热交换器的制作方法

文档序号:4517169阅读:146来源:国知局
专利名称:热交换器的制作方法
技术领域
本发明涉及核反应堆冷却剂环路中的水-水管式热交换器,特别是在假想事故中为了从核反应堆导出堆芯衰变热所设计的热交换器,这些假想事故中存在着压水堆的通过冷却剂环路蒸汽发生器的这种冷却能力的丧失。本发明在只用自然对流来冷却核反应堆所设计的非能动系统中特别有用的。
Conway等人的美国专利号4,753,771透露了加压水核反应堆用的一种良好设计的非能动安全系统,它使用一种靠自然对流从反应堆堆芯排除堆芯衰变热的水-水余热排除热交换器。在Conway等人的非能动系统中,热交换器是安置在安全壳中的一个反应堆水贮罐内。该热交换器是通过管道在水力上连接冷却反应堆堆芯用的一回路的热管段和冷管段。在一回路系统发生故障的情况下,例如,冷却剂泵失灵,冷却剂水就自然地循环起来,从反应堆堆芯通过一根管道流过热交换器,然后通过另一根管道返回到堆芯。如Conway等人所透露的,该热交换器一般地包括许多管子,它们从安放在贮罐内的一根入口总管延伸到一根出口总管。因而,余热排除热交换器将衰变热传递给贮水罐中的水。
理论上,余热排除热交换器诸如所透露的热交换器,如果有的话,将是极少需要的,而核电厂的其他系统将正常地工作。然而,余热排除热交换器装有反应堆系统压力下的被污染的一回路冷却剂水,因此,必须定期检查和修理(如果必要的话)。
虽然由Conway等人所透露的热交换器很好地执行其功能,但是其他的一些运行操心问题,诸如这样一种热交换器的例行维护和修理,可能会使核电厂的生产运行处于严重不利地位。例如管子的简单检查正常需要贮罐在检查前排空。然而这些贮罐是很大的(有高达2000英尺2(186m2)或更大的面积和高达30英尺(9m)或更大的高度),因此可能需要许多小时来排空。在排放那种贮罐中,反应堆容器内的余热排除也是需要的,因此进一步延长停堆。同样,这种设计可能有困难,表现在贮罐内的引向热交换器的或从热交换器引出的管道断裂后贮罐可接受的负荷。
本发明的一个目的是提供一种处在核反应堆的冷却剂回路中贮水罐内的余热排除热交换器,它可以比目前的一些设计更容易地检查和修理。
本发明的进一步的目的是提供一种可以从贮水罐外边容易地检查或修理的热交换器。
本发明的另一个目的是将所有大的连接管道移至贮罐外边。
考虑到这些目的,本发明停留在一种安置在贮水罐内的水-水管式热交换器上,它用于将堆芯衰变热从核反应堆传递给贮罐内的水。该贮罐有两个确定开孔的分隔开的贮罐接头。热交换器有大量的管子安置在贮罐内。这些管子从邻近贮罐接头的管板组件延伸。
在本发明的一个推荐的实施例中,管子是按这样一种间距布置在管板上,它使管板的直径减至最小,因此管板的厚度可以减至最小(在一个设计压力下,设计厚度是直径的一个函数),而在管子端部之间的管子部分是按另一种间距布置的,它使贮罐内的自然循环变得更容易。因而,这些管子最好按正方形间距从管板延伸,然后沿着这些管子的大部分按矩形间距延伸。最好,这些管子是呈C形的,并且是不由贮罐壁支承的。
本发明如同权利要求所规定的,从附图所示的只是作为例子的一种推荐实施例的下列详细描述中,将变得更加明显。其中

图1是本发明可以适用的加压水核反应堆的一个示意顶视图;
图2是图1的加压水核反应堆的一个示意流程图,它示出了本发明的推荐实施列;
图3是体现本发明的一种热交换器可以适用的贮水罐的一个纵向视图;
图4是沿剖视线4-4所取的图3中贮水罐的一个纵向剖视图,包括一个是本发明的推荐实施例的热交换器;
图5是图4所示贮罐接头的结构支架的一个等角轴测图;和图6是图4所示管板组件的一个剖视图。
