空气分离的制作方法

文档序号:4769941阅读:474来源:国知局
专利名称:空气分离的制作方法
技术领域
本发明涉及一种分离空气的方法。
通过精馏进行空气分离实际上是众所周知的。精馏是一种在其中下降的液流与上升的蒸气流之间进行物质交换,使得上升的蒸气流中富集待分离混合物中更容易挥发的成分(氮),下降的液流富集待分离混合物中更不容易挥发的成分(氧)的方法。
特别地,在一个包含高压塔和低压塔的精馏塔装置中分离已经在主热交换器中冷却的空气是已知的。在所述高压塔中进行初始分离,结果在其底部形成富氧液体馏分,在其顶部形成氮蒸气馏分。所述氮蒸气馏分被冷凝。一部分冷凝物为所述高压塔提供回流,另一部分冷凝物为低压塔提供回流。从所述高压塔中排出富氧液体流,使其通过膨胀装置,通常是阀,进入所述低压塔。这里它可以被分离成纯的或不纯的氧和氮馏分。氮和氧产物一般从所述低压塔中排出,并且返回通过所述主热交换器与第一压缩空气流进行逆流热交换。通常通过与从所述低压塔中排出的氮气产物流的间接热交换使在所述膨胀装置上游的富氧液流过冷。这种过冷减少了在所述富氧液流膨胀时形成的闪蒸气体量。结果,在所述低压塔中低于引入富氧液流的那些区域可以获得更高的回流比,从而促进所述低压塔的高效率运行。此外,所述过冷有提高通过所述过冷器的氮产物流温度的作用。这趋于具有减小在所述主热交换器中被冷却的空气流与被加热的产物流之间温度差的优点,从而导致更有效的热交换。但是,增加过冷器确实增加了所述空气分离装置的复杂性。
例如,EP-A-0 848 220在图8中表示了一种空气分离装置,其中,使从所述高压塔中取出的富氧液流在所述主热交换器中过冷。US-A-5275 004公开了使用所述主热交换器执行通常放在与所述低压塔底部有热交换关系的所述高压塔顶部的再沸器-冷凝器的作用。在US-A-5275 004中还公开了所述方法包括在过冷器中过冷一种工艺液流,所述过冷器的热交换作用可以在所述主热交换器中进行。
本发明的一个目的是提供一种能够简化空气分离装置而不必过分损失运行效率的方法。
根据本发明,有一种分离空气的方法,其中,在包含高压塔和低压塔的精馏塔装置中冷却第一压缩空气流并精馏所述冷却的下游气流;从所述高压塔中抽出富氧液流、使其膨胀并引入到所述低压塔中;在比所述第一压缩空气流高的压力下冷却第二压缩空气流;所述第一和第二压缩空气流在与从所述低压塔抽出的氮气流的间接逆流热交换中冷却;与所述气态氮流有热交换关系的第一压缩空气流在比所述第二气流高的温度下流出;使至少部分与所述氮气流热交换的下游第二空气流膨胀并引入到所述低压塔中;所述富氧液流基本恒焓地从所述高压柱通过转到其膨胀,一种分离空气的方法,其中,在热交换器中冷却第一压缩空气流并使所冷却的下游气流在包含高压塔和低压塔的精馏塔装置中精馏;从所述高压塔中抽出富氧液流、使其膨胀并引入到所述低压塔中;在比所述第一压缩空气流高的压力下冷却第二压缩空气流;所述第一和第二压缩空气流在与从所述低压塔抽出的氮气流的间接逆流热交换中冷却;与所述气态氮流有热交换关系的第一压缩空气流在比所述第二压缩空气流高的温度下流出;使至少部分与所述氮气流热交换的下游第二空气流膨胀并引入到所述低压塔中;所述富氧液流基本恒焓地从所述高压塔通过转到其膨胀,其中,第二压缩空气流从0℃开始的全部冷却在与所述第一压缩空气流的冷却相同的热交换器中进行,与所述氮流热交换的第二空气流在至少比第一压缩空气流进入所述高压塔的进口处常用压力下的空气泡点温度低5K的温度下流出。
