采用催化反应器涂层的系统和方法

文档序号:4531414阅读:160来源:国知局
专利名称:采用催化反应器涂层的系统和方法
技术领域
本文公开的主题涉及催化反应器,更具体地说涉及催化反应器中可采用的牺牲性 涂层。背景抟术在燃烧过程中,例如在燃气涡轮发动机或催化重整器中通常可使用催化反应器, 以减少燃烧期间所产生的排放。在燃烧期间,在高温,例如在超过大约1430°C的温度下可能 生成例如一氧化氮和二氧化氮(总称为N0X)的化合物。催化反应器可采用催化剂,其降低 用于燃烧的反应温度,从而减少这些化合物的生成。在某些燃烧操作期间,可能需要保护催 化反应器中的催化剂。

发明内容
与本发明原本要求保护的范围相称的某些实施例可概括如下。这些实施例并不意 图限制本发明的要求保护的范围,相反这些实施例仅仅意图提供本发明的可能形式的简要 概括。实际上,本发明可包含可能与下述实施例相似或不同的各种形式。在第一实施例中,一种系统包括燃烧器和催化反应器,该催化反应器包括保护涂 层以抑制燃烧期间的催化剂污染。当催化反应器设置在燃烧器中时,可以化学或机械方式 除去保护涂层。在第二实施例中,一种方法包括操作燃烧器以及当催化反应器设置在燃烧器中时 除去保护涂层,以使催化剂暴露在燃烧器的催化反应器中。在第三实施例中,一种方法包括在催化反应器中的催化剂涂层上施加保护涂层, 其中保护涂层配置成可在催化反应器设置在燃烧器中时被除去。


当参照附图阅读以下详细说明时,将更好地理解本发明的这些以及其它特征、方 面和优势,其中在所有附图中相同的标号表示相同的部件,其中图1是具有可采用牺牲性涂层的催化反应器的燃气涡轮发动机的一个实施例的 示意性的流图;图2是穿过纵轴线剖切的图1的燃气涡轮发动机的一个实施例的截面图;图3是图2的燃气涡轮发动机的一部分的详图,其描绘了具有催化反应器的燃烧 器;图4是根据某些实施例的图3中所示的催化反应器的一部分的截面图;和图5是流程图,其描绘了一种用于采用牺牲性涂层的示范性方法。
具体实施例方式以下将描述本发明的一个或多个特定实施例。在努力提供这些实施例的简明描述 时,不是实际实施的所有特征都在本说明书有所描述。应该懂得,在任何这种实际实施的研 究中,如同在任何工程或设计项目中一样,必须做出许多实施所特定的决策,以实现研究者 的特定目的,例如与系统有关及与商业有关的约束相符合,其可能由于实施不同而不同。此 外,应该懂得这种研究工作可能是复杂且耗时的,但对于受益于本公开的普通技术人员来 说,其是设计、构造和制造的例行程序。当介绍本发明的各种实施例的元件时,冠词“一”、“一个”、“该”和“所述”意图表 示有一个或多个元件。词语“包括”、“包含”和“具有”都是包括性的,意味着除了列出的元 件之外,还可以有其它元件。
本公开针对为保护催化剂而可在催化反应器中采用的牺牲性涂层。在某些操作时 间段期间,例如,在燃气涡轮发动机中的燃烧器起动或试运行期间,或者在安装新的压缩机 之后,更高水平的污染物和/或颗粒可能向下游对流至燃烧器中。这些污染物和/或颗粒 可能流入到催化反应器中,并可能使反应器中的催化剂污染或退化。例如,某些颗粒可能粘 附在催化剂上,减少了燃烧期间可用于催化相互作用的表面积。因此,可能需要将牺牲性涂 层施加于催化剂上,以便在这些操作时间段期间保护催化剂。牺牲性涂层可在制造期间或在安装催化反应器之后进行施加。在需要催化剂保护 的操作时间段结束之后,例如对于新的燃气涡轮发动机,在最初的大约10至1000个操作小 时之后,可除去牺牲性涂层。然而,用于保持牺牲性涂层的时间间隔是可以变化的,并且是 与应用相关的。特别地,牺牲性涂层可包括易碎的或容易破裂的涂层,在催化反应器安装于 燃烧器中时可以化学或机械方式除去。