下面来看图1,它以水平剖面示意图示出屏蔽建筑物1和圆筒形的金属安全壳32,示出了本发明可以适用的一个加压水核反应堆的一些主要部件。装在反应堆容器3内的反应堆堆芯2连续地加热在一回路中循环的水,一回路构成反应堆冷却系统的一部分。在反应堆堆芯2中被加热的水是通过一回路的环路管道的热管段5供应给蒸汽发生器44。热管段5从反应堆容器3延伸到蒸汽发生器4,在蒸汽发生器中热量是由在二回路中循环的水带走(二回路未示出)。在蒸汽发生器4中热交换后,一回路水是通过一回路的环路管道的冷管段6从蒸汽发生器中出来,并且被重新引进反应堆容器3。通过管道8与热管段5相连通的稳压器7维持一次冷却剂回路中的所要求的压力。
同样参照图2,当一回路水从冷管段6进入反应堆容器3,它在反应堆容器3内通过下降环道9被引导向下流到反应堆容器的底部。由此它被强迫向上通过反应堆堆芯2,并且它最后以被加热的状态通过上述的热管段5离开反应堆容器3。一回路(亦即反应堆冷却剂系统)中的水是由反应堆冷却剂泵(只示出一台泵)来维持循环。
上述反应堆的反应堆部件,它们的布置和运行是大家熟知的。同样按照常规,各种部件内的和沿着各种部件的参数诸如温度、水位、压力等均按常规以连续的方式由大家熟知的探测系统、记录系统和/或显示系统所探测。这样一些常规参数探测系统是以11象征地标出。
一个安全壳内的贮水罐12是这样安置在屏蔽建筑物1内的,使得它的体积的大部分是安置在反应堆冷却剂系统管道标高以上,那就是说,在热管段5、冷管段6和反应堆容器内的水流道的标高以上。最好,贮罐具有一个带通风管的完整的顶盖。同时,它可以由24至30英寸(0.6至0.76m)的混凝土所屏蔽。顶盖上的设备舱口(未示出)可以用于更换贮罐内的设备。贮罐可以具有与安全壳面积相适应的任何方便的正规或非正规形状。
贮罐12可以通过管道13连接到反应堆容器3的下降环道9,管道13是靠止回阀14来维持关断,只要止回阀14的贮罐侧的压力保持小于其下降环道侧的压力。
安全壳内的贮水罐12容纳本发明的一个或多个非能动余热排除热交换器,其中的一个通常以15标明。如图所示,热交换器可以具有管板联箱17,它们伸在贮罐壁的外边。联箱可以凹嵌在贮罐壁内,以利用较小的安全壳面积。热交换器15正常是全部淹没在贮罐12内所贮存的水中,并且是安置在反应堆冷却剂环路管道以上的一个标高位置上。因此相对于热交换器15而言,贮罐12中的冷水起一个初始热阱的作用。
热交换器15可以通过管道19连接到反应堆冷却剂系统的热管段5,和通过向下延伸的管道20连接到冷管段6。管道20可以靠一个正常关闭的、故障开启的调节阀21来关断。阀门21具备有调节管道20中流量的能力,例如来自参数探测系统11的信号。
在反应堆冷却剂系统管道5和6的标高以上,可以设置两个球形的堆芯补给水箱22(在图1中示出2个,但在图2中只示出1个)。只属于一个堆芯补给水箱22的管道连接将加以描述,同时应当理解,同样的重复管道可以用于另一个堆芯补给水箱22,以提供冗余度。
充有冷水的堆芯补给水箱22的内部空间的顶部可以通过一根比较小直径的管道23连通到稳压器7的蒸汽空间。而且,堆芯补给水箱22的上部空间可以通过一根比较大直径的管道24连接到冷管段6。止回阀可以安排在管道23中,以防止流体通过管道23在稳压器方向上的流动。堆芯补给水箱的底部可以通过管道26连接到反应堆容器3的下降环道9。管道26正常是由故障开启的隔离阀27关断的。
从稳压器7的蒸汽空间可以伸出一根泄压管28,穿进安全壳内的贮水罐12,泄压管通常是由一个电动压力释放阀29关断。