因为所述富氧液流恒焓通过第一膨胀装置,所以,它不通过过冷器。取消用于所述富氧液流的过冷器有利于空气分离装置的制造,因为把所述富氧液流从所述高压塔引向所述低压塔的导管可以更靠近所述塔布置,不必通过与所述主热交换器分开的传统过冷器,也不必以EP-A-0 848 220的图8所示的相应导管的方式通过所述主热交换器本身。而且,通过第二压缩空气流冷却到比第一压缩空气流低的温度大大降低了由于不过冷所述富氧液流对所述低压塔运行的不利影响。优选地,与所述氮流热交换的第二压缩空气流在至少比通向所述高压塔的进口压力下的空气泡点温度低5K,更优选至少低10K的温度流出。如果在低于其临界压力的压力下提供,第二压缩空气流在与所述氮气流的热交换中被液化并过冷。而且,由于许多空气分离法利用液体空气,该空气的过冷一般几乎不需附加成本。实际上,第二压缩空气流从0℃开始的全部冷却优选在与冷却第一压缩空气流相同的热交换器中进行。
所述第一和第二压缩空气流优选也通过与从所述低压塔中抽出的氧流的间接热交换而冷却。氧的纯度可以根据向其中供氧的任何过程的要求选择。
如果所述氧流以液态形式从所述低压塔中抽出并且提高在其与所述第一和第二压缩空气流的热交换的上游的压力,可以进行特别有效的热交换。
典型地,所述精馏塔装置包含双精馏塔,其中,通过重沸器-冷凝器将高压塔的上部区域以与所述低压塔的下部区域成热交换关系安置。在使用双精馏塔的根据本发明的方法和装置的这些实施例中,优选从所述重沸器-冷凝器抽出液氮流并过冷、通过第三个膨胀装置膨胀、并引入到所述低压塔中作为回流。这种附加的过冷优选在与所述气态氮流的间接热交换中进行。因此,避免了要求有用于所述液氮的单独的过冷器。优选地,所述气态氮流基本恒焓地从所述低压塔进入主热交换器,在其中进行它与所述第一和第二压缩空气流的间接逆流热交换。作为一种选择,某些热交换可以在所述气态氮流与进入主热交换器的气态氮流上游的液态氮流之间的独立的热交换器中进行。
优选地,不是把所有冷却的第二压缩空气流引入到所述低压精馏塔中。其中一些可以引入到所述高压精馏塔中,以便提高该塔下部区域的液-气比。典型地,所述热交换装置还通过第四个膨胀装置与所述高压塔相通。优选地,每个膨胀装置是一个膨胀阀。作为一种选择,一个或多个所述膨胀装置,特别是第二个膨胀装置,可以是一种透平膨胀机。在另一种替换的装置中,第二个膨胀装置可以包含透平膨胀机和位于所述透平膨胀机下游的膨胀阀,所述透平膨胀机还作为第四个膨胀装置。
在一种方便的装置中,在主压缩机中压缩全部进料空气流,所得的压缩空气通过吸附净化,第一压缩空气流取自所净化的进料空气,剩余的净化进料空气在增压器-压缩机中进一步压缩,来形成第二压缩空气流。
可以用任何方便的方法提供根据本发明的空气分离方法和装置用的制冷。例如,如果需要,第三压缩空气流可以在合适的温度取自第一或第二压缩空气流,用外功,一般在透平膨胀机中膨胀,并引入到所述精馏塔之一中,典型的是引入到所述低压塔中。如果收集液体产物,可以使用第二个透平膨胀机提供附加的冷冻。
现在通过实施例并参考附图描述根据本发明的方法,所述附图是根据本发明的空气分离装置的示意流程图。
所述附图不按比例。
参看附图的

