空调系统的制作方法

文档序号:4695988阅读:100来源:国知局
专利名称:空调系统的制作方法
技术领域
本发明涉及一种空调系统,尤其是涉及可进行室内取暖的空调系统。
背景技术
一直以来,作为可进行室内取暖的空调系统,有在具有蒸气压缩式制冷剂回路的热源单元上连接放热器、风扇对流式取暖器等室内取暖装置而构成的系统(例如参照专利文献1、2及3)。这种空调系统通过对室内的地面和室内空气进行加热来实现室内的取暖。
另外,作为这种空调系统的热源单元有时使用具有以二氧化碳为制冷剂的制冷剂回路的单元。在这种以二氧化碳为制冷剂的热源单元中,由于可提高压缩机排出侧的制冷剂温度,因此,例如在空调系统构成为将在热源单元的利用侧热交换器中被加热的载热体的热量通过室内取暖装置向室内放出的场合等,能提高室内取暖装置中可用于室内取暖的温度水平。由此,可实现舒适的室内取暖。
专利文献1日本专利特开2003-50050号公报专利文献2日本专利特开2003-172523号公报专利文献3日本专利特开2003-50035号公报发明公开在利用上述空调系统对高气密性住宅内的空气进行调节时,为了维持室内空气环境(以下称为IAQ),需要进行室内的必要最低限度的换气。但是,在冬季等室外空气处于低温的场合(以下称为室外空气温度低时),温度比室内空气温度低的室外空气作为换气用空气向室内供给,因此,产生室内换气所引起的取暖负荷(以下称为换气取暖负荷)。该换气取暖负荷在换气用空气向室内供给而与室内空气混合后,由室内取暖装置进行处理,因此,成为使室内居住者感到因供给低温的换气用空气而引起的不适感(以下称为冷风)的主要原因。尤其是近年来,在高气密性的基础上还附加了高隔热性的高气密及高隔热性住宅逐渐增加,在这种高气密及高隔热性住宅中,虽然因隔热性能提高而可减少取暖负荷的总量,但却不能使维持IAQ所需的换气取暖负荷减少,因此,换气取暖负荷在空调系统处理的取暖负荷总量中所占的比例相对变大。因此,在可进行室内取暖的空调系统中,期望既能处理换气取暖负荷又可防止冷风。
在使用上述以二氧化碳为制冷剂的热源单元时,虽然能提高室内取暖装置中可利用的温度水平,但会使利用侧热交换器的出入口处的温差变小,结果是,热源单元的性能系数(以下称为COP)降低。因此,在使用以二氧化碳为制冷剂的热源单元的、可进行室内取暖的空调系统中,期望提高COP。
本发明所要解决的技术问题是在可进行室内取暖的空调系统中防止为了进行室内换气而向室内供给的换气用空气引起冷风。
第一发明的空调系统,可进行室内取暖,包括热源单元、供气装置、载热体回路。热源单元具有包含压缩机、热源侧热交换器、膨胀机构、利用侧热交换器的蒸气压缩式制冷剂回路,在利用侧热交换器中可对用于室内取暖的载热体进行加热。供气装置将室外空气作为换气用空气向室内供给。载热体回路具有将在利用侧热交换器中被加热的载热体的热量向室内放出的一个以上的室内取暖装置、以及利用在利用侧热交换器中被加热的载热体的热量对换气用空气进行加热的室外空气加热用热交换装置,使载热体在所述室内取暖装置与所述利用侧热交换器之间以及所述室外空气加热用热交换装置与所述利用侧热交换器之间进行循环。
在该空调系统中,由压缩机压缩后排出的高温高压的制冷剂在利用侧热交换器中对载热体进行加热。在该利用侧热交换器中被加热的载热体向一个以上的室内取暖装置输送,将载热体的热量向室内放出来进行室内的取暖,另外,在该利用侧热交换器中被加热的载热体向室外空气加热用热交换装置输送,对通过供气装置作为换气用空气向室内供给的室外空气进行加热。并且,在室内取暖装置及室外空气加热用热交换装置中进行了室内取暖及换气用空气加热后的载热体重新返回到利用侧热交换器中。另一方面,在利用侧热交换器中对载热体加热而冷却的制冷剂由膨胀机构减压,并在热源侧热交换器中被加热而成为低压的制冷剂后,重新吸入到压缩机中。另外,所谓室内取暖装置例如是指放热器、风扇对流式取暖器、地面取暖装置等。这样,在该空调系统中,由于具有室外空气加热用热交换装置,故在进行室内取暖时,可对换气用空气进行加热后再向室内供给。由此,可防止为了进行室内的换气而向室内供给的换气用空气引起冷风,可提高室内的舒适性。
第二发明的空调系统,在第一发明的空调系统中,载热体回路与利用侧热交换器连接,使在利用侧热交换器中被加热的载热体依次向室内取暖装置、室外空气加热用热交换装置供给。
在该空调系统中,载热体回路与利用侧热交换器连接,使在利用侧热交换器中被加热的载热体依次向室内取暖装置、室外空气加热用热交换装置供给,因此,在室内取暖装置中,可利用在利用侧热交换器中被加热后的高温载热体的热量,在室外空气加热用热交换装置中,可利用在室内取暖装置中向室内放热而冷却后的载热体的热量。在此,由于通过供气装置向室内供给的换气用空气的温度比室内空气低,因此,可利用在室内取暖装置中向室内放热而冷却后的载热体对其进行加热。并且,用于在室外空气加热用热交换装置中对向室内供给的换气用空气进行加热的载热体在对换气用空气进行加热而进一步冷却后,返回到利用侧热交换器中。这样,在该空调系统中,将在室内取暖装置中放热而冷却的载热体向室外空气加热用热交换装置供给,用于对向室内供给的换气用空气进行加热,因此,可加大利用侧热交换器的出入口处的温差,提高热源单元的COP。
第三发明的空调系统,在第二发明的空调系统中,载热体回路还具有对室内取暖装置及室外空气加热用热交换装置进行旁通的至少一个旁通载热体回路。
在该空调系统中,载热体回路还具有对室内取暖装置及室外空气加热用热交换装置中的至少一个进行旁通的旁通载热体回路,因此,可根据需要仅向室内取暖装置及室外空气加热用热交换装置中的一部分供给载热体。另外,因为旁通载热体回路具有“至少一个”,故可以分别与室内取暖装置及室外空气加热用热交换装置对应地设置,也可仅与一部分对应地设置,或者也可设置成对室内取暖装置及室外空气加热用热交换装置中的几个集中起来进行旁通的形态。
第四发明的空调系统,在第三发明的空调系统中,旁通载热体回路具有载热体流量调节机构。
在该空调系统中,旁通载热体回路具有载热体流量调节机构,因此,可调节向设有旁通载热体回路的室内取暖装置及室外空气加热用热交换装置中的至少一部分供给的载热体的流量。另外,所谓载热体流量调节机构是指根据需要切断在旁通载热体回路中流动的载热体的电磁阀、或调节在旁通载热体回路中流动的载热体的流量的电动阀等。
第五发明的空调系统,在第一发明的空调系统中,载热体回路由多个分割载热体回路构成,该多个分割载热体回路使载热体在室内取暖装置与利用侧热交换器之间以及/或者室外空气加热用热交换装置与利用侧热交换器之间独立循环。
在该空调系统中,载热体回路由在室内取暖装置及室外空气加热用热交换装置中的至少一个与利用侧热交换器之间独立地使载热体循环的多个分割载热体回路构成,因此,可根据需要仅向室内取暖装置及室外空气加热用热交换装置中的一部分供给载热体。另外,因为分割载热体回路是“在与至少一个之间独立地”,故可以设置成对于室内取暖装置及室外空气加热用热交换装置分别使载热体循环,也可设置成对于室内取暖装置及室外空气加热用热交换装置中的几个集中起来使载热体循环。
第六发明的空调系统,在第五发明的空调系统中,利用侧热交换器由与多个分割载热体回路对应地分割形成的多个分割利用侧热交换器构成。
第七发明的空调系统,在第六发明的空调系统中,热源单元还具有对多个分割利用侧热交换器进行旁通的至少一个旁通制冷剂回路。
在该空调系统中,热源单元还具有对多个分割利用侧热交换器进行旁通的至少一个旁通制冷剂回路,因此,可根据需要仅向多个分割利用侧热交换器中的一部分供给制冷剂。另外,因为旁通制冷剂回路具有“至少一个”,故可以分别与多个分割利用侧热交换器对应地设置,也可仅与一部分对应地设置,或者也可设置成可对多个分割利用侧热交换器中的几个集中起来进行旁通的形态。
第八发明的空调系统,在第七发明的空调系统中,旁通制冷剂回路具有制冷剂流量调节机构。