安全壳内贮水罐12的下部可以装备一个出口管接头30,它正常是由止回阀31来维持关闭,止回阀31阻止安全壳内贮水罐12的水外流,但是允许水从被淹的安全壳流进贮水罐12。
图3一般地示出了本发明可以适用的处在地板标高43上的一种安全壳内贮水罐40。该贮罐40通常包括由蜂窝结构44支承的金属衬里42(在图4中示出)。衬里42最好是一个不锈钢结构,并且约为1/8至1/4英寸(0.3至0.6cm)厚。支承蜂窝结构44最好包括一些埋入混凝土屏蔽的常规结构钢支架,混凝土屏蔽的厚度约为24至30英寸(0.6至0.76m)。贮罐40也可以有一个混凝土顶盖45,它盖住整个贮罐40和通风管(未示出)。最好,埋入的结构钢支架是设计成可支承整个贮罐40负荷,并且混凝土具备有一定的安全系数。或者在其他一些设计中,安全壳内贮罐可以没有混凝土屏蔽。
贮罐40将有各种的贮罐接头(如上面就图1所讨论的),包括入口接头46和出口接头48,以允许在一次冷却剂水回路和体现本发明的热交换器组件58(示于图4)的入口管板组件50和出口管板组件52(最好见图6)之间的连通。任何合适的贮罐设计可以被使用。图5示出了一种推荐的设计,其中入口接头46和出口接头48可以一般地分别定义为安装板62和64上的开孔。安装板62和64是由一对垂直的T形构件66和一些水平的T形构件68来支承。这种支承组件60可以是用螺栓连接或焊接在一起的。该组件60最好不是支承贮罐衬里42的埋入结构钢支架的一部分,虽然它可以处在其他的一些实施例中。如在图4中用焊缝70所标出的,安装板62和64是焊到贮罐衬里42上。
管板组件50和52最好是图6所示的,图6图示了管板组件50。所示出的管板组件50是特别设计成可承受由600°F(315℃)的入口一回路水和70°F(21℃)的贮罐水所引起的热应力及高的瞬态压力。管板组件50通常包括一个圆形管板构件76,后者有一个裙部78从管板76延伸到一个U形法兰扩张环80,扩张环80确定了一个反向弯头。一个扩张环82从U形法兰扩张环80延伸到一个安装环84。管板组件50和52的这些部件焊接在一起构成整体的结构。另外,一个有一回路水入口接头88和人孔90的入口腔封头86,焊到管板76上。在一个推荐的实施例中,入口接头88是安置在靠近联箱86的顶部,以使管板组件50放气。管板组件50的结构型式一般地将环道92限定在管板76(和裙部78)的外周界和扩张环82的内周界之间。出口管板组件52通常似类于入口管板组件50,前者有一个带出口接头95的出口腔封头94。
如图4所示,管板组件安装环82邻近安装板62和64的内表面。最好,安装环82是用螺栓(未示出)固定到安装板62和64上,这些螺栓穿过安装环螺栓孔98(示于图6)并拧入安装板62和64的盲螺纹孔99(4孔示于图5)。有利的是,安装板62和64与安装环82之间的伞盖型或Ω型焊缝102可以从贮罐40外边的安全壳区域施焊和检查。同样,这些焊缝将不处在一回路水的高温下,因为贮罐40中的水从管板76和管板裙部78的背面吸收了大量的热量。这样,安装板62和64与安装环82将在所有的热工条件下保持在贮罐温度,即正常约为70°F(℃)。另外,穿过孔98和99的靠近焊缝70的安装螺栓将维持在一个基本上恒定的温度,并且在热循环条件中将不会有松动的趋势。相应地,入口管板50表面上的高压力瞬变是由支承结构60有效地吸收。而且,常规的法兰密封垫(未示出)可以使用在安装板62和64与安装环82之间。