图1,空气流在主空气压缩机2中压缩。在主空气压缩机2附带的后冷却器(未表示)中从所得的压缩空气中排出压缩热。在吸附单元4中净化所压缩的空气流。所述净化包括从所述空气中除去较高沸点的杂质,特别是水蒸气和二氧化碳,否则它们会在所述装置的低温部分结冰。一般也要除去不饱和碳氢化合物等其它杂质。单元4可以通过变压吸附或变温吸附进行净化。单元4还可以另外包括一层或多层分别把一氧化碳和氢气杂质氧化成二氧化碳和水的催化剂。通过吸附可以除去氧化后的杂质。在EP-A438 282中描述了一氧化碳和氢气杂质的这种去除方法。吸附净化单元的结构和操作是众所周知的,本文中不需要进一步描述。
第一压缩的、净化的空气流从净化单元4流到具有热端8和冷端10的主热交换器6。除了重沸器-冷凝器24以外(其操作下面描述),主热交换器6是在所说明的装置中的唯一热交换器。第一压缩空气流在其热端8进入主热交换器6并流过通过热交换器6的大部分路径,以适合于其精馏分离的温度从主热交换器6的冷端10的上游抽出。可以认为主热交换器6有三个相连的区域。这些区域是从主热交换器6的热端8延伸的第一个区域12,这是一个其中只在气态的物流之间交换显热的区域,第一个区域12的终点在主热交换器中被冷却的空气流开始从蒸气变成液体和/或被加热的回流完成从液态到蒸气态转变的一点上。从这个点到更靠近主热交换器6的冷端10的一点是第二个区域14,它是被冷却的第二压缩空气流通过与蒸发的液流的间接热交换而被液化的区域。第三个区域16在主热交换器6的冷端10终止,是一个过冷区域。
第一压缩空气流在适合于其通过精馏分离的温度下,以蒸气状态从主热交换器6的第一个区域12抽出。主热交换器6可以是散热片型并且可以包含单一的热交换器组或多个热交换器组。所述第一空气流基本恒焓恒压流到高压塔20并通过进口21引入到其底部。高压塔20构成除了所述高压塔20外还包括低压塔22的双精馏塔18的一部分。高压塔20的顶部通过重沸器-冷凝器24与低压塔22以热交换关系安置。
其余的净化压缩空气,即没有取作第一压缩空气流的离开净化单元4的那部分空气在增压机-压缩机26中进一步压缩,以便形成压力高于所述第一压缩空气流的第二压缩空气流。在增压机-压缩机26附带的后冷却器(未表示)中冷却第二压缩空气流,以便从所述空气中除去压缩热。这样把第二空气流冷却到略高于室温的温度。所冷却的第二压缩空气流从主热交换器6的热端8流到靠近其冷端10。因此,在与所述第一压缩空气流的冷却相同的热交换器中进行所述第二压缩空气流从其进口温度到0℃以及从0℃到其在冷端10的出口温度的冷却。所述第二压缩空气流在第二个(液化)区域14中冷凝并在主热交换器6的第三个(过冷)区域16中冷却到低于其饱和温度。所述第二压缩空气流在比第一压缩空气流进入高压塔20的压力下的空气泡点温度至少低10K的温度下在主热交换器6的冷端前一小段路径处离开主热交换器6。一般来说,操作主热交换器6使得在其冷端10处,在被加热的物流和被冷却的物流之间的平均温度差不大于约3K。
一部分所过冷的第二空气流通过膨胀阀28膨胀,并通过进口30引入到低压塔22的中间物质交换区域。其余的过冷第二空气流通过另一个膨胀阀32膨胀,并通过进口34引入到高压塔20的中间物质交换区域。一般来说,约三分之二的过冷第二空气流流到低压塔22中。
空气在高压塔20中分离成在其顶部收集的氮气相和在其底部收集的富氧液相。通过出口36从高压塔20底部抽出富氧液流。
用于所述富氧液流的导管38从高压塔20的出口36延伸到低压塔22的中间区域的进口40。一般来说,通过进口40供应的塔22的区域低于进口30供应的区域。膨胀阀42位于导管38内。所述液体在膨胀阀42上游(或该阀下游)的导管38中不经过任何热交换并且基本恒焓流过阀42。所述富氧液体通过阀42闪蒸,残留液体和闪蒸气体的混合物通过进口40进入低压塔22中。