在该空调系统中,旁通制冷剂回路具有制冷剂流量调节机构,因此,可调节向设有旁通制冷剂回路的多个分割利用侧热交换器中的至少一部分供给的制冷剂的流量。另外,所谓制冷剂流量调节机构是指根据需要切断在旁通制冷剂回路中流动的制冷剂的电磁阀、或调节在旁通制冷剂回路中流动的制冷剂的流量的电动阀等。
第九发明的空调系统,在第五发明至第八发明中任一项的空调系统中,多个分割载热体回路与利用侧热交换器连接,使向室外空气加热用热交换装置供给的载热体的温度在室内取暖装置使用后的载热体的温度以下。
在该空调系统中,多个分割载热体回路与利用侧热交换器连接,使向室外空气加热用热交换装置供给的载热体的温度在室内取暖装置使用后的载热体的温度以下,因此,在室内取暖装置中,可利用在利用侧热交换器中被加热后的高温载热体的热量,在室外空气加热用热交换装置中,可利用温度在室内取暖装置使用后的载热体的温度以下的载热体的热量。在此,由于通过供气装置向室内供给的换气用空气的温度比室内空气低,因此,可利用温度在室内取暖装置中向室内放热而被冷却的载热体的温度以下的载热体对其进行加热。并且,用于在室外空气加热用热交换装置中对向室内供给的换气用空气进行加热的载热体在对换气用空气进行加热而进一步冷却后,返回到利用侧热交换器中。这样,在该空调系统中,将在室内取暖装置中放热而冷却的载热体向室外空气加热用热交换装置供给,用于对向室内供给的换气用空气进行加热,因此,可加大利用侧热交换器的出入口处的温差,提高热源单元的COP。
第十发明的空调系统,在第一发明至第九发明中任一项的空调系统中,室内取暖装置及室外空气加热用热交换装置中的一部分不通过载热体回路地利用在制冷剂回路内流动的制冷剂。
在该空调系统中,不仅可将在热源单元的制冷剂回路内流动的高温高压制冷剂的热量通过在载热体回路中循环的载热体向室内取暖装置及室外空气加热用热交换装置供给,而且可将在制冷剂回路内流动的制冷剂的热量直接向室内放出,或直接对通过供气装置向室内供给的换气用空气进行加热,因此,可实现载热体回路的简单化。
第十一发明的空调系统,在第一发明至第十发明中任一项的空调系统中,载热体回路具有载热体储存容器。
在该空调系统中,载热体回路具有载热体储存容器,因此,可防止载热体回路内循环的载热体因温度变化而体积膨胀造成构成载热体回路的设备破损等不良状况。另外,由于载热体回路保有的载热体量增加,从而整个载热体回路的热容量增大,向室内取暖装置及室外空气加热用热交换装置供给的载热体的温度和返回到利用侧热交换器中的载热体的温度稳定,因此,可改善热源单元的制冷剂回路及载热体回路的控制性。
第十二发明的空调系统,在第一发明至第十一发明中任一项的空调系统中,还包括加湿装置,对由室外空气加热用热交换装置加热后向室内供给的换气用空气进行加湿。
在该空调系统中,可对由室外空气加热用热交换装置加热后向室内供给的换气用空气进行加湿,因此,即使在换气用空气的绝对湿度比室内空气的绝对湿度低时,也可防止因向室内供给换气用空气而使室内变得干燥。
第十三发明的空调系统,在第十二发明的空调系统中,加湿装置具有使水蒸气透过的透湿膜,使向透湿膜供给的水通过透湿膜与换气用空气接触可对换气用空气进行加湿。
在该空调系统中,包括使用了透湿膜的加湿装置,因此,使向透湿膜供给的水通过透湿膜与换气用空气接触可对换气用空气进行加湿。
第十四发明的空调系统,在第十二发明的空调系统中,加湿装置具有可吸收水分、且可通过加热使所吸收的水分脱离的吸湿液,利用换气用空气对吸收了水分的吸湿液进行加热,使水分向换气用空气中脱离,从而可对换气用空气进行加湿。
在该空调系统中,包括使用了吸湿液的加湿装置,因此,利用换气用空气对吸收了水分的吸湿液进行加热,使水分向换气用空气中脱离,从而可对换气用空气进行加湿。
第十五发明的空调系统,在第十四发明的空调系统中,加湿装置使吸湿液吸收从室内向室外排出的排出空气中含有的水分,用于进行换气用空气的加湿。
在该空调系统中,作为被吸湿液吸收的水分利用从室内向室外排出的排出空气中含有的水分,因此,不需向加湿装置供水即可进行换气用空气的加湿。
第十六发明的空调系统,在第十四发明的空调系统中,加湿装置使吸湿液吸收与换气用空气不同的室外空气中含有的水分,用于进行换气用空气的加湿。
在该空调系统中,作为被吸湿液吸收的水分利用与换气用空气不同的室外空气中含有的水分,因此,不需向加湿装置供水即可进行换气用空气的加湿。
第十七发明的空调系统,在第十四发明的空调系统中,加湿装置使吸湿液吸收从室内向室外排出的排出空气和与换气用空气不同的室外空气的混合空气中含有的水分,用于进行换气用空气的加湿。
在该空调系统中,作为被吸湿液吸收的水分利用从室内向室外排出的排出空气和与换气用空气不同的室外空气的混合空气中含有的水分,因此,不需向加湿装置供水即可进行换气用空气的加湿。
第十八发明的空调系统,在第十二发明的空调系统中,加湿装置具有可吸附水分、且可通过加热使所吸附的水分脱离的吸附剂,利用换气用空气对吸附了水分的吸附剂进行加热,使水分向换气用空气中脱离,从而可对换气用空气进行加湿。
在该空调系统中,包括使用了吸附剂的加湿装置,因此,利用换气用空气对吸附了水分的吸附剂进行加热,使水分向换气用空气中脱离,从而可对换气用空气进行加湿。
第十九发明的空调系统,在第十八发明的空调系统中,加湿装置使吸附剂吸附从室内向室外排出的排出空气中含有的水分,用于进行换气用空气的加湿。
在该空调系统中,作为被吸附剂吸附的水分利用从室内向室外排出的排出空气中含有的水分,因此,不需向加湿装置供水即可进行换气用空气的加湿。
第二十发明的空调系统,在第十八发明的空调系统中,加湿装置使吸附剂吸附与换气用空气不同的室外空气中含有的水分,用于进行换气用空气的加湿。
在该空调系统中,作为被吸附剂吸附的水分利用与换气用空气不同的室外空气中含有的水分,因此,不需向加湿装置供水即可进行换气用空气的加湿。
第二十一发明的空调系统,在第十八发明的空调系统中,加湿装置使吸附剂吸附从室内向室外排出的排出空气和与换气用空气不同的室外空气的混合空气中含有的水分,用于进行换气用空气的加湿。
在该空调系统中,作为被吸附剂吸附的水分利用从室内向室外排出的排出空气和与换气用空气不同的室外空气的混合空气中含有的水分,因此,不需向加湿装置供水即可进行换气用空气的加湿。
第二十二发明的空调系统,在第一发明至第二十一发明中任一项的空调系统中,在载热体回路内流动的载热体是水。
在该空调系统中,作为在载热体回路内流动的载热体使用水,因此,可廉价地构成载热体回路。
第二十三发明的空调系统,在第一发明至第二十一发明中任一项的空调系统中,在载热体回路内流动的载热体是在0℃以下也不冻结的盐水。
在该空调系统中,作为在载热体回路内流动的载热体使用在0℃以下也不冻结的盐水,因此,即使在室外空气温度低时,载热体也不会在室外空气加热用热交换装置中冻结,可提高使用室外空气加热用热交换装置对通过供气装置向室内供给的换气用空气进行加热时的可靠性。
第二十四发明的空调系统,在第一发明至第二十三发明中任一项的空调系统中,在制冷剂回路内流动的制冷剂是二氧化碳。
在该空调系统中,作为在热源单元的蒸气压缩式制冷剂回路内流动的制冷剂使用二氧化碳,因此,可提高压缩机排出侧的制冷剂温度,可提高能在室内取暖装置中利用的温度水平。由此,可实现舒适的室内取暖。


图1是本发明一实施例的空调系统的概略构成图。
图2是表示空调系统的动作的温熵图。
图3是表示空调系统的动作的压焓图。
图4是表示本发明一实施例的空调系统的动作的空气线图。
图5是现有技术例的空调系统的概略构成图。
图6是表示现有技术例的空调系统的动作的空气线图。
图7是本发明变形例1的空调系统的概略构成图。
图8是本发明变形例2的空调系统的概略构成图。
图9是本发明变形例3的空调系统的概略构成图。
图10是本发明变形例4的空调系统的概略构成图。