最好,管板组件50和52的重量是由热交换器支承结构112来支承,它通常支承在管板组件50和52之间延伸的管子114的重量。这样,外套座118可以焊接到管板安装环84上(如在图6中可以看到的),并且用螺栓(未示出)安装到支承结构112的前盖构件120上,这些螺栓穿过外套座118的螺栓孔122到加强环124的螺栓孔,加强环124是安置在前盖构件120的背面并对着外套座118。图4所示的前盖构件120通常包括一块厚板126,它有向后延伸的U形端部134(在平面视图上看时),并由一些水平构件130和一个顶部撑条132来加强。
图4的热交换器支承结构112也包括两个侧盖构件138,它们在热交换器管子束114的两侧从前盖构件120延伸。两个侧盖构件138是表现为具有大的开孔140和142的平板,这些开孔允许贮罐40内的水自然循环。或者,这些构件138可以是管式构件或其他熟知的结构构件,它们可以焊接到或用螺栓连接到前盖构件120上。此有顶部撑条147的后盖构件146在侧盖构件138之间伸展。后盖构件146也有大的开孔149和151,允许贮罐水的自然循环。在一些实施列中,其贮罐40内使用了一些喷雾器(未示出),为了防止蒸汽对管子114的冲击,后盖构件146可以是带隔板的。具有竖立肋板152的顶盖构件150是支承在侧盖构件138上。顶盖构件150通常遮盖管子114和基本上限制了贮罐水的表面蒸发(水一般地在管子114和顶部构件150之间的区域内变化)和安全壳区域的湿度。
如图4所示,前盖构件120和后支撑构件146的上部延伸到顶部构件150以上。这种升高的结构支承着一些向上突出部(由后支撑构件146上的突出部158所代表的),它们对准着安装在顶盖上的侧向对中支架162的开槽(由开槽160所代表的)。这种装置侧向地支撑着热交换器支承结构112抵抗侧向推力。
热交换器管子114是设计成可使水在贮罐40内自然循环。因而,一回路水入口88大大地高于一回路水出口95,以在一回路中创造一个浮力。相应地,管子114可以具有一个约达20英尺(6m)或更大的垂直高度。最好,入口接头46和出口接头48是安置在一个垂直平面内。如图所示,管子114从管板组件50和52水平地延伸,然后弯曲,以在两个管板组件之间形成一个中间的垂直延伸部分。最好,管子114形成如图所示的C形,以允许采用固定的管板,同时容许管子膨胀。同样,这样的一种结构型式将使管子的形状和弯曲的品种数目减至最少。在一种设计中,只需要约27种具有稍微不同的形状和弯曲半径的稍微不同的3/4英寸(1.9cm)的管子成型品种,就满足严格的冷却要求。其他的管子形状和尺寸可以用在其他的一些实施例中,这取决于设计条件。在其他的一些实施例中,在一个管板邻接贮罐侧壁上的贮罐接头和第二个管板邻接贮罐顶板或地板上的贮罐接头的情况下,管子可以是L型或J型的。
热交换器58可以利用制造蒸汽发生器所使用的同样技术来制造。这样,管子114可以由吊挂在顶部支承构件150上的肋板152之间的一些吊架(未示出)来支承。同样,它们可以由侧盖构件138之间的一些水平杆(未示出)来维持其位置。其他的支承结构可以使用。支承管子114的主要目的是在任何可能需要热交换器来满足的事故中维持已知的几何形状。这些事故可以包括地震事件和喷雾器激活。由于热交换器58的短时间运行和其贮罐侧的比较低的流速,管子114的支承就流动诱发的振动和磨损而言是比大多数典型热交换器少担心的。
最好,管子114具有这样一种间距(即,相邻管子的中心之间的距离),它使管板50和52的直径减至最小,因而管板厚度可以减至最小。然而,小的间距可以阻碍贮罐40内的存水经过管子114的自然循环。因而,在本发明的某些实施实例中,管子114的垂直部分可以按照为了便于自然循环所设计的不同间距来安置。在一个推荐实施例中,其中采用3/4英寸(1.9cm)的C形管子,邻接管板50和52的管子114的这部分是按1.5英寸见方(3.8厘米见方)间距安置的,管子114的中间垂直部分是1.5英寸×3.0英寸(3.8cm×7.6cm)矩形间距安置的。在从水平部分到垂直部分的过渡弯曲部分内,间距的变化可以通过延长相邻管排的水平长度增量来安排。