在高压塔20中分离的氮蒸气馏分从其中抽出并通过与沸腾氧的间接热交换在重沸器-冷凝器24中冷凝。一部分所得的冷凝物(液氮)返回到高压塔20顶部,为其中的空气分离提供回流。其余的液氮冷凝物从重沸器-冷凝器24流到主热交换器6的过冷区域16并通向主热交换器6的冷端10,从而被过冷。所得的过冷液氮流在其冷端或其冷端的上游离开所述主热交换器;流过另一个膨胀阀44;通过进口48引入到低压塔22顶部,并为低压塔22提供回流。
通过进口40和30引入到低压塔22的空气流不仅仅是在其中分离的空气流。在所述第一压缩空气流通过主热交换器6的第一个区域12时从所述第一压缩空气流取出第三压缩空气流,并把所述第三压缩空气流在透平膨胀机50中用外功膨胀并通过与进口40基本位于相同高度的进口52引入到低压塔22中。例如,通过透平膨胀机50提供的外功可以是发电机54的运行。
引入到低压塔22的各种空气流在其中通过精馏被分离成顶部的氮蒸气馏分和底部的液氧馏分。所述液氧馏分可以含有99摩尔%以上的氧,但是,作为一种选择,所述液氧馏分也可以是不纯的,一般氧浓度在80-97摩尔%范围内。氮蒸气流从低压塔22顶部出口56抽出并且基本恒焓直接流到主热交换器6的冷端10。它与所述第二压缩空气流呈逆流流过主热交换器6的过冷区域,从而影响这种气流的过冷,还影响作为回流提供到低压塔22顶部的液氮流的过冷。所述气态氮流从主热交换器6的过冷区域16流到其液化区域14,然后到显热冷却区域12,在近似室温的温度下通过其热端8排出主热交换器6。液氧产物流通过在低压塔22底部的出口58用泵60抽出。泵60把所述液体氧流的压力提高到选定的压力并把其送入主热交换器6,直接进入其液化区域14。加压的液氧与所述第一和第二压缩空气流呈逆流通过该区域。特别地,所加压的液氧流通过与液化的第二空气流进行的间接逆流热交换在该区域内蒸发。所得的蒸发的氧流通过主热交换器6的显热区域12被加热并在近似室温的温度下离开热端8。
可以根据所述氧产物流的压力选择所述第二压缩空气流的压力,以降低在主热交换器6中的待加热物流与待冷却物流之间的温度差。可以确定在高压塔和低压塔之间过冷液体空气流的分配,以便在这两个塔中获得最优选的精馏条件。通过进口30引入到低压塔22的液体空气补偿了在富氧液流通过阀42闪蒸时液体回流的损耗。尽管图1所示的装置简单,它仍然能非常有效率地运行。在一个典型的实施例中,所述高压塔在其底部的运行压力为5.4巴,低压塔22在其顶部的运行压力为1.4巴,所述增压机-压缩机26的出口压力为15.4巴,液氧泵60的出口压力为6.5巴。
可以对附图所示的装置进行各种改变和改进。例如,主热交换器6可以包括对应于区域12、14和16的三个独立热交换器。而且,代替使用带有单一重沸器-冷凝器24的双精馏塔18,可以使用双重沸器装置。此外,特别是如果使用所述低压塔生产含有99摩尔%氧的氧产物,可以使用传统的氩“侧壁”塔(未表示)另外生产氩产物。在这种情况下,部分或全部富氧液流不直接通入低压塔,而是先用来冷却侧臂塔相连的头部冷凝器。此外,以液态形式从低压塔22抽出所述氧产物不是必要的,根据需要,可以以蒸气形态抽出。另一种选择是以液体形式生产部分氧和/或氮产物。这种选择一般要求比生产蒸气产物时产量更大的液体空气,并且可以通过根据本发明的方法容易地提供。