例如,牺牲性涂层可包括可在清洗压缩机期间除去 的水溶性涂层。在某些实施例中,牺牲性涂层可以是催化活性的,从而在催化剂被保护的同 时提供催化属性。例如,当牺牲性涂层设置在催化剂上时,催化剂的表面区域可能被遮住, 从而降低催化的有益效果。当反应器中存在牺牲性涂层时,牺牲性涂层的催化属性可用于 临时替代或补充催化剂,以降低反应温度并减少排放。总地说来,在燃烧环境的范围内,例如燃气涡轮、发动机和重整器中可将牺牲性涂 层施加于催化反应器上。图1显示了牺牲性涂层的一种示范性的应用,并描绘了可采用具 有牺牲性涂层的催化反应器14的燃气涡轮发动机12。在某些实施例中,系统10可包括飞 机、船舶、机车、发电系统或其组合。所示的燃气涡轮发动机12包括进气段16、压缩机18、 燃烧器段20、涡轮22和排气段24。涡轮22通过轴26而传动地联接在压缩机18上。如箭头所示,空气可通过进气段16而进入燃气涡轮发动机12中,并流入压缩机18 中,压缩机18在空气进入燃烧器段20之前压缩空气。所示的燃烧器段20包括设置为同心 地或环状地围绕压缩机18和涡轮22之间的轴26的燃烧器壳体28。来自压缩机18的压缩 空气进入燃烧器30中,在燃烧器30中压缩空气可在催化反应器14中与燃料相混合并一起 燃烧。一些或所有燃烧可发生在催化反应器14中,其如上面论述的那样可降低反应温度以 减少排放。从燃烧器段20,热的燃烧气体流过涡轮22,通过轴26驱动压缩机18。例如,燃烧 气体可将原动力施加于涡轮22中的涡轮转子叶片,以使轴26旋转。在流过涡轮22之后, 热的燃烧气体可通过排气段24离开燃气涡轮发动机12。图2是沿着纵轴线29得到的图1的燃气涡轮发动机12的一个实施例的横截面侧 视图。燃气涡轮发动机12包括一个或多个定位在燃烧器段20中的燃料喷嘴32。在某些实 施例中,燃气涡轮发动机12可包括多个设置成环形布置的燃烧器30。此外,各个燃烧器30 可包括以环形或其它布置连接在各个燃烧器30的底部的多个燃料喷嘴32。如以上参看图1所述,空气可通过进气段16进入发动机12中,并由压缩机18进 行压缩。然后可将来自压缩机18的压缩空气引导到燃烧器段20中,在燃烧器段20中压缩 空气可与燃料相混合。例如,燃料喷嘴32可将燃料-空气混合物以合适的比例注入到燃烧 器30中,以达到最佳的燃烧、排放、燃料消耗和功率输出。在燃烧器30中,燃料-空气混合 物可在催化反应器14中燃烧,以产生热的加压排气。催化反应器14通常可包括一个或多 个降低反应温度的催化剂,从而减少了不合适的副产物例如NO、*一氧化碳的产生,和/或改善火焰稳定性。燃烧还可发生在催化反应器14之外的燃烧器30中。燃烧产生的热的加 压排气可离开燃烧器段20并流过过渡段36而流至涡轮22。在涡轮22中,加压的排气在通 过排气段24离开之前可使涡轮22中径向延伸的叶片38旋转,从而使轴26(图1)旋转。图3中显示了燃烧器段20的一个实施例的详图。预混合燃料喷嘴32连接在端盖 42上,靠近燃烧器30的头端。压缩的燃料通过端盖30而被引导至各个燃料喷嘴32中,燃 料喷嘴32将预混合的空气和燃料混合物分配到燃烧器30中。燃烧器30包括通常由外壳 46、衬套48和导流套筒50限定的燃烧室44。在某些实施例中,导流套筒50可围绕衬套48 进行同轴定位,以便通过衬套预混合段45中的穿孔或其它开口而将空气从压缩机引导至 燃烧室44中,大致如箭头所示。燃料喷嘴32可在催化反应器14之前分配加压燃料,以容许燃料和空气在催化反 应器14之前进行预混合。在燃烧室44中,燃料-空气混合物可流过催化反应器14。催化 反应器14通常可包括催化剂,该催化剂加快燃烧反应以产生较低的排放。催化剂通常可促 进燃料和空气的稳定的低温反应以产生燃烧排气52。