图11是本发明变形例5的空调系统的概略构成图。
图12是本发明变形例6的空调系统的概略构成图。
图13是本发明变形例7的空调系统的概略构成图。
图14是本发明变形例8的空调系统的概略构成图。
图15是本发明变形例9的空调系统的概略构成图。
图16是本发明变形例10的空调系统的概略构成图。
图17是表示本发明变形例10的空调系统的动作的空气线图。
图18是本发明变形例11的空调系统的概略构成图。
图19是本发明变形例12的空调系统的概略构成图。
图20是本发明变形例12的空调系统的概略构成图。
图21是本发明变形例13的空调系统的概略构成图。
图22是本发明变形例13的空调系统的概略构成图。
符号说明101空调系统
102热源单元103供气装置104载热体回路120制冷剂回路121压缩机122载热体-制冷剂热交换器(利用侧热交换器)122a、122b、122c、122d分割载热体-制冷剂热交换器(分割利用侧热交换器)123膨胀机构124热源侧热交换器141放热器(室内取暖装置)142风扇对流式取暖器(室内取暖装置)143地面取暖装置(室内取暖装置)144室外空气加热用热交换装置151、153、154旁通载热体回路151a、153a、154a电磁阀、电动阀(载热体流量调节机构)161、161a、161b、161c载热体储存箱(载热体储存容器)171旁通制冷剂回路171a电磁阀、电动阀(制冷剂流量调节机构)182、183、184、185加湿装置183a、184a、184b透湿膜单元(透湿膜)185a吸附剂具体实施方式
下面参照附图对本发明的空调系统的实施例进行说明。
(1)空调系统的构成图1是本发明一实施例的空调系统101的概略构成图。空调系统101是可通过进行蒸气压缩式制冷循环运转来进行室内取暖的系统。
空调系统101主要包括热源单元102、供气装置103、载热体回路104。
<热源单元>
热源单元102例如设置在室外,主要具有蒸气压缩式制冷剂回路120,该制冷剂回路120包括压缩机121、作为利用侧热交换器的载热体-制冷剂热交换器122、膨胀机构123、热源侧热交换器124,在载热体-制冷剂热交换器122中可对用于建筑物U的室内取暖的载热体进行加热。
压缩机121是由电动机等驱动机构驱动旋转、对低压制冷剂进行压缩并将其作为高温高压的制冷剂排出的压缩机。
膨胀机构123是对从载热体-制冷剂热交换器122流出的制冷剂进行减压的电动膨胀阀。
热源侧热交换器124是使由膨胀机构123减压后的制冷剂与作为热源的水或室外空气进行热交换而蒸发的热交换器。
载热体-制冷剂热交换器122是使由压缩机121压缩后排出的高温高压制冷剂与在载热体回路104内循环的载热体进行热交换从而对载热体进行加热的热交换器。另外,在本实施例中,载热体-制冷剂热交换器122以使载热体和制冷剂形成对流的形态形成供载热体及制冷剂流动的流路。
在此,作为热源单元102的制冷剂回路120的工作制冷剂可以使用HCFC制冷剂、HFC制冷剂、HC制冷剂或二氧化碳,但在本实施例中,使用临界温度低的二氧化碳,可实现压缩机121排出侧的制冷剂压力在制冷剂的临界压力以上的超临界制冷循环。在作为制冷剂使用二氧化碳的超临界制冷循环中,由于压缩机121排出侧的制冷剂压力上升,从而可提高压缩机121排出侧的制冷剂温度、即载热体-制冷剂热交换器122的制冷剂入口处的制冷剂温度。另外,流入载热体-制冷剂热交换器122的制冷剂由压缩机121压缩到临界压力以上,故在载热体-制冷剂热交换器122中,超临界状态的制冷剂对载热体进行加热。
<供气装置>
供气装置103是向建筑物U的室内供给室外空气(图1中以OA表示)的装置,在本实施例中,主要具有从室外将室外空气作为换气用空气向室内供给的供气口(未图示);从室内将室内空气(图1中以RA表示)向室外排出的排气口(未图示);以及设在排气口、从室内将室内空气的一部分作为排出空气(图1中以EA表示)向室外排出的排气风扇131。并且,排气风扇131运转时,可进行室内的换气。另外,在本实施例中,使用排气风扇131进行室内的换气,但例如也可通过在供气口设置供气风扇来进行室内的换气,或者通过设置排气风扇和供气风扇双方来进行室内的换气。
<载热体回路>
载热体回路104具有将在载热体-制冷剂热交换器122中被加热的载热体的热量向室内放出的作为室内取暖装置的放热器141、风扇对流式取暖器142及地面取暖装置143;以及利用在载热体-制冷剂热交换器122中被加热后的载热体的热量对通过供气装置103向室内供给的换气用空气进行加热的室外空气加热用热交换装置144,是使载热体在放热器141、风扇对流式取暖器142、地面取暖装置143及室外空气加热用热交换装置144与载热体-制冷剂热交换器122之间进行循环的回路。
放热器141例如设置在室内,是主要将载热体的热量通过辐射传热向室内放出的装置,在本实施例中,具有载热体通过时使其与周围的室内空气进行热交换的放热器用热交换器141a(在此,在放热器用热交换器141a中进行了热交换后的室内空气在图1中用SA1表示)。
风扇对流式取暖器142例如设置在室内,是主要将载热体的热量通过强制对流传热向室内放出的装置,在本实施例中,其具有载热体通过时使其与周围的空气进行热交换的对流器用热交换器142a;以及将室内空气向对流器用热交换器142a供给、且将在对流器用热交换器142a中进行热交换后的室内空气作为供给空气(图1用SA1′表示)向室内供给的对流器用风扇142b。
地面取暖装置143例如配置在建筑物U的地面下,是主要具有将载热体的热量通过设于地面的传热面板向室内放出的地面取暖用配管143a的装置。
室外空气加热用热交换装置144例如配置在室外,是主要具有利用载热体的热量对通过供气装置103向室内供给的换气用空气进行加热的室外空气加热用热交换器144a的装置(在此,在室外空气加热用热交换器144a中进行热交换后向室内供给的供给空气在图1中用SA3表示)。
并且,在本实施例中,载热体回路104与载热体-制冷剂热交换器122连接,使在载热体-制冷剂热交换器122中被加热后的载热体依次向放热器141的放热器用热交换器141a、风扇对流式取暖器142的对流器用热交换器142a、地面取暖装置143的地面取暖用配管143a、室外空气加热用热交换装置144的室外空气加热用热交换器144a供给。具体而言,载热体回路104构成串联连接的单一的载热体回路,即,在载热体-制冷剂热交换器122中与制冷剂进行热交换而被加热后的载热体从载热体-制冷剂热交换器122的载热体出口依次通过放热器用热交换器141a、对流器用热交换器142a、地面取暖用配管143a、室外空气加热用热交换器144a后,通过与室外空气加热用热交换器144a的载热体出口连接的载热体循环泵145返回到载热体-制冷剂热交换器122的载热体入口。即,载热体回路104以从需要最高温的载热体的放热器用热交换器141a到可利用最低温的载热体的室外空气加热用热交换器144a的顺序进行连接。
载热体循环泵145连接在室外空气加热用热交换器144a的载热体出口与载热体-制冷剂热交换器122的载热体入口之间,由电动机等驱动机构驱动旋转,是使载热体在放热器用热交换器141a、对流器用热交换器142a、地面取暖用配管143a及室外空气加热用热交换器144a与载热体-制冷剂热交换器122之间循环的泵。
在此,作为在载热体回路104内流动的载热体可使用水和盐水。在作为载热体使用水时,具有构成载热体回路104的设备和配管都可比较廉价的优点。另外,在作为载热体使用盐水时,为了即使在室外空气温度低时,也使载热体不在室外空气加热用热交换装置144(具体而言为室外空气加热用热交换器144a)中冻结,希望具有在0℃以下也不冻结的特性。作为这种盐水例如有氯化钙水溶液、氯化钠水溶液、氯化镁水溶液等。