如果需要,可以在超临界压力下提供所述第二压缩空气流。在这样提供时,所述第二压缩空气流在其通过主热交换器6时保持为超临界流体并且不被液化。但是,在超临界压力下提供所述第二压缩空气流并不有损于根据本发明的方法和装置的基本优点。
权利要求
1.一种分离空气的方法,其中,在交换器中冷却第一压缩空气流,该冷却的下游气流在一种包含高压塔和低压塔的精馏塔装置中精馏;从所述高压塔中抽出一种富氧液流,使其膨胀并引入到所述低压塔中;在高于所述第一压缩空气流的压力下冷却第二压缩空气流;所述第一和第二压缩空气流在与从所述低压塔中取出的气态氮流的间接逆流热交换中被冷却;与所述气态氮流有热交换关系的第一压缩空气流在高于所述第二压缩空气流的温度下流出;至少部分与所述氮流热交换的下游的第二空气流膨胀并引入到所述低压塔中;所述富氧液流基本恒焓从所述高压塔通过转到其膨胀,其中,在与所述第一压缩空气流的冷却相同的热交换器中进行所述第二压缩空气流从0℃开始的全部冷却,与所述氮流热交换的第二空气流以比第一压缩空气流进入所述高压塔进口处常用的压力下的空气泡点温度低至少5K的温度下流出。
2.一种根据权利要求1的方法,其中,与所述氮流热交换的第二空气流以比第一压缩空气流进入所述高压塔进口处常用的压力下的空气泡点温度低至少10K的温度下流出。
3.一种根据权利要求1或2的方法,其中,所述第一压缩空气流还用与从所述低压塔抽出的氧流间接热交换冷却。
4.一种根据权利要求3的方法,其中,所述氧流以液体形式从所述低压塔中抽出并且提高在其与所述第一和第二压缩空气流热交换的上游的压力。
5.一种根据前面的权利要求的任一项的方法,其中,所述精馏塔装置包含一种双精馏塔,其中,所述高压塔的上部区域通过重沸器-冷凝器与所述低压塔的下部区域以热交换关系安置。
6.一种根据权利要求5的方法,其中,使从所述冷凝器-重沸器抽出的液氮流在与所述气态氮流的间接热交换中过冷,然后膨胀,并引入到所述低压塔中作为回流。
7.一种根据前面的权利要求的任一项的方法,其中,所述气态氮流基本恒焓从所述低压塔流入主热交换器,其中,进行它与所述第一和第二压缩空气流的间接逆流热交换。
8.一种根据前面的权利要求的任一项的方法,其中,把所述过冷的第二压缩空气流分成两个子气流,一个子气流被膨胀并引入到所述低压塔中,另一个子气流被膨胀并引入到所述高压塔中。
9.一种根据前面的权利要求的任一项的方法,其中,从所述第一或第二压缩空气流中取出第三个压缩空气流,用外功使其膨胀,并引入到所述低压精馏塔中。
全文摘要
一种双塔空气分离法,其中,第一压缩空气流与从低压精馏塔22顶部抽出的氮流呈逆流从主热交换器6热端8通过被冷却。第一压缩空气流通过进口21从主热交换器6流入高压精馏塔20。使第二压缩空气流液通入主热交换器6的热端8并在其中冷却。与氮流热交换的第二压缩空气流在比所述第一压缩空气流排出温度低的温度并且在比进口21处常用的压力下的空气的泡点温度低至少5K的温度下流出。富氧液流恒焓从高压塔20流到低压塔22中。
文档编号F25J3/04GK1295228SQ0013149
公开日2001年5月16日 申请日期2000年10月23日 优先权日1999年10月22日
发明者P·希金波塔姆 申请人:英国氧气集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1