从催化反应器14,燃烧排气52可流 过燃烧室44的主段和过渡段36,在其中可进一步发生燃烧。例如,部分燃烧的排气52可在 燃烧室44和/或过渡段36中经历热燃烧。催化反应器14可通常包括涂覆有催化剂的陶瓷或金属衬底以形成催化剂床。催 化剂床可包括任何合适的结构,例如蜂窝状小室、填充床、网状泡沫、长管道、整体料、圆柱 形形状、板等等。衬底可由例如金属合金、陶瓷、金属氧化物、金属间化合材料、碳化物、氮化 物等等的耐高温材料组成或制成。催化剂床的结构通常可涂覆反应催化剂,以加快燃烧反 应。例如,催化剂床可包括圆柱体,其横截面包括涂覆有反应催化剂的蜂窝状小室。催化剂 的类型可专用于燃烧应用,并且可基于所使用的燃料类型而变化。例如对于基于碳氢化合 物的燃料,催化剂可包括例如锆、钒、铬、锰、铜、钼、锇、铱、铑、铈、镧以及其它镧系元素、铜、 镍铁、镁、钼和钼系元素(PGM)等元素。催化剂还可包括其它贵金属、VIII簇贵重金属、贱 金属、金属氧化物的活性成分或其任何组合。在其它实施例中,催化反应器14在燃烧器段20中的位置可改变。例如,反应器通 常可设置在主燃烧室44的上游或下游。此外,在富燃或贫燃环境中可采用催化反应器。此 外,在燃烧器段20中可包括其它构件,例如预燃烧器(prebumer)、预混合器、多个级、一个 或多个催化导燃器(catalytic pilot)或导燃燃烧器(pilot burner)等等。在某些实施 例中,催化反应器14可设置在一个这样的辅助构件中。例如,催化反应器可设置在富燃催 化反应器、贫燃催化反应器、预混合燃烧器、催化导燃器、或预燃烧器中。此外,某些燃烧器 30可包括多个催化反应器。图4是通过根据某些实施例的催化反应器14的一部分的截面图。反应器通常可 包括设置在衬底54上的催化涂层56。如上参照图3所述,催化涂层56通常可加快燃烧反 应。例如,对于基于碳氢化合物的燃料,催化涂层56可加快一氧化碳和碳氢化合物反应,以 降低反应所需要的温度,则其可导致较低的排放。当燃料_空气混合物59流过反应器14 时,燃料_空气混合物59可在催化涂层56上通过并燃烧以产生排气。燃料_空气混合物 59可包括各种类型的燃料,例如碳氢化合物燃料、非碳氢化合物燃料(即工艺气体、炼油气 体、合成气等等)和其混合物。在燃烧的某些时间段期间,例如在安装之后起动期间,水平增加的颗粒和/或污染物可能被输送到催化反应器14中。这些污染物可能附着或粘附在催化剂56的表面上, 这可能污染催化反应器,从而降低催化反应器的效率。因此,在这些操作时间段期间可将牺 牲性涂层58作为保护涂层设置在催化剂56上。例如,在涡轮发动机的初始起动期间,或在 替换设备的某些器件例如空气压缩机或燃料供给系统之后可将牺牲性涂层58设置在催化 剂56上。在某些实施例中,通过制造商可在合适位置为催化反应器14装备牺牲性涂层58, 从而在燃烧器的起动时可利用牺牲性涂层58。然而,在其它实施例中,在催化反应器14已 经安装在燃烧器中之后可施加牺牲性涂层58。此外,牺牲性涂层58可以一个或多个涂层或 层的形式施加于催化涂层56上,并且可在不除去催化反应器14的条件下进行补充,以容许 将来根据需要进行保护。通过在催化剂56上提供保护层,牺牲性涂层58通常可抑制对催化剂56的损伤。 在某些实施例中,牺牲性涂层58可形成与催化剂56的物理结合。牺牲性涂层58可包括任 何合适的易碎的或容易破裂的涂层,其可在反应器安装于燃烧器中时被以化学或机械方式 除去。例如,可利用简单的溶剂例如水、酒精、乙醇、乙二醇、去污剂、洗涤剂等等以化学方式 除去该涂层。还可通过应用机械力,例如超声振动和机械冲击以及其它方式而机械地除去 该涂层。例如,可将胡桃壳引导通过催化反应器14,以使牺牲性涂层58破裂。