(2)空调系统的动作下面参照图1~图4对本实施例的空调系统101的动作进行说明。在此,图2是表示空调系统101的动作的温熵图。图3是表示空调系统101的动作的压焓图。图4是表示空调系统101的动作的空气线图。
首先,载热体循环泵145起动,使载热体在载热体回路104内循环。然后,使热源单元102的压缩机121起动。于是,吸入到压缩机121中的低压制冷剂(参照图1~图3中所示的点Rc)由压缩机121压缩后排出,成为高温高压的制冷剂(参照图1~图3中所示的点Ri)。该高温高压的制冷剂流入载热体-制冷剂热交换器122中对载热体进行加热,本身被冷却而成为低温高压的制冷剂(参照图1~图3中所示的点Ro3)。该在载热体-制冷剂热交换器122中因载热体的加热而被冷却的制冷剂由膨胀机构123减压后成为低温低压的气液两相状态的制冷剂(参照图1~图3中所示的点Re3)。该气液两相状态的制冷剂在热源侧热交换器124中由水或室外空气等热源加热后蒸发,成为低温低压的气态制冷剂(参照图1~图3中所示的点Rc)。并且,该低温低压的气态制冷剂重新吸入压缩机121中。
在此,在载热体回路104内循环的载热体从载热体入口流入载热体-制冷剂热交换器122中(参照图1、图2及图4中所示的点Wi3),在载热体-制冷剂热交换器122中,与由压缩机121压缩后排出的高温高压制冷剂进行热交换,从而被加热(参照图1、图2及图4中所示的点Wo)。并且,在载热体-制冷剂热交换器122中被加热后的高温载热体流入放热器141的放热器用热交换器141a中,将载热体的热量向室内放出(具体而言,对放热器用热交换器141a周围的室内空气进行加热),载热体本身被冷却而温度降低(例如图2所示,从约70℃降到约65℃)。此时,室内空气(参照图4所示的点RA)在放热器用热交换器141a中被加热到图4所示的点SA1的状态。
接着,从放热器用热交换器141a流出的载热体流入风扇对流式取暖器142的对流器用热交换器142a中,将载热体的热量向室内放出(具体而言,对由对流器用风扇142b供给的室内空气进行加热),载热体本身被冷却而温度降低(例如图2所示,从约65℃降到约55℃)。此时,室内空气(参照图1所示的点RA)通过对流器用热交换器142a作为供给空气SA1′(参照图1)向室内供给。
接着,从对流器用热交换器142a流出的载热体流入地面取暖装置143的地面取暖用配管143a中,将载热体的热量向室内放出(具体而言,由地面取暖用配管143a对地面进行加热),载热体本身被冷却而温度降低(例如图2所示,从约55℃降到约40℃)。
接着,从地面取暖用配管143a流出的载热体流入室外空气加热用热交换装置144的室外空气加热用热交换器144a中,利用载热体的热量对由供气装置103供给到室内的换气用空气进行加热,载热体本身被冷却而温度降低(例如图2所示,从约40℃降到约5℃)。此时,换气用空气(参照图4中所示的点OA,约-10℃)由室外空气加热用热交换器144a加热到图4所示的点SA3的状态(在图4中为约20℃)。另一方面,室内空气RA的温度通过放热器141、风扇对流式取暖器142及地面取暖装置143进行的取暖运转而被加热到约20℃(参照图4中所示的点RA)。因此,即使由该室外空气加热用热交换器144a加热后的换气用空气向室内供给而与室内空气RA混合,室内空气的温度也几乎不产生变化。
并且,从室外空气加热用热交换器144a流出的载热体通过载热体循环泵145重新流入载热体-制冷剂热交换器122中(参照图1、图2及图4中所示的点Wi3)。
(3)空调系统的特征本实施例的空调系统101具有下述特征。
(A)作为现有的空调系统901,如图5所示,包括与本实施例的空调系统101相同的热源单元102、供气装置103、以及具有放热器141、风扇对流式取暖器142及载热体循环泵145的载热体回路904。在这种空调系统901中,由于载热体回路904不具有室外空气加热用热交换装置144,故在进行室内取暖时,换气用空气(图5中用OA表示)通过供气装置103直接向室内供给。因此,如图6所示,室内空气(参照图6中所示的点RA)和换气用空气(参照图6中所示的点OA)混合(参照图6中所示的点MA),从而室内空气的温度变得比通过放热器141、风扇对流式取暖器142及地面取暖装置143进行的取暖运转而被加热的室内空气的温度低(在图4中为约12℃)。因此,为了进行室内的换气而向室内供给的换气用空气会导致产生冷风。
但是,在本实施例的空调系统101中,具有室外空气加热用热交换装置144,因此,在进行室内取暖时,如图4所示,可在对通过供气装置103向室内供给的作为换气用空气的室外空气OA加热后,再将其作为供给空气SA3向室内供给,因此,可防止为了进行室内的换气而向室内供给的换气用空气引起冷风,可提高室内的舒适性。
(B)在现有的空调系统901中,由于载热体回路904不具有地面取暖装置143及室外空气加热用热交换装置144,因此,如图2、图3及图5所示,在载热体-制冷剂热交换器122中通过与制冷剂进行热交换而被加热的载热体在载热体回路104内循环,从点Wo的状态变为点Wi1的状态,并重新返回载热体-制冷剂热交换器122中。与此同时,如图2及图3所示,制冷剂在制冷剂回路120内循环,从压缩机121吸入侧的点Rc的状态依次经过与点Wo对应的点Ri的状态、与点Wi1对应的点Ro1的状态、点Re1的状态,并重新吸入到压缩机121中。在此,如图3所示,现有空调系统901中的热源单元102的COP(以蒸发侧为基准)是将点Rc→点Ri→点Ro1→点Re1→点Rc的制冷循环中的蒸发侧焓差Δh1的值与相当于压缩机121的消耗动力的焓差Δhc的值相除得到的值(=Δh1/Δhc)。
另一方面,在本实施例的空调系统101中,载热体回路104具有地面取暖装置143及室外空气加热用热交换装置144,且与载热体-制冷剂热交换器122连接,使在载热体-制冷剂热交换器122中加热的载热体依次向放热器141、风扇对流式取暖器142、地面取暖装置143、室外空气加热用热交换装置144供给,因此,如图1、图2及图3所示,在载热体-制冷剂热交换器122中通过与制冷剂进行热交换而被加热的载热体在载热体回路104内循环,从点Wo的状态变为点Wi3的状态,并重新返回载热体-制冷剂热交换器122中。与此同时,如图2及图3所示,制冷剂在制冷剂回路120内循环,从压缩机121吸入侧的点Rc的状态依次经过与点Wo对应的点Ri的状态、与点Wi3对应的点Ro3的状态、点Re3的状态,并重新吸入到压缩机121中。因此,在放热器141、风扇对流式取暖器142及地面取暖装置143中,可利用在载热体-制冷剂热交换器122中被加热后的高温载热体的热量,在室外空气加热用热交换装置144中,可利用在放热器141、风扇对流式取暖器142及地面取暖装置143中向室内放热而冷却后(参照图1及图2中所示的点Wi2)的载热体的热量。在此,由于通过供气装置103向室内供给的换气用空气(图1中用OA表示)的温度比室内空气(图1中用RA表示)低,因此,可利用在放热器141、风扇对流式取暖器142及地面取暖装置143中向室内放热而冷却后的载热体对其进行加热。并且,用于在室外空气加热用热交换装置144中对向室内供给的换气用空气进行加热的载热体在对换气用空气进行加热而进一步冷却后(参照图1及图2中所示的点Wi3),返回到载热体-制冷剂热交换器122中。这样,在空调系统101中,将在放热器141、风扇对流式取暖器142及地面取暖装置143中放热而冷却的载热体向室外空气加热用热交换装置144供给,用于对向室内供给的换气用空气进行加热,因此,与空调系统901相比,可加大载热体-制冷剂热交换器122的出入口处的温差(即,点Wo状态下的载热体温度与点Wi3状态下的载热体温度的温差)。由此,如图3所示,由于本实施例的空调系统101中的热源单元102的COP(以蒸发侧为基准)是将点Rc→点Ri→点Ro3→点Re3→点Rc的制冷循环中的蒸发侧焓差Δh3的值与相当于压缩机121的消耗动力的焓差Δhc的值相除得到的值(=Δh3/Δhc),故与现有的不具有室外空气加热用热交换装置144的空调系统901相比,COP提高。尤其是在本实施例的空调系统101中,除室外空气加热用热交换装置144外还具有地面取暖装置143,因此,与现有的空调系统901相比,可进一步加大载热体-制冷剂热交换器122的出入口处的温差和COP。
