916 925 926 9263.共聚单体 - - C3 C3 C4C4 C6C6 - - - C4C4C6C64.Mw×10-3- - 264 264304 304264 264 - - - 304 - 119 2645.Mw/Mn - - 77 1212 1414 - - - 12- 3.5 146.高分子量共聚物类 - - 15 15 1212 1313 - - - 12- - 13浓度(%)7.薄膜标准尺寸(微米)100 100 100 100100 100100 100 100 100 75 757575758.吹胀率1.5 3.0 1.5 3.01.5 3.01.5 3.0 1.5 3.0 2.52.5 2.5 2.5 2.29.发射冲力(g)ASTM程序B 355 386 264 438742 906417 749 256 298 - 440 320 - 430ASTM程序A - - -- - - - -- - 160 - - 312 -
表(续)例子12345678910111213141510.扯裂试验(g/mil)MD 32 31 35 66 137 158 88 149 -- 26773963 120TD 56 40 78 59 203 152 266 165 -- 47108 112 208 12311.耐击穿(1/mm) 25 75 54 85 91 94 90 90 -- 34757264 9212.抗拉强度(mpa)MD 25 22 33 31 46 45 43 47 -- 25383634 41TD 20 24 29 29 34 46 38 46 -- 23413429 4113.延伸率(%)MD 440 520 610 670 580 650 520 620 -- 590 610 570 630 -TD 590 520 730 700 660 640 720 648 -- 620 640 660 660 -14.混浊度(%)9.7 8.5 13.5 13.5 -48 -56 -- - - - --15.45°光泽(%) 55 58 58 59 -23 -21 -- - - - --
表(续)例子12345678910111213141516.割线模量(mpa)MD 168 161 224 217 286 282 296 276 -- 165 196301308336TD 147 161 196 217 344 303 413 301 -- 190 21732241334317.熔点(℃) 108 108 121 121 121 121 124 124 108 108 108 1211241241248.在124℃收缩率MD 41 50 -59 57 -33 10 12 64 48- - - <1-TD 16 42 -41 2333 8 814 38- - - <1-19.在135℃收缩率MD 66 58 62 50 5950 61 55 -- 61 5259 1862TD 25 52 21 30 2233 29 33 -- 38 3532 -32820.熔融应力(KPA)MD 87 54 12 42 8359 100 56 98 51- - 2.0-TD 10 31 529 5.8 34 0 29 9.7 28- - 0 -
表(续)例子12345678910111213141521.冷却应力(KPA)MD 1044 896 820 742 2900 2600 3100 2400 1063 966 -- - 310 -TD 815 980 850 841 1620 2100 1600 1900 759 1021 -- - 6 -22.在135℃熔融强度(秒)MD 5039 26 13 71 409567 8742-- - 8-TD 9 17 10 79 217 15 8 21-- - 6-23.在124℃熔融强度(秒)MD 8884←----------------------太低不能测量----------------------→ --TD 1413←----------------------太低不能测量----------------------→ --
图表注释1.熔料流量按美国材料试验标准(ASTM)D-1238-79所定,单位为分克/秒。在例1,2,9,10和11中,用熔融指数代替熔料流量。熔融指数按ASTMD D-1238,条件E而定,在190℃测量,读数为克/10分。
2.密度按ASTM,D-1505所定。制成瓷花金属板的条件为100℃时1小时以接近均衡结晶性,然后在密度梯度管中测量密度,密度值读数为Kg/m3。
3.与乙烯一同使用的共聚单体是一个α-烯烃,也可以是丙烯,1-丁烯或1-己烯。
4.Mw是重均分子量,表示为MW×10-3。
5.Mw/Mn是重均分子量与数均分子量之比。该比例称做多分散性,它是测量分子量分布的数值。
6.高分子量共聚物类的浓度是具有分子量至少为500,000的共聚物重量的百分比,它是以全部共聚物重量为基础的。
7.薄膜标准尺寸是指薄膜的厚度,其数值用微米表示。
8.吹胀率是模口直径与气泡直径之比。气泡直径由下述给定,2×1ayflat/pi(压平/压力)“压平”指被压扁的气泡宽度。