有利的是,在热的管子114和冷的贮罐温度下的管子支承结构112之间的管子不同膨胀可以由C形的弹性变形来调节。另外,垂直的侧向支撑的位置和管子114的水平长度可以设计成可控制弯曲应力至可接受的水平。因而,对于3/4英寸(1.9cm)直径的管子,垂直支撑的间隔和水平管子长度应至少约40英寸(1m),以接受潜在的最大温差530°F(294℃)〔600°F(315℃)的最高设计工艺温度减去70°F(21°)的环境温度〕。在其他的实施例中,可以采用其他的合适的管子布置,以满足其他的设计要求。
有利的是,贯穿壁管板的设计消除了大直径的、高压力的反应堆冷却剂管线(诸如图2中的管道19和20)。这样,图2的管道19可以焊接到热交换器入口88,管道20可以焊接到热交换器出口95。相应地,大管道断裂将大量的能量引入贮罐40的可能性被消除了。3/4英寸(1.9cm)的热交换器管子的破裂(它能够容易地用塞子堵管)将较少的动能引入贮罐中的水,它可以容易地被吸收。
权利要求
1.在核反应堆(3)的冷却剂环路中,安置在贮水罐(12)内的水-水管式热交换器(15)用于将反应堆衰变热传递给贮罐(12)内的水,其中贮罐(12)有两个分隔开的罐接头(46,48),它们限定了开孔;而热交换器有许多管子(114)安置在贮罐(12)内,它们从两个管板组件(50,52)延伸;其特征在于管板组件(50,52)邻接在贮罐接头(46,48)上。
2.权利要求1的热交换器(15),其中管子(114)有一部分按一种间距布置,而另一部分按另一种间距布置。
3.权利要求2的热交换器(15),其中管子(114)按正方形间距从管板组件延伸,而在管板之间按矩形间距延伸。
4.权利要求1的热交换器(15),其中分隔开的管板组件(50,52)是密封焊接到贮罐接头(46,48)上。
5.权利要求1的热交换器(15),其中管板组件(50,52)有裙部(78)处在管板(50,52)和贮罐接头(46,48)之间。
6.权利要求5的热交换器(15),其中管板裙部(78)从管板(50,52)上管子(114)的外围延伸到一个反向弯头,然后从管板(50,52)的外围延伸到贮罐接头(46,48)。
7.权利要求1的热交换器(15),进一步包括水腔封头(86,94)和联箱(86,94)上的通道装置(90);水腔封头(86,94)焊在管板组件(50,52)上,并和核反应堆(3)的冷却剂环路水力上连通;通道装置(90)用于在不排空贮罐(12)的情况下检查管板(50,52)和管板(50,52)上的管子(114)。
全文摘要
核反应堆(3)冷却剂环路中的贮水罐(12)装有管式热交换器(15)。热交换器(15)有管板(50,52)安装在贮罐接头(46,48)上,因此管板(50,52)和管子(114)可以容易地检查和处理。最好,管子(114)按正方形间距从管板(50,52)延伸,然后按矩形间距在管板之间延伸。
文档编号F28D7/06GK1072282SQ9211287
公开日1993年5月19日 申请日期1992年11月7日 优先权日1991年11月8日
发明者詹姆斯·伊·吉莱特, 理查德·斯图尔特·奥尔, 弗·托马斯·约翰逊, 特里·李·舒尔茨 申请人:西屋电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1