(C)在本实施例的空调系统101中,在作为在载热体回路104内流动的载热体使用水时,可廉价地构成载热体回路104。另外,在作为在载热体回路104内流动的载热体使用在0℃以下不冻结的盐水时,即使在室外空气温度低时,载热体也不会在室外空气加热用热交换装置144中冻结,可提高使用室外空气加热用热交换装置144对通过供气装置103向室内供给的换气用空气进行加热时的可靠性。
(D)在本实施例的空调系统101中,作为在热源单元102的蒸气压缩式制冷剂回路120内流动的制冷剂使用二氧化碳,因此,可提高压缩机121排出侧的制冷剂温度,可提高能在放热器141、风扇对流式取暖器142、地面取暖装置143及室外空气加热用热交换装置144中利用的温度水平。由此,可实现舒适的室内取暖。
(4)变形例1在上述空调系统101中,载热体回路104也可具有对放热器141、风扇对流式取暖器142、地面取暖装置143及室外空气加热用热交换装置144中至少一个进行旁通的旁通载热体回路。例如,在图7所示的不具有风扇对流式取暖器142的载热体回路104中,也可分别对应放热器141、地面取暖装置143及室外空气加热用热交换装置144设置旁通载热体回路151、153、154。由此,可根据需要仅向放热器141、地面取暖装置143及室外空气加热用热交换装置144中的一部分供给载热体。
并且,在这些旁通载热体回路151、153、154中分别设置有作为载热体流量调节机构的电磁阀151a、电动阀153a、电磁阀154a。由此,旁通载热体回路151、154可根据需要切断在各旁通载热体回路151、154中流动的载热体,可调节向放热器141及室外空气加热用热交换装置144供给的载热体的流量。另外,旁通载热体回路153可调节在旁通载热体回路153中流动的载热体的流量,可高精度地调节向地面取暖装置143供给的载热体的流量。
另外,如上所述,旁通载热体回路可以分别与放热器141、地面取暖装置143及室外空气加热用热交换装置144对应地设置,也可仅与放热器141、地面取暖装置143及室外空气加热用热交换装置144中的一部分对应地设置,或者也可设置成对放热器141、地面取暖装置143及室外空气加热用热交换装置144中的几个集中起来进行旁通的形态。另外,对于设在旁通载热体回路中的阀的种类,可根据各旁通载热体回路所需的载热体的流量调节精度等进行选择。
(5)变形例2在上述空调系统101中,放热器141、风扇对流式取暖器142、地面取暖装置143及室外空气加热用热交换装置144中的一部分也可不通过载热体回路104地利用在制冷剂回路120内流动的制冷剂。例如,在图8所示的不具有风扇对流式取暖器142的空调系统101中,地面取暖装置143及室外空气加热用热交换装置144通过在载热体回路104内循环的载热体来利用在热源单元102的制冷剂回路120内流动的制冷剂的热量,但对于放热器141,可以使由压缩机121压缩后排出的高温高压制冷剂流入放热器141的放热器用热交换器141a中,将制冷剂的热量直接向室内放出。由此,可实现载热体回路104的简单化。
另外,即使对于放热器141以外的地面取暖装置143和室外空气加热用热交换装置144,也可使在制冷剂回路120内流动的制冷剂流入地面取暖用配管143a和室外空气加热用热交换器144a中而利用制冷剂的热量。另外,在本变形例的空调系统101中,也可设置变形例1中的旁通载热体回路。
(6)变形例3在上述空调系统101中,也可在载热体回路104中设置载热体储存箱。例如,在图9所示的具有与变形例1相同的旁通载热体回路151、153、154的空调系统101中,也可在载热体循环泵145的吸入侧设置载热体储存箱161。由此,可防止因在载热体回路104内循环的载热体的温度变化引起的体积膨胀造成构成载热体回路104的设备破损等不良状况。另外,由于载热体回路104保有的载热体量增加,从而整个载热体回路104的热容量增大,向放热器141、地面取暖装置143及室外空气加热用热交换装置144供给的载热体的温度和返回到载热体-制冷剂热交换器122中的载热体的温度稳定,因此,可改善热源单元102及载热体回路104的控制性。
(7)变形例4在上述空调系统101中,载热体回路104也可由在放热器141、风扇对流式取暖器142、地面取暖装置143及室外空气加热用热交换装置144中的至少一个与载热体-制冷剂热交换器122之间独立地使载热体循环的多个分割载热体回路构成。
例如,在图10所示的不具有风扇对流式取暖器142的空调系统101中,载热体回路104包括在放热器141与载热体-制冷剂热交换器122之间独立地使载热体循环的第一分割载热体回路104a;在地面取暖装置143与载热体-制冷剂热交换器122之间独立地使载热体循环的第二分割载热体回路104b;以及在室外空气加热用热交换装置144与载热体-制冷剂热交换器122之间独立地使载热体循环的第三分割载热体回路104c。在此,分割载热体回路104a、104b、104c分别具有载热体循环泵145a、145b、145c。由此,可根据需要仅向放热器141、地面取暖装置143及室外空气加热用热交换装置144中的一部分供给载热体。
并且,第二分割载热体回路104b与载热体-制冷剂热交换器122连接,使向地面取暖装置143供给的载热体的温度在放热器141使用后的载热体的温度以下,第三分割载热体回路104c与载热体-制冷剂热交换器122连接,使向室外空气加热用热交换装置144供给的载热体的温度在地面取暖装置143使用后的载热体的温度以下。由此,在放热器141中,可利用在载热体-制冷剂热交换器122中由压缩机121压缩后排出的制冷剂(参照图2、图3及图10中所示的点Ri)加热后的载热体的热量(参照图2、图3及图10中所示的点Wo及Wi1),在地面取暖装置143中,可利用在载热体-制冷剂热交换器122中由与第一分割载热体回路104a中流动的载热体进行热交换后的制冷剂(参照图2、图3及图10中所示的点Ro1)加热后的、温度在放热器141使用后的载热体的温度以下的载热体的热量(参照图2、图3及图10中所示的点Wi1及Wi2),在室外空气加热用热交换装置144中,可利用在载热体-制冷剂热交换器122中由与第二分割载热体回路104b中流动的载热体进行热交换后的制冷剂(参照图2、图3及图10中所示的点Ro2)加热后的、温度在地面取暖装置143使用后的载热体的温度以下的载热体的热量(参照图2、图3及图10中所示的点Wi2及Wi3)。与此同时,如图2及图3所示,制冷剂在制冷剂回路120内循环,从压缩机121吸入侧的点Rc的状态依次经过与点Wo对应的点Ri的状态、与点Wi3对应的点Ro3的状态、点Re3的状态,并重新吸入到压缩机121中。
这样,在本变形例的空调系统101中,将温度在因在放热器141和地面取暖装置143中放热而冷却的载热体的温度以下的载热体向室外空气加热用热交换装置144供给,用于对向室内供给的换气用空气进行加热,因此,与上述实施例及变形例中的空调系统相同,可加大载热体-制冷剂热交换器122的出入口处的温差,可提高热源单元102的COP。
(8)变形例5在与上述变形例4相同的空调系统101中,如图11所示,载热体-制冷剂热交换器122也可由与分割载热体回路104a、104b、104c对应地分割的作为分割利用侧热交换器的三个分割载热体-制冷剂热交换器122a、122b、122c构成。