9.发射冲力按ASTM,D-1709,方法A和B所定,其用克表示。
10.扯裂试验按ASTM,D-1992所定,它用克/密耳表示。(I)MD=加工方向(II)TD=横向11.耐击穿的定义是断裂试验样品所需的力和断裂中薄膜吸收的能量。其使用英斯特朗(“Instron”)张力试验仪来测定。试验样品的条件是在23℃最小40小时,相对湿度大约为50的条件下进行试验。横梁速度是20吋/分,记录纸速为10吋/分。采用一个0-5磅的全范围刻度用于正常厚度为0.5密耳的纤维。采用一个0-10磅全范围刻度用于正常厚度为1.0密耳的薄膜。柱塞向下行程6吋。
其中X=积累器读数的平均值K=调整因素的平均值L=用磅表示的全刻度负荷S=样品延伸速度在该项加工过程中,S=20吋/分,5000是基于满刻度积累器的每分钟完成计数为5000而定的。它用吋一磅/密耳表示。
12.抗拉强度按ASTM,D-882而定。它用毫帕斯卡(mpa)表示。
13.延伸率按ASTM,D-882而定,它用百分比(%)表示。
14.混浊度按ASTM,D-1003而定,它用百分比(%)表示。
15.45°光泽按ASTM,D-523而定,它用百分比(%)表示。
16.割线模量按ASTM,D-882而定,它用毫帕斯卡(mpa)表示。
17.熔点用摄氏度数表示。
18、和19.收缩率由下面规定切下一块3吋×3吋的薄膜样品,这样MD和TD方向均平行于样品的侧面。样品放置在124℃循环油池中60秒,使用一个能使薄膜自由收缩但不卷曲的适应的夹持器。然后样品从池中取出,放入水中淬一下火。测量样品MD和TD方向以得知MD和TD收缩率,它由下面算式而得
该值为百分比。
20和21,熔融应力和冷却应力由下面规定宽度为一吋的薄膜样品被夹持在两个距离为6吋的“Instron”夹片中。在“Instron”夹片固定后,-500瓦辐射加热器离薄膜规定距离围绕它旋转而引起薄膜熔融及开始收缩。熔融状态的应力是作为负荷记录在“Instron”图表上。随着熔融应力减小,拿走加热器,让薄膜冷却。产生的冷却应力(负载强度)也记录在“Instron”图表上。冷却和熔融状态的应力由分开记录的薄膜原始横断面的负载而获得。这项测量是在MD和TD两个方向上进行。其用千帕斯卡表示(kpa)。
22和23,收缩薄膜的熔融强度可定义为,当收缩薄膜承受释放的收缩应力,同时薄膜在收缩炉中处于熔融状态下,抗稀薄和随后孔变形(烧穿)的性能。熔融强度的测量是由夹紧一个1吋×1吋尺寸,适当重量的薄膜样品来测定加工方向或横向的性能,然后已称重的样品完全浸渍在高温(常常是124℃)的油池中,之后,在附加重量下,将薄膜拉断的时间用秒表示来作为熔融强度。如,一个4密耳样品,常常使用18克重量,其在油中的应力为8.3磅/平方英寸。断裂时间常常在10-70秒之间。按照薄膜厚度和熔点,来改变温度和重量。
图表的附加注意点例14的产品不能用于收缩薄膜。
权利要求
1.一种挤压方法,包括在能形成收缩薄膜的条件下挤压,一种由乙烯和至少一个具有3-6个碳原子的α-烯烃构成的线性低密度共聚物,所说的共聚物具有(I)密度大约为0.915-0.932克/厘米3,(II)重均分子量至少为250,000,(III)重均分子量与数均分子量之比至少为6,(IV)共聚物类分子量至少为500,000,相当的占共聚物重量至少8%。
2.按照权利要求1所述的挤压方法,其特征在于共聚物具有(I)密度大约为0.924-0.928克/厘米3,(II)重均分子量至少为300,000,(III)重均分子量与数均分子量之比至少为7,(IV)高分子量类浓度为分子量至少为500,000,相当的占重量至少12%。
3.按照权利要求1的方法所生产的收缩薄膜。
4.按照权利要求2的方法所生产的收缩薄膜。
5.按照权利要求3所述的收缩薄膜,它具有如下性能(I)在大约135℃时,加工方向的收缩率至少为30%,横向的收缩率至少为10%;(II)熔融应力是0-正千帕斯卡(II)冷却应力至少为600千帕斯卡;(IV)在135℃时,加工方向和横向的熔融强度至少为7秒。
6.按照权利要求4所述的收缩薄膜,它具有如下性能(I)在135℃时,加工方向的收缩率至少为30%,横向的收缩率至少为10%;(II)熔融应力是0-正千帕斯卡;(III)冷却应力至少为600千帕斯卡;(IV)在135℃时,加工方向和横向的熔融强度至少为7秒。
7.将薄膜围绕其物品收缩的方法,包括将由权利要求1的方法所提供的薄膜与包装物品接触,其温度范围为135℃~250℃,然后薄膜围绕包装物品,并收缩到薄膜紧紧地裹在包装物品的外表面上。
全文摘要
一种挤压方法包括在能生成收缩薄膜的条件下挤压,一种由乙烯和至少一个具有3-6个碳原子的α-烯烃构成的,线性低密度共聚物,所说的共聚物包括(I)密度大约0.915-0.932克/厘米
文档编号B29C61/06GK1035078SQ8810925
公开日1989年8月30日 申请日期1988年12月21日 优先权日1987年12月22日
发明者威廉·唐纳德·海特兹 申请人:联合碳化公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1