用于空调系统的压力调整装置和方法

文档序号:4624692阅读:246来源:国知局
专利名称:用于空调系统的压力调整装置和方法
技术领域
本发明涉及空调技术领域,具体地,涉及一种用于空调系统的压力调整装置和方法。
背景技术
多联机(或室外机拖多台室内机的空调系统,后续内容中均只提及多联机)在进行超常规高落差连接、且室外机在室内机上面的情况下,机组进行制冷运转时,由于室内外机之间的高落差使液体管路里的冷媒在进入室内机节流阀前,产生较大的液柱压力。在高温制冷条件下,如果该液柱压力不经减压处理,液冷媒在室内机电子膨胀阀前的压力就会超过冷媒系统的设计压力而发生危险。由于当前城市建筑用地越来越稀缺,高层建筑将会越来越多,这些建筑的高度很多都会超过100米,而目前大多数多联机只能满足室内外机高落差在50米以内的安装使用要求,无法满足这类高层建筑的安装使用要求。为了满足这些高层建筑对多联机产品的安装使用需求,急需在现行多联机组上进行创新,解决多联机组在超常规高落差(50米以上)安装条件下系统容易出现危险的问题。一般解决这个问题的方法是在室外机组的液管上增加一个压力调整装置,通过对压力调整装置的控制将室内机电子膨胀阀前的压力降到安全压力范围内,从而使机组在安全运行。在室外机内部设置压力调整装置,虽然可以解决室外机在室内机上方的超常规高落差连接情况下,室内机电子膨胀阀前压力超过最大设计压力的问题。但是这样就会给制造增加麻烦,需要生产普通高落差型号和超常规高落差型号两种室外机组,也不利于制造成本、运输成本及仓储成本的控制,且安装方式不灵活。针对相关技术中普通多联机室外机中没有压力调整装置,无法实现室内外机之间的超常规高落差连接的问题,目前尚未提出有效的解决方案。

发明内容
针对相关技术中普通多联机室外机中没有压力调整装置,无法实现室内外机之间的超常规高落差连接的问题,本发明提出一种用于空调系统的压力调整装置和方法,能够使多联机外机不用区分普通高落差型号与超常规高落差型号,根据安装场所的高落差情况,只需选择是否使用外置压力调整装置模块即可。本发明的技术方案是这样实现的根据本发明的一个方面,提供了一种用于空调系统的压力调整装置,其特征在于,包括输入管、压力传感器、通信单元、流量调节单元和输出管,其中,输入管与空调系统的室外机的冷媒排出管连接;压力传感器用于检测室外机的冷媒排出管处的实际压力值;通信单元用于将压力传感器检测的实际压力值通知给空调系统,并接收来自空调系统的控制信号;流量调节单元用于根据来自空调系统的控制信号调整室外机冷媒流出的流量,并将流量调整后的冷媒通过输出管排出。其中,流量调节单元包括至少一个膨胀阀,在膨胀阀的数量为多个的情况下,该多个膨胀阀并联连接;并且,多个膨胀阀的开度在控制信号的控制下逐个或同时变化。该流量调节单元还进一步包括至少一个电阀门,电阀门具有开启状态和关闭状态,并且至少一个电阀门与至少一个膨胀阀并联;至少一个电阀门中的部分或全部在控制信号的控制下处于开启状态或关闭状态。该压力调整装置可以进一步包括储液罐,连接在流量调节单元与输出管之间,用于存储流量调节单元输出的冷媒,并将存储的冷媒中的液体部分经由输出管输出。该压力调整装置还可以进一步包括温度传感器,用于检测室外机的冷媒排出管处冷媒的实际温度;并且,通信单元进一步用于将压力传感器检测的实际温度值通知给压力调整装置,并接收来自压力调整装置的控制信号。预定的压力阈值通过以下公式获得Plm = Pmax-Pk ;其中,Plm为预定的压力阈值,Pmax为空调系统的最大设计压力,其中,Pk =AP+Py,并且,ΔΡ= pgH, P为室外机采用的冷媒在最大冷凝压力下饱和液体的密度,g为重力加速度,H为室外机与室内机之间的落差高度,Py为参数调节余量,并且Py ^ Okpa0根据本发明的另一个方面,提供了一种用于空调系统的压力调整方法,其特征在于,该压力调整方法包括压力传感器用于检测室外机的冷媒排出管处的实际压力值,其中,输入管与空调系统的室外机的冷媒排出管连接;通信单元将压力传感器检测的实际压力值通知给空调系统,并接收来自空调系统的控制信号;流量调节单元根据来自空调系统的控制信号调整室外机冷媒流出的流量,并将流量调整后的冷媒通过输出管排出。