此时,在放热器141中,可利用在第一分割载热体-制冷剂热交换器122a中由压缩机121压缩后排出的制冷剂(参照图2、图3及图11中所示的点Ri)加热后的载热体的热量(参照图2、图3及图11中所示的点Wo及Wi1),在地面取暖装置143中,可利用在第一分割载热体-制冷剂热交换器122a中由与第一分割载热体回路104a中流动的载热体进行热交换后的制冷剂(参照图2、图3及图11中所示的点Ro1)加热后的、温度在放热器141使用后的载热体的温度以下的载热体的热量(参照图2、图3及图11中所示的点Wi1及Wi2),在室外空气加热用热交换装置144中,可利用在第二分割载热体-制冷剂热交换器122b中由与第二分割载热体回路104b中流动的载热体进行热交换后的制冷剂(参照图2、图3及图11中所示的点Ro2)加热后的、温度在地面取暖装置143使用后的载热体的温度以下的载热体的热量(参照图2、图3及图11中所示的点Wi2及Wi3)。与此同时,如图2及图3所示,制冷剂在制冷剂回路120内循环,从压缩机121吸入侧的点Rc的状态依次经过与点Wo对应的点Ri的状态、与点Wi1对应的点Ro1的状态、与点Wi2对应的点Ro2的状态、与点Wi3对应的点Ro3的状态、点Re3的状态,并重新吸入到压缩机121中。
(9)变形例6在上述变形例5的空调系统101中,载热体回路104分别与放热器141、地面取暖装置143及室外空气加热用热交换装置144对应地被分割成分割载热体回路104a、104b、104c,载热体-制冷剂热交换器122也被分割成与分割载热体回路104a、104b、104c对应的分割载热体-制冷剂热交换器122a、122b、122c,但并不限定于此,例如在图12所示的不具有风扇对流式取暖器142的空调系统101中,也可将载热体回路104分割成包含放热器141专用的第一载热体循环泵145a在内的第一分割载热体回路104a、以及包含地面取暖装置143和室外空气加热用热交换装置144共用的第二载热体循环泵145d在内的第二分割载热体回路104d,且将载热体-制冷剂热交换器122分割成放热器141专用的第一分割载热体-制冷剂热交换器122a、以及地面取暖装置143和室外空气加热用热交换装置144共用的第二分割载热体-制冷剂热交换器122d。
(10)变形例7在上述变形例5、6的空调系统101中,制冷剂回路120还可具有对分割载热体-制冷剂热交换器进行旁通的至少一个旁通制冷剂回路。例如,在图13所示的具有与变形例5相同的分割载热体-制冷剂热交换器122a、122b、122c的制冷剂回路120中,可以与第一分割载热体-制冷剂热交换器122a对应地设置旁通制冷剂回路171。由此,可根据需要仅向分割载热体-制冷剂热交换器122b、122c供给制冷剂。
并且,在旁通制冷剂回路171中设置有作为载热体流量调节机构的电磁阀171a。由此,旁通制冷剂回路171可根据需要切断在各旁通载热体回路171中流动的载热体,可调节向第一分割载热体-制冷剂热交换器122a供给的制冷剂的流量。
另外,如上所述,旁通制冷剂回路可以仅与第一分割载热体-制冷剂热交换器122a对应地设置,也可分别与分割载热体-制冷剂热交换器122a、122b、122c对应地设置,或者也可设置成对分割载热体-制冷剂热交换器122a、122b、122c中的几个集中起来进行旁通的形态。另外,对于设在旁通制冷剂回路中的阀的种类,可根据各旁通制冷剂回路所需的载热体的流量调节精度等进行选择,例如也可取代电磁阀而使用电动阀,此时可高精度地调节向旁通制冷剂回路供给的制冷剂的流量。
(11)变形例8
在上述变形例5~7的空调系统101中,放热器141、风扇对流式取暖器142、地面取暖装置143及室外空气加热用热交换装置144中的一部分也可不通过载热体回路104地利用在制冷剂回路120内流动的制冷剂。例如,在图14所示的与变形例5相同的不具有风扇对流式取暖器142的空调系统101中,地面取暖装置143及室外空气加热用热交换装置144通过在分割载热体回路104b、104c内循环的载热体来利用在热源单元102的制冷剂回路120内流动的制冷剂的热量,但对于放热器141,可以使由压缩机121压缩后排出的高温高压制冷剂流入放热器141的放热器用热交换器141a中,将制冷剂的热量直接向室内放出。由此,可实现载热体回路104的简单化。
另外,即使对于放热器141以外的地面取暖装置143和室外空气加热用热交换装置144,也可使在制冷剂回路120内流动的制冷剂流入地面取暖用配管143a和室外空气加热用热交换器144a中而利用制冷剂的热量。
(12)变形例9在上述变形例5~7的空调系统101中,也可在载热体回路104中设置载热体储存箱。例如,在图15所示的具有与变形例5相同的分割载热体回路104a、104b、104c的空调系统101中,也可在载热体循环泵145a、145b、145c的吸入侧分别设置载热体储存箱161a、161b、161c。由此,可防止载热体回路104内循环的载热体因温度变化而体积膨胀造成分割载热体回路104a、104b、104c的设备破损等不良状况。另外,由于分割载热体回路104a、104b、104c保有的载热体量增加,从而各分割载热体回路104a、104b、104c的热容量增大,向放热器141、地面取暖装置143及室外空气加热用热交换装置144供给的载热体的温度和返回到分割载热体-制冷剂热交换器122a、122b、122c中的载热体的温度稳定,因此,可改善热源单元102及分割载热体回路104a、104b、104c的控制性。
(13)变形例10在上述实施例及变形例的空调系统101中,具有室外空气加热用热交换装置144,因此,可防止为了进行室内的换气而向室内供给的换气用空气引起冷风,可提高室内的舒适性。但是,在换气用空气的绝对湿度比室内空气的绝对湿度低时,由于换气用空气的供给有时会使室内变得干燥。因此,在本变形例中,在上述实施例及变形例的空调系统101的基础上,还设置有对由室外空气加热用热交换装置144加热后向室内供给的换气用空气进行加湿的加湿装置。
例如,在图16所示的与图1相同的空调系统101中,设置有具有对由室外空气加热用热交换装置144加热后向室内供给的换气用空气喷水的喷雾嘴182a的加湿装置182、以及向加湿装置182的喷雾嘴182a供水的供水配管181。
此时,在室外空气加热用热交换装置144中与载热体进行热交换而被加热的换气用空气(图16中用SA3表示)在向室内供给时,先导入到加湿装置182中,由从加湿装置182的喷雾嘴182a喷出的水加湿后再向室内供给(图16中用SA3′表示)。由此,在本变形例的空调系统101中,可进行换气用空气的加湿,因此,即使在换气用空气的绝对湿度比室内空气的绝对湿度低时,通过向室内供给换气用空气也可防止室内变得干燥。
另外,由于从喷雾嘴182a喷出的水的蒸发,由加湿装置182加湿后的换气用空气的温度比在室外空气加热用热交换装置144中加热后的温度低。但是,在本变形例的空调系统101中,通过预先考虑到加湿装置182中的水的蒸发而增加室外空气加热用热交换装置144中的换气用空气的加热量,从而例如图17所示,将换气用空气(图17中用SA3表示)通过室外空气加热用热交换装置144加热到比没有设置加湿装置182的图1的空调系统中的换气用空气(图4中用SA3表示)的温度(在图4中为约20℃)高的温度(在图17中为约30℃),从而即使换气用空气的温度因加湿装置182中的水的蒸发而变低,也可使向室内供给的换气用空气(图17中用SA3′表示)的温度(在图17中为约20℃)接近室内空气(图17中用RA表示)的温度。并且,换气用空气SA3′的绝对湿度也基本与室内空气RA的绝对湿度(在图17中相当于相对湿度的50%)相同。因此,在本变形例的空调系统101中,可在通过室外空气加热用热交换装置144及加湿装置182将与室内空气相比低温、低湿度的换气用空气加热及加湿到与室内空气相同的温度及湿度状态后,再向室内供给,从而可进一步提高室内的舒适性。