然后可在例 如压缩机清洗循环期间将牺牲性涂层58的碎片冲洗出反应器14。不管去除的方法如何,通 常都可在不损坏下面的催化剂56的条件下除去牺牲性涂层58。此外,可在不拆卸燃烧器构 件的条件下除去牺牲性涂层58。在某些实施例中,除了催化剂56之外,还可将牺牲性涂层58设置在催化反应器14 的其它段上。例如,可将牺牲性涂层58施加于衬套48的部分上,这可在起动或其它操作期 间提供热屏障。在从催化剂56上除去牺牲性涂层58期间可从反应器14的其它段上除去 牺牲性涂层。牺牲性涂层58可包括任何合适类型的涂层,例如金属氧化物涂层、有机涂层或其 它可以化学或机械方式除去的易碎的涂层。例如,金属氧化物涂层可包括镁和氧的化合物, 例如可利用基于油的溶剂除去的磺酸镁或可利用基于水的溶剂除去的硫酸镁。在另一示例 中,可采用有机涂层,以形成可在氧化或热挥发期间除去的隔氧层。在某些实施例中,牺牲 性涂层58可包括商业上可得到的涂层,例如商业上可从俄亥俄州辛辛纳提市的宝洁公司 得到的Pepto-Bismol 或商业上可从特拉华州威尔明顿市的杜邦公司得到的Teflon 。在 其它实施例中,涂层可包括氧化镁乳剂、氧化镁氢氧化物或碱式水杨酸铋溶液。在某些实施 例中,牺牲性涂层58可包括相对较稳定且环境友好的化合物,以减轻除去牺牲性涂层58时 的环境问题。在某些实施例中,基于镁的涂层的使用可对牺牲性涂层58提供额外的催化属性。 当将牺牲性涂层设置在催化剂56上时,催化属性可容许牺牲性涂层58加快燃烧反应。例 如,在燃气涡轮发动机12(图1)的初始起动期间可将牺牲性涂层58设置在催化剂56上。 如图4中所示,可将牺牲性涂层58设置在催化剂上,使得燃烧气体52不能接触催化剂56。 然而,当牺牲性涂层58设置在反应器14中时,燃烧气体52可接触牺牲性涂层58,并且牺 牲性涂层58的催化属性可用于加快燃烧反应,从而减少排放。在其它实施例中,涂层可 掺杂催化剂。例如,涂层可掺杂钼系金属,例如钌、铑、钯、锇、铱和钼。在某些实施例中, Pepto-Bismol ^掺杂催化剂以增强牺牲性涂层58的催化属性。在其它实施例中,可采用
6其它具有催化属性的掺杂剂,例如铁、钴或镍。如上面提到的那样,当催化剂可能容易受到污染物和/或颗粒的损伤时,可将牺牲性涂层58临时设置在催化剂上,以便在操作的时间段期间保护催化剂。图5描绘了一种 用于在催化反应器中采用牺牲性涂层的示范性方法60。该方法可开始于将牺牲性涂层施加 到催化剂上(框图62)。在某些实施例中,可在组装催化反应器14(图4)期间由制造商施 加牺牲性涂层58(图4)。例如,可利用遮蔽施加类型的方法将牺牲性涂层58喷涂到催化 剂上,或者可通过其它方法例如喷涂、涂刷、浸渍等等来施加牺牲性涂层58。在其它实施例 中,可在反应器已经安装到燃烧器中之后施加牺牲性涂层58。例如,在燃气涡轮发动机的检 修或新的压缩机安装之后,通过催化反应器14中的开口可施加牺牲性涂层58 (例如通过喷 涂、涂刷等等)。在某些实施例中,燃烧器30的壳体28(图1)可包括用于施加牺牲性涂层 的进入孔。在其它实施例中,可通过添加到燃料系统或上游压缩机清洗系统来施加牺牲性 涂层58。在施加期间,牺牲性涂层58可设置在催化剂56以及燃烧器30(图3)的其它区域 例如燃烧衬套48(图3)上。在施加之后,可干燥一段时间,在某些实施例中,可使燃气涡轮 发动机接合以提供热量,从而促进干燥过程。在施加牺牲性涂层之后,该方法可继续操作燃烧器(框图64)以设定的时间段。该 时间段可基于各种因素,例如制造商建议、安装类型、制造考虑等等。例如,在起动燃气涡轮 发动机期间,燃烧器可操作大约10至250个小时,以及其间的所有子范围。更具体地说,燃 烧器可操作大约50至150个小时。