其中,该流量调节单元包括至少一个膨胀阀,在膨胀阀的数量为多个的情况下,该多个膨胀阀并联连接;并且,在调整室外机冷媒流出的流量时,多个膨胀阀的开度在控制信号的控制下逐个或同时变化。该流量调节单元进一步包括至少一个电阀门,电阀门具有开启状态和关闭状态,并且至少一个电阀门与至少一个膨胀阀并联;并且,在调整室外机冷媒流出的流量时,至少一个电阀门中的部分或全部在控制信号的控制下处于开启状态或关闭状态。将流量调整后的冷媒通过输出管排出包括流量调节单元输出的冷媒将冷媒输出至储液罐,储液罐存储流量调节单元输出的冷媒,并将存储的冷媒中的液体部分经由输出管输出,其中,储液罐连接在流量调节单元与输出管之间。该压力调整方法还进一步包括通过温度传感器检测室外机的冷媒排出管处冷媒的实际温度;通信单元将温度传感器检测的实际温度通知给空调系统;通信单元接收来自空调系统的控制信号,其中,空调系统根据温度传感器检测的实际温度值以及压力传感器检测的实际压力值发送控制信号,其中,在实际温度高于预定的温度阈值的情况下,表示冷媒的过冷度不足,并且控制信号用于指示减小流量调节单元的开度。其中,预定的压力阈值通过以下公式获得Plm = Pmax-Pk ;其中,Plm为预定的压力阈值,Pmax为空调系统的最大设计压力,其中,Pk =AP+Py,并且,ΔΡ= pgH, P为室外机采用的冷媒在最大冷凝压力下饱和液体的密度,g为重力加速度,H为室外机与室内机之间的落差高度,Py为参数调节余量,并且Py ^ Okpa0本发明通过将压力调整装置从超常规高落差室外机中分离出来,设计成外置的压力调整装置模块,使室外机只需生产一种普通型号,压力调整装置模块作为单独产品可以下定单采购。在需要使用压力调整装置的安装场合,只需将压力调整装置模块外接到室外机上即可,可以有效提高制造效率,降低制造、运输和仓储成本,并且这样就可以使多联机产品制造规格更加统一,使用范围更广,安装更加方便灵活。


为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图I是根据本发明实施例的用于空调系统的压力调整装置的框图;图2是根据本发明实施例的用于空调系统的压力调整装置的具体结构实例的框图;图3是根据本发明实施例的用于空调系统的压力调整装置的另一具体结构实例的框图;
图4是根据本发明实施例的用于空调系统的压力调整装置的再一具体结构实例的框图;图5是根据本发明实施例的用于空调系统的压力调整方法的流程图;图6是根据本发明实施例的用于空调系统的压力调整方法中压力判断和开度调整过程的流程图;图7是根据本发明实施例的用于空调系统的压力调整方法中温度判断和开度调整过程的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。根据本发明的实施例,提供了一种用于空调系统的压力调整装置。如图I所示,该空调系统的压力调整装置包括输入管11、压力传感器12、通信单元13、流量调节单元14和输出管15,其中,输入管11与空调系统的室外机的冷媒排出管(未示出)连接;压力传感器12用于检测室外机的冷媒排出管处的实际压力值;通信单元13用于将压力传感器检测的实际压力值通知给空调系统,并接收来自空调系统的控制信号,使该控制信号能够控制压力调整装置;流量调节单元14用于根据来自空调系统的控制信号调整室外机冷媒流出的流量,并将流量调整后的冷媒通过输出管15排出。其中,该流量调节单元14包括至少一个膨胀阀,在膨胀阀的数量为多个的情况下,则这些多个膨胀阀是并联连接的;并且,这些多个膨胀阀的开度在控制信号的控制下逐个或同时变化,通过开度调整来调节冷媒排出管的压力。