另外,作为加湿装置也可取代喷雾嘴而使用空气洗净器。
(14)变形例11在上述变形例10的空调系统101中,对由室外空气加热用热交换装置144加热后向室内供给的换气用空气进行加湿的加湿装置采用使用了喷雾嘴或空气洗净器的装置,但并不限定于此,也可采用使用了具有透过水蒸气的性质的透湿膜的装置。例如,在图18所示的不具有风扇对流式取暖器142的空调系统101中,设置有包括具有多个管状透湿膜的透湿膜单元183a的加湿装置183;以及向加湿装置183的透湿膜单元183a供水的供水配管181。在此,在透湿膜单元183a中设置有供由室外空气加热用热交换装置144加热后向室内供给的换气用空气经过透湿膜外部的流路。另外,向透湿膜内部导入向透湿膜单元183a供给的水,使向透湿膜供给的水通过透湿膜与换气用空气接触,从而可对换气用空气进行加湿。作为透湿膜可使用聚四氟乙烯(PTFE)等。
此时,使向加湿装置183的透湿膜单元183a的透湿膜供给的水通过透湿膜与换气用空气接触,从而可对换气用空气进行加湿,因此,与变形例10相同,即使在换气用空气的绝对湿度比室内空气的绝对湿度低时,也可防止因向室内供给换气用空气导致室内变得干燥。
并且,在本变形例的空调系统101中,通过预先考虑到加湿装置183中的水的蒸发而增加室外空气加热用热交换装置144中的换气用空气的加热量,从而与变形例10相同,可在将与室内空气相比低温、低湿度的换气用空气加热及加湿到与室内空气相同的温度及湿度状态后,再向室内供给,可进一步提高室内的舒适性。
(15)变形例12在上述变形例10、11的空调系统101中,采用了通过供水配管181向加湿装置供水的所谓供水式加湿装置,但并不限定于此,也可采用使用了既可吸收水分又可通过加热使吸收的水分脱离的吸湿液的装置。
例如,在图19所示的不具有风扇对流式取暖器142的空调系统101中,设置有加湿装置184,该加湿装置184包括具有多个管状透湿膜的第一及第二透湿膜单元184a、184b;以及使吸湿液在第一透湿膜单元184a与第二透湿膜单元184b之间循环的吸湿液循环泵184c。
具体而言,在第一透湿膜单元184a中设置有供由室外空气加热用热交换装置144加热后向室内供给的换气用空气经过透湿膜外部的流路。另外,向第一透湿膜单元184a的透湿膜内部导入利用吸湿液循环泵184c进行循环的吸湿液,使向透湿膜供给的吸湿液通过透湿膜与换气用空气接触,利用换气用空气对吸收了水分的吸湿液进行加热,使水分向换气用空气中脱离,从而可对换气用空气进行加湿。在第二透湿膜单元184b中设置有供从室内向室外排出的排出空气经过透湿膜外部的流路。另外,向第二透湿膜单元184b的透湿膜内部导入利用吸湿液循环泵184c进行循环的吸湿液,使向透湿膜供给的吸湿液通过透湿膜与排出空气接触,可使吸湿液吸收排出空气中含有的水分。作为透湿膜可使用聚四氟乙烯(PTFE)等。另外,作为吸湿液可使用氯化锂水溶液等。
并且,在该加湿装置184中,进行通过吸湿液循环泵184c使吸湿液依次经由第二透湿膜单元184b、第一透湿膜单元184a进行循环的运转。在该状态下,在排出空气通过第二透湿膜单元184b时,通过第二透湿膜单元184b的透湿膜使吸附液吸收排出空气中含有的水分。该含有水分的吸湿液向第一透湿膜单元184a输送。接着,在由室外空气加热用热交换装置144加热后的换气用空气通过第一透湿膜单元184a时,通过透湿膜对从第二透湿膜单元184b输送到第一透湿膜单元184a的吸湿液进行加热,从而通过吸湿膜使水分从该被加热的吸湿液中脱离到换气用空气中,因而可对换气用空气进行加湿后向室内供给。
这样,在本变形例的空调系统101中,由于具有使用了吸湿液的加湿装置184,故利用换气用空气对吸收了水分的吸湿液进行加热,使水分脱离到换气用空气中,从而可对换气用空气进行加湿。另外,在空调系统101中,作为吸湿液吸收的水分利用从室内向室外排出的排出空气中含有的水分,因此,不需向加湿装置184供水即可进行换气用空气的加湿。
另外,如图20所示,为了扩大加湿装置184的湿度调节范围等,也可使从室内向室外排出的排出空气(在图20的第二透湿膜单元184b的左侧用RA表示)和与换气用空气不同的室外空气(在图20的第二透湿膜单元184b的左侧用OA表示)的混合空气经过第二透湿膜单元184b,通过第二透湿膜单元184b的透湿膜使吸湿液吸收水分,该水分在第一透湿膜单元184a中通过透湿膜从吸湿液脱离到换气用空气中。
另外,在本变形例中,使用了吸湿液的加湿装置184通过具有透湿膜的透湿膜单元184a、184b进行吸湿液和空气之间的水分交换,但并不限定于此,也可使吸湿液和空气直接接触。另外,在图20所示的加湿装置184中,使从室内向室外排出的排出空气及与换气用空气不同的室外空气双方经过第二透湿膜单元184b,但也可仅使与换气用空气不同的室外空气经过。
(16)变形例13在上述变形例12的空调系统101中,作为不需供水即可加湿的加湿装置采用使用了可吸收水分、且可通过加热使吸收的水分脱离的吸湿液的装置,但也可采用使用了可吸附水分、且可通过加热使吸附的水分脱离的吸附剂的装置。
例如,在图21所示的不具有风扇对流式取暖器142的空调系统101中,设置有加湿装置185,该加湿装置185具有担载有吸附剂的干燥剂转动体185a。
具体而言,在加湿装置185中设置有供由室外空气加热用热交换装置144加热后向室内供给的换气用空气经过干燥剂转动体185a的一部分的流路。另外,在干燥剂转动体185a的另一部分设置有供从室内向室外排出的排出空气经过的流路。并且,干燥剂转动体185a可由电动机等驱动机构驱动旋转,换气用空气及排出空气可流向干燥剂转动体185a的各部分。作为吸附剂可使用沸石、硅胶、活性氧化铝等。
并且,在该加湿装置185中,在排出空气经过干燥剂转动体185a的除换气用空气经过的部分以外的部分时,排出空气中的水分被干燥剂转动体185a的吸附剂所吸附。并且,使干燥剂转动体185a旋转,移动到吸附了排出空气中的水分的部分与供换气用空气经过的流路对应的位置。于是,换气用空气经过吸附了排出空气中的水分的干燥剂转动体185a的一部分,利用由室外空气加热用热交换装置144加热后的换气用空气对干燥剂转动体185a的吸附了水分的部分进行加热,水分从该被加热的吸附剂中向换气用空气中脱离,从而可对换气用空气进行加湿后向室内供给。此时,通过干燥剂转动体185a的旋转,处于与干燥剂转动体185a的供换气用空气经过的流路对应的位置的干燥剂转动体185a的一部分移动到与干燥剂转动体185a的供排出空气经过的流路对应的位置,吸附排出空气中的水分。反复进行该动作,可连续地对换气用空气进行加湿。
这样,在本变形例的空调系统101中,由于具有使用了吸附剂的加湿装置185,故利用换气用空气对吸附了水分的吸附剂进行加热,使水分脱离到换气用空气中,从而可对换气用空气进行加湿。另外,在空调系统101中,作为吸附剂吸附的水分利用了从室内向室外排出的排出空气中含有的水分,因此,不需向加湿装置185供水即可进行换气用空气的加湿。
另外,如图22所示,为了扩大加湿装置185的湿度调节范围等,也可使从室内向室外排出的排出空气(在图21的干燥剂转动体185a的左侧用RA表示)和与换气用空气不同的室外空气(在图21的干燥剂转动体185a的左侧用OA表示)的混合空气经过干燥剂转动体185a,由干燥剂转动体185a的吸附剂吸附水分,并使水分脱离到换气用空气中。
另外,在图22所示的加湿装置185中,使从室内向室外排出的排出空气及与换气用空气不同的室外空气双方经过干燥剂转动体185a,但也可仅使与换气用空气不同的室外空气经过。
(17)其他实施例以上参照附图对本发明的实施例进行了说明,但具体的构成并不限定于这些实施例,在不脱离本发明主旨的范围内可进行变更。