在这个时间段期间,松散的颗粒和污染物可能流过燃气 涡轮发动机。在另一示例中,燃烧器可在更换压缩机之后操作大约200个小时。在经过该时间段之后,可除去牺牲性涂层58 (框图66)。除去过程可在催化反应器 和燃烧器封装在燃气涡轮发动机中的同时发生。例如,如果牺牲性涂层是可溶于水的,那么 在测试压缩机清洗系统期间利用发动机水洗可溶解牺牲性涂层。在另一示例中,可引导洗 涤剂或其它简单溶剂通过燃烧器,以除去牺牲性涂层。在某些实施例中,在使用不同于水的 简单溶剂之后,可执行水洗,以冲洗燃烧器中任何残余的溶剂。在另一示例中,可对燃烧器 应用超声振动或气体压力脉冲(即冲击波等等)以破坏牺牲性涂层。在振动或其它机械方 式除去之后,可应用水洗,以冲洗燃烧器和发动机中的牺牲性涂层的碎片。该书面说明使用示例来公开本发明,包括最佳模式,并且可使本领域技术人员实 践本发明,包括制造和利用任何装置或系统,并执行任何所含方法。本发明可取得专利的范 围由权利要求限定,并且可包括本领域技术人员能够想到的其它示例。如果这些其它示例 具有并非不同于权利要求语言的结构元件,或者如果其包括与权利要求语言无实质差异的 等效的结构元件,那么这些其它示例都属于权利要求的范围内。
权利要求
一种系统(10),包括燃烧器(30);和催化反应器(14),所述催化反应器(14)包括保护涂层(58)以抑制催化剂在燃烧期间的污染,其中,所述保护涂层(58)在所述催化反应器(14)设置在所述燃烧器(30)中时可以通过化学去除或机械去除中的至少一种被除去。
2.根据权利要求1所述的系统(10),其特征在于,所述保护涂层(58)包括可在压缩机 清洗期间除去的可溶于水的涂层。
3.根据权利要求1所述的系统(10),其特征在于,所述保护涂层(58)是催化活性的。
4.根据权利要求1所述的系统(10),其特征在于,所述保护涂层(58)包括氢氧化镁悬 浮液或碱式水杨酸铋。
5.根据权利要求1所述的系统(10),其特征在于,所述催化剂(56)设置在所述催化反 应器(14)中的催化剂床(54)上,所述催化剂床(54)具有蜂窝状小室或管状结构中的至少 一种结构,并且其中,所述保护涂层(58)设置为所述催化剂(56)上的层。
6.根据权利要求1所述的系统(10),其特征在于,所述催化剂(56)配置成降低燃烧期 间的NOx排放。
7.根据权利要求1所述的系统(10),其特征在于,所述系统(10)包括涡轮(22),压缩 机(18),涡轮发动机(12)或其组合。
8.根据权利要求1所述的系统(10),其特征在于,所述催化反应器(14)设置在所述燃 烧器(30)的预燃烧器中,设置在所述燃烧器(30)的导燃燃烧器中,设置在所述燃烧器(30) 的预混合器中,或者设置在所述燃烧器(30)的主燃烧室中。
9.一种方法(60),包括将保护涂层(58)施加(62)在催化反应器(14)中的催化剂涂层(56)上,其中,所述保 护涂层(58)配置成可在所述催化反应器(14)设置在燃烧器(30)中时被除去。
10.根据权利要求9所述的方法,其特征在于,所述方法包括除去(66)所述保护涂层 (58)以露出所述催化剂涂层(56)。
全文摘要
本发明提供了用于保护燃烧器(30)中的催化剂(56)的方法和装置。在一个实施例中,催化反应器(14)包括保护涂层(58),该保护涂层(58)在催化反应器(14)设置于燃烧器(30)中时可通过化学或机械方式除去。
文档编号F23R3/40GK101825289SQ20101011939
公开日2010年9月8日 申请日期2010年1月19日 优先权日2009年1月19日
发明者C·C·克雷默, G·O·克雷默 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1