该流量调节单元14还进一步包括至少一个电阀门(例如,也称为电磁阀),电阀门具有开启状态和关闭状态,在膨胀阀开度范围不满足调节需要时,通过开、关辅助膨胀阀对冷媒排出管的压力进行调节,并且至少一个电阀门与至少一个膨胀阀并联;至少一个电阀门中的部分或全部在控制信号的控制下处于开启状态或关闭状态。例如,当膨胀阀的口径足够大的时候,可以控制电阀门处于关闭状态或者不设置电阀门。此外,通信单元13接收到的控制信号用于通过以下方式控制流量调节单元14的开度当Pl < Plm时,增大压力调整装置中的至少一个膨胀阀的开度,如果所有膨胀阀的开度达到最大并且仍然满足Pl < Plm时,则使部分或全部电阀门处于开启状态,并调整至少一个膨胀阀的开度以使Pl = Plm ;当Pl > Plm时,减小至少一个膨胀阀的开度,如果所有膨胀阀的开度达到最小并且仍然满足Pl > Plm时,则使部分或全部电阀门处于关闭状态,并调整至少一个膨胀阀的开度以使Pl = Plm;
其中,膨胀阀和电阀门的初始状态由设计人员根据系统的特点设定。并且,Pl为实际压力值,Plm为预定的压力阈值。该压力调整装置还进一步包括储液罐(未示出),连接在流量调节单元14与输出管15之间,用于存储流量调节单元14输出的冷媒,并将存储的冷媒中的液体部分经由输出管15输出。例如,在通过冷凝器冷凝后的液态制冷剂过冷度不足时,液体制冷剂因压力调整装置降压节流后会形成气液混合状态制冷剂,由于储液罐的输入管和输出管都可以位于储液罐的底部,所以通过该储液罐可以避免因气液混合态的制冷剂流到室内侧造成各室内机制冷效果不均衡的问题,可以保证只有液态的冷媒流向室内机。
如图2所示,空调系统中可以包括压缩机,排气管、吸气管、气液分离器、压力传感器Pd(不同于压力调整装置中的压力传感器P1)、油分离器、四通阀、冷凝器、节流装置、EEV,在压力调整装置(该装置为外置减压装置)中,包括膨胀阀(例如,可以是电子膨胀阀EEVJ1)、电阀门(例如,可以是电磁阀SVJ)、压力传感器Pl以及储液罐,电阀门和电子膨胀阀的数量可以是一个或多个,并且,在电子膨胀阀的口径较大时,可以不安装电阀门。在另一实施例中,该压力调整装置还进一步包括温度传感器,用于检测室外机的冷媒排出管处冷媒的实际温度;并且,该通信单元13进一步用于将温度传感器检测的实际温度值通知给空调系统(例如,可以是室外机),并接收来自空调系统(例如,室外机)的控制信号,空调系统会进行如下判断在温度传感器检测的实际温度值高于预定的温度阈值的情况下,输出控制信号给通信单元,以减小流量调节单元14的开度,其中,在实际温度高于预定的温度阈值的情况下,表示冷媒的过冷度不足。如图3所示,在另一实例中,空调系统中可以包括过冷却器和EEVJ2,并且,在压力调整装置中,可以进一步包括温度传感器。在图3所示的实例中,由于室外机组采用了过冷却器,在制冷运转时,可以通过过冷却器将液管进一步过冷,取得足够的过冷度使Tl < Pl_Temp (Tl为进入压力调整装置时的液管温度、Pl_Temp为Pl压力对应的饱和温度),使液管中的制冷剂即使经过压力调整装置减压也不会节流成气液混合状态,不会出现气液混合态制冷剂进入室内机的情况,因此该情况下可以不使用储液罐。此外,在另一实例中,如图4所示,也可以同时使用储液罐和温度传感器,从而更好地避免气液混合的冷媒流入室内机。另外,可选地,预定的压力阈值通过以下公式获得Plm = Pmax-Pk ;其中,Plm为预定的压力阈值,Pmax为空调系统的最大设计压力,其中,Pk =AP+Py,并且,ΔΡ= pgH, P为室外机采用的冷媒在最大冷凝压力下饱和液体的密度,g为重力加速度,H为室外机与室内机之间的落差高度,Py为参数调节余量,并且Py ^ Okpa0应当注意,在一个空调系统中,室外机的数量也可以是多个,此时,每个室外机都可以对应多个室内机,而每个室外机可以对应地连接设置一个压力调整装置,压力传感器与该室外机对应的多个室内机连接,其工作原理同上。