例如,在上述实施例的空调系统中,作为热源单元采用具有取暖专用的制冷剂回路的热源单元,但也可采用可切换制冷和取暖地进行运转的热源单元。
产业上的可利用性采用本发明的话,在可进行室内取暖的空调系统中,可防止为了进行室内换气而向室内供给的换气用空气引起冷风。
权利要求
1.一种空调系统(101),可进行室内取暖,其特征在于包括热源单元(102),具有包含压缩机(121)、热源侧热交换器(124)、膨胀机构(123)、利用侧热交换器(122)的蒸气压缩式制冷剂回路(120),在所述利用侧热交换器中可对用于室内取暖的载热体进行加热;供气装置(103),将室外空气作为换气用空气向室内供给;以及载热体回路(104),具有将在所述利用侧热交换器中被加热的载热体的热量向室内放出的一个以上的室内取暖装置(141、142、143)、以及利用在所述利用侧热交换器中被加热的载热体的热量对所述换气用空气进行加热的室外空气加热用热交换装置(144),使载热体在所述室内取暖装置与所述利用侧热交换器之间以及所述室外空气加热用热交换装置与所述利用侧热交换器之间进行循环。
2.如权利要求1所述的空调系统(101),其特征在于,所述载热体回路(104)与所述利用侧热交换器(122)连接,使在所述利用侧热交换器中被加热的载热体依次向所述室内取暖装置(141、142、143)、所述室外空气加热用热交换装置(144)供给。
3.如权利要求2所述的空调系统(101),其特征在于,所述载热体回路(104)还具有对所述室内取暖装置(141、142、143)及所述室外空气加热用热交换装置(144)进行旁通的至少一个旁通载热体回路(151、153、154)。
4.如权利要求3所述的空调系统(101),其特征在于,所述旁通载热体回路(151、153、154)具有载热体流量调节机构(151a、153a、154a)。
5.如权利要求1所述的空调系统(101),其特征在于,所述载热体回路(104)由多个分割载热体回路(104a、104b、104c、104d)构成,该多个分割载热体回路(104a、104b、104c、104d)使载热体在所述室内取暖装置(141、142、143)与所述利用侧热交换器(122)之间以及/或者所述室外空气加热用热交换装置(144)与所述利用侧热交换器(122)之间独立循环。
6.如权利要求5所述的空调系统(101),其特征在于,所述利用侧热交换器(122)由与所述多个分割载热体回路(104a、104b、104c、104d)对应地分割形成的多个分割利用侧热交换器(122a、122b、122c、122d)构成。
7.如权利要求6所述的空调系统(101),其特征在于,所述热源单元(102)还具有对所述多个分割利用侧热交换器(122a、122b、122c、122d)进行旁通的至少一个旁通制冷剂回路(171)。
8.如权利要求7所述的空调系统(101),其特征在于,所述旁通制冷剂回路(171)具有制冷剂流量调节机构(171a)。
9.如权利要求5至8中任一项所述的空调系统(101),其特征在于,所述多个分割载热体回路(104a、104b、104c、104d)与所述利用侧热交换器(122)连接,使向所述室外空气加热用热交换装置(144)供给的载热体的温度在所述室内取暖装置(141、142、143)使用后的载热体的温度以下。
10.如权利要求1至9中任一项所述的空调系统(101),其特征在于,所述室内取暖装置(141、142、143)及所述室外空气加热用热交换装置(144)中的一部分不通过所述载热体回路(104)地利用在所述制冷剂回路(120)内流动的制冷剂。
11.如权利要求1至10中任一项所述的空调系统(101),其特征在于,所述载热体回路(104)具有载热体储存容器(161、161a、161b、161c)。
12.如权利要求1至11中任一项所述的空调系统(101),其特征在于,还包括加湿装置(182、183、184、185),对由所述室外空气加热用热交换装置(144)加热后向室内供给的所述换气用空气进行加湿。
13.如权利要求12所述的空调系统(101),其特征在于,所述加湿装置(183、184)具有使水蒸气透过的透湿膜(183a、184a),使向所述透湿膜供给的水通过所述透湿膜与所述换气用空气接触可对所述换气用空气进行加湿。
14.如权利要求12所述的空调系统(101),其特征在于,所述加湿装置(184)具有可吸收水分、且可通过加热使所吸收的水分脱离的吸湿液,利用所述换气用空气对吸收了水分的所述吸湿液进行加热,使水分向所述换气用空气中脱离,从而可对所述换气用空气进行加湿。
15.如权利要求14所述的空调系统(101),其特征在于,所述加湿装置(184)使所述吸湿液吸收从室内向室外排出的排出空气中含有的水分,用于进行所述换气用空气的加湿。
16.如权利要求14所述的空调系统(101),其特征在于,所述加湿装置(184)使所述吸湿液吸收与所述换气用空气不同的室外空气中含有的水分,用于进行所述换气用空气的加湿。
17.如权利要求14所述的空调系统(101),其特征在于,所述加湿装置(184)使所述吸湿液吸收从室内向室外排出的排出空气和与所述换气用空气不同的室外空气的混合空气中含有的水分,用于进行所述换气用空气的加湿。
18.如权利要求12所述的空调系统(101),其特征在于,所述加湿装置(185)具有可吸附水分、且可通过加热使所吸附的水分脱离的吸附剂(185a),利用所述换气用空气对吸附了水分的所述吸附剂进行加热,使水分向所述换气用空气中脱离,从而可对所述换气用空气进行加湿。
19.如权利要求18所述的空调系统(101),其特征在于,所述加湿装置(185)使所述吸附剂(185a)吸附从室内向室外排出的排出空气中含有的水分,用于进行所述换气用空气的加湿。
20.如权利要求18所述的空调系统(101),其特征在于,所述加湿装置(185)使所述吸附剂(185a)吸附与所述换气用空气不同的室外空气中含有的水分,用于进行所述换气用空气的加湿。
21.如权利要求18所述的空调系统(101),其特征在于,所述加湿装置(185)使所述吸附剂(185a)吸附从室内向室外排出的排出空气和与所述换气用空气不同的室外空气的混合空气中含有的水分,用于进行所述换气用空气的加湿。
22.如权利要求1至21中任一项所述的空调系统(101),其特征在于,在所述载热体回路(104)内流动的载热体是水。
23.如权利要求1至21中任一项所述的空调系统(101),其特征在于,在所述载热体回路(104)内流动的载热体是在0℃以下也不冻结的盐水。
24.如权利要求1至23中任一项所述的空调系统(101),其特征在于,在所述制冷剂回路(120)内流动的制冷剂是二氧化碳。
全文摘要
在可进行室内取暖的空调系统中,可防止为了进行室内换气而向室内供给的换气用空气引起冷风。空调系统(101)包括热源单元(102)、供气装置(103)、载热体回路(104)。热源单元(102)在载热体—制冷剂热交换器(122)中对用于室内取暖的载热体进行加热。供气装置(103)将室外空气作为换气用空气向室内供给。载热体回路(104)具有将在载热体—制冷剂热交换器(122)中被加热的载热体的热量向室内放出的一个以上的室内取暖装置(141、142、143)、以及利用在载热体—制冷剂热交换器(122)中被加热的载热体的热量对换气用空气进行加热的室外空气加热用热交换装置(144),使载热体在室内取暖装置(141、142、143)及室外空气加热用热交换装置(144)与载热体—制冷剂热交换器(122)之间进行循环。
文档编号F24D3/00GK1942719SQ20058001150
公开日2007年4月4日 申请日期2005年4月28日 优先权日2004年4月28日
发明者吉见学 申请人:大金工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1