根据本发明的另一个方面,提供了一种用于空调系统的压力调整方法。根据本发明实施例的用于空调系统的压力调整方法包括步骤S501,压力传感器用于检测室外机的冷媒排出管处的实际压力值,其中,输入管与空调系统的室外机的冷媒排出管连接;步骤S503,通信单元将压力传感器检测的实际压力值通知给空调系统,并接收来自空调系统的控制信号;步骤S505,流量调节单元根据来自空调系统的控制信号调整室外机冷媒流出的流量,并将流量调整后的冷媒通过输出管排出。其中,该流量调节单元包括至少一个膨胀阀,在膨胀阀的数量为多个的情况下,该多个膨胀阀并联连接;
并且,在调整室外机冷媒流出的流量时,多个膨胀阀的开度在控制信号的控制下逐个或同时变化。此外,该流量调节单元进一步包括至少一个电阀门,电阀门具有开启状态和关闭状态,并且至少一个电阀门与至少一个膨胀阀并联;并且,在调整室外机冷媒流出的流量时,至少一个电阀门中的部分或全部在控制信号的控制下处于开启状态或关闭状态。例如,当膨胀阀的口径足够大的时候,甚至可以考虑不设置电阀门,而如果膨胀阀的口径很小,可以设置多个膨胀阀和/或设置一个或多个电阀门。将流量调整后的冷媒通过输出管排出包括流量调节单元输出的冷媒将冷媒输出至储液罐,储液罐存储流量调节单元输出的冷媒,并将存储的冷媒中的液体部分经由输出管输出,其中,储液罐连接在流量调节单元与输出管之间。该压力调整方法还进一步包括通过温度传感器检测室外机的冷媒排出管处冷媒的实际温度;通信单元将温度传感器检测的实际温度通知给空调系统;通信单元接收来自空调系统的控制信号,其中,空调系统根据温度传感器检测的实际温度值以及压力传感器检测的实际压力值发送控制信号,其中,在实际温度高于预定的温度阈值的情况下,表示冷媒的过冷度不足,并且控制信号用于指示减小流量调节单元的开度。其中,预定的压力阈值通过以下公式获得Plm = Pmax-Pk ;其中,Plm为预定的压力阈值,Pmax为空调系统的最大设计压力,其中,Pk =AP+Py,并且,ΔΡ= pgH, P为室外机采用的冷媒在最大冷凝压力下饱和液体的密度,g为重力加速度,H为室外机与室内机之间的落差高度,Py为参数调节余量,并且Py ^ Okpa0如图6所示,空调系统根据上述设置的参数判断并调整膨胀阀(例如,EEVJ1)和电阀门(例如,电磁阀SVJ)的过程如下首先,确认室外机安装在室内机上方;其次,根据系统特点设定SVJ和EEVJl的初始状态(可以由系统计算,也可以由操作人员人工设定),以及减压控制参数Pk和系统最大设计压力Pmax,并且计算目标控制压力Plm = Pmax-Pk ;最后,当制冷运转时,检测压力调整装置中实际压力P1,与目标控制压力Plm进行比较
当Pl = Plm时,SVJ和EEVJl保持当前状态。当Pl关Plm时,若Pl <Plm,按照Pl = Plm的目标将压力调整装置中EEVJl逐渐开大(通过输出控制信号到压力调整装置的通信单元来进行控制),如果EEVJl开到最大仍然Pl < Plm,开启SVJ后再进行EEVJl开度控制(通过输出控制信号到压力调整装置的通信单元来进行控制);若Pl > Plm时,按照Pl =Plm的目标逐渐关小EEVJl开度,如果EEVJl关到最小仍无法达到控制目标,关掉SVJ后再进行EEVJl开度控制(通过输出控制信号到压力调整装置的通信单元来进行控制)。可选地,该压力调整方法还可以进一步包括通过温度传感器检测室外机的冷媒排出管处冷媒的实际温度;
并且,在温度传感器检测的实际温度值高于预定的温度阈值的情况下,空调系统将输出控制信号以减小流量调节单元的开度,其中,在实际温度高于所述预定的温度阈值的情况下,表示冷媒的过冷度不足。例如,如图7所示,在根据检测的温度进行控制时,空调系统会进行以下处理过程首先,确认室外机安装在室内机上方;其次,根据系统特点设定SVJ和EEVJl的初始状态(可以由系统计算,也可以由操作人员人工设定),以及减压控制参数Pk和系统最大设计压力Pmax,并且计算目标控制压力Plm = Pmax-Pk和目标温度Tlm = Pl_Temp-Tm,最后,当制冷运转时,检测压力调整装置中实际压力Pl和实际温度Tl与目标控制压力Plm和 目标温度Tlm进行比较。当Pl = Plm时,SVJ和EEVJl保持当前状态。当Pl关Plm时,若Pl <Plm,按照Pl = Plm的目标将压力调整装置中EEVJl逐渐开大、如果EEVJl开到最大仍然Pl < Plm,开启SVJ后再进行EEVJl开度控制;若Pl > Plm时,按照Pl = Plm的目标逐渐关小EEVJl开度,如果EEVJl关到最小仍无法达到控制目标,关掉SVJ后再进行EEVJl开度控制。当Tl = Tlm时,EEVJ2保持当前状态。当Tl关Tlm时,按照Tl = Tlm的目标控制EEVJ2开度当Tl < Tlm时,按照Tl=Tlm的目标将EEVJ2逐渐关小;当Tl > Tlm时,按照Tl = Tlm的目标逐渐开大EEVJ2开度。如果通过冷凝器冷凝后的液态制冷剂过冷度足够大,可以满足Tl <Pl_Temp,室外机组中没有过冷却器也可以采用该压力调整装置。其中,空调系统除了可以通过输出控制信号来控制EEVJ2开度之外,还可以通过输出控制信号来控制电阀门的开或关。并且,在控制流量调节单元的开度时,空调系统可以综合考虑压力传感器检测到的压力以及温度传感器检测到的温度。综上所述,借助于本发明的上述技术方案,通过在室外机安装在室内机上方的超常规高落差(50米以上)安装情况,可通过选择采用本发明的压力调整装置和压力调整方法,在普通多联机外机上,外接本发明的压力调整装置,以满足用户的使用要求。同样,在常规高落差范围内安装的机组中,也可以采用本发明实现压力调整的作用,使系统运行更加安全。以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种用于空调系统的压力调整装置,其特征在于,包括输入管、压力传感器、通信单元、流量调节单元和输出管,其中, 所述输入管与所述空调系统的室外机的冷媒排出管连接; 所述压力传感器用于检测所述室外机的冷媒排出管处的实际压力值; 所述通信单元用于将压力传感器检测的实际压力值通知给所述空调系统,并接收来自所述空调系统的控制信号; 所述流量调节单元用于根据来自所述空调系统的所述控制信号调整所述室外机冷媒流出的流量,并将流量调整后的冷媒通过所述输出管排出。
2.根据权利要求I所述的压力调整装置,其特征在于,所述流量调节单元包括至少一个膨胀阀,在膨胀阀的数量为多个的情况下,所述多个膨胀阀并联连接; 并且,所述多个膨胀阀的开度在所述控制信号的控制下逐个或同时变化。
3.根据权利要求2所述的压力调整装置,其特征在于,所述流量调节单元进一步包括至少一个电阀门,所述电阀门具有开启状态和关闭状态,并且所述至少一个电阀门与所述至少一个膨胀阀并联; 并且,所述至少一个电阀门中的部分或全部在所述控制信号的控制下处于开启状态或关闭状态。
4.根据权利要求I所述的压力调整装置,其特征在于,进一步包括 储液罐,连接在所述流量调节单元与所述输出管之间,用于存储所述流量调节单元输出的冷媒,并将存储的所述冷媒中的液体部分经由所述输出管输出。
5.根据权利要求I所述的压力调整装置,其特征在于,进一步包括 温度传感器,用于检测所述室外机的冷媒排出管处冷媒的实际温度; 并且,所述通信单元进一步用于将压力传感器检测的实际温度值通知给所述压力调整装置,并接收来自所述压力调整装置的控制信号。
6.根据权利要求I所述的压力调整装置,其特征在于,所述预定的压力阈值通过以下公式获得Plm = Pmax-Pk ; 其中,Plm为所述预定的压力阈值,Pmax为所述空调系统的最大设计压力,其中,Pk =AP+Py,并且,ΛΡ= PgH, P为所述室外机采用的冷媒在最大冷凝压力下饱和液体的密度,g为重力加速度,H为所述室外机与室内机之间的落差高度,Py为参数调节余量,并且Py ^ Okpa。
7.一种用于空调系统的压力调整方法,其特征在于,包括 压力传感器用于检测所述室外机的冷媒排出管处的实际压力值,其中,所述输入管与所述空调系统的室外机的冷媒排出管连接; 通信单元将压力传感器检测的实际压力值通知给所述空调系统,并接收来自所述空调系统的控制信号; 流量调节单元根据来自所述空调系统的所述控制信号调整所述室外机冷媒流出的流量,并将流量调整后的冷媒通过所述输出管排出。
8.根据权利要求7所述的压力调整方法,其特征在于,所述流量调节单元包括至少一个膨胀阀,在膨胀阀的数量为多个的情况下,所述多个膨胀阀并联连接;并且,在调整所述室外机冷媒流出的流量时,所述多个膨胀阀的开度在所述控制信号的控制下逐个或同时变化。
9.根据权利要求8所述的压力调整方法,其特征在于,所述流量调节单元进一步包括至少一个电阀门,所述电阀门具有开启状态和关闭状态,并且所述至少一个电阀门与所述至少一个膨胀阀并联; 并且,在调整所述室外机冷媒流出的流量时,所述至少一个电阀门中的部分或全部在所述控制信号的控制下处于开启状态或关闭状态。
10.根据权利要求7所述的压力调整方法,其特征在于,将流量调整后的冷媒通过所述输出管排出包括 所述流量调节单元输出的冷媒将冷媒输出至储液罐,所述储液罐存储所述流量调节单元输出的冷媒,并将存储的所述冷媒中的液体部分经由所述输出管输出,其中,所述储液罐连接在所述流量调节单元与所述输出管之间。
11.根据权利要求7所述的压力调整方法,其特征在于,进一步包括 通过温度传感器检测所述室外机的冷媒排出管处冷媒的实际温度; 所述通信单元将所述温度传感器检测的所述实际温度通知给所述空调系统; 所述通信单元接收来自所述空调系统的控制信号,其中,所述空调系统根据所述温度传感器检测的实际温度值以及所述压力传感器检测的所述实际压力值发送控制信号,其中,在所述实际温度高于所述预定的温度阈值的情况下,表示所述冷媒的过冷度不足,并且所述控制信号用于指示减小所述流量调节单元的开度。
12.根据权利要求7所述的压力调整方法,其特征在于,所述预定的压力阈值通过以下公式获得Plm = Pmax-Pk ; 其中,Plm为所述预定的压力阈值,Pmax为所述空调系统的最大设计压力,其中,Pk =AP+Py,并且,ΛΡ= PgH, P为所述室外机采用的冷媒在最大冷凝压力下饱和液体的密度,g为重力加速度,H为所述室外机与室内机之间的落差高度,Py为参数调节余量,并且Py ^ Okpa。
全文摘要
本发明公开了一种用于空调系统的压力调整装置和方法,该方法输入管、压力传感器、通信单元、流量调节单元和输出管,其中,输入管与空调系统的室外机的冷媒排出管连接;压力传感器用于检测室外机的冷媒排出管处的实际压力值;通信单元用于将压力传感器检测的实际压力值通知给空调系统,并接收来自空调系统的控制信号;流量调节单元用于根据来自空调系统的控制信号调整室外机冷媒流出的流量,并将流量调整后的冷媒通过输出管排出。本发明通过将压力调整装置从超常规高落差室外机中分离出来,设计成外置的压力调整装置模块,可以使多联机产品制造规格更加统一,使用范围更广,安装更加方便灵活。
文档编号F24F11/02GK102635927SQ20121012650
公开日2012年8月15日 申请日期2012年4月26日 优先权日2012年4月26日
发明者何建奇, 卢大海, 国德防, 毛守博 申请人:海尔集团公司, 青岛海尔空调电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1