用于冷却发热部件的冷却单元以及具有冷却单元的电子设备的制作方法

文档序号:4799236阅读:111来源:国知局
专利名称:用于冷却发热部件的冷却单元以及具有冷却单元的电子设备的制作方法
相关申请的交叉引用本申请要求享有申请日为2000年12月27日的日本专利申请2000-398100的优先权,此处对其全文引用作为参考。发明背景1.发明领域本发明涉及一种对发热部件如半导体组件进行强制冷却的冷却单元,以及使用该冷却单元的电子设备。
2.相关技术的说明便携式计算机包括处理多媒体数据如字符、声音以及图像的微处理器。当这种微处理器的工作速度以及所需的功能增加的时候其消耗的电能会增加。其工作产生的热量与消耗的电能成正比增加。因此,为了使便携式计算机可靠地工作,必须加强微处理器的散热效率。
基于此,通常的便携式计算机都使用一个冷却单元对微处理器进行强制冷却。该冷却单元包括一个散热器以及一个电动风扇。该散热器与微处理器热连接在一起。该电动风扇向散热器提供冷却空气。
散热器具有一个冷却空气通道以及多个散热片。冷却空气通过冷却空气通道流动。散热片暴露在冷却空气通道中。流过冷却空气通道的空气对散热片进行强制冷却。这样,通过散热片和冷却空气之间的热交换,从微处理器传递给散热器的大多数热量就散发了。
在传统的冷却单元中,流过冷却空气通道的冷却空气是从微处理器带走热量的主要冷却剂。微处理器的冷却效率主要取决于电动风扇提供空气的能力。换句话说,微处理器的冷却效率是与冷却空气的流速成比例的。流速越高,微处理器的冷却效率越高。另一方面,冷却空气的流速越高,电动风扇的转动速度也越高。风扇的转速高则会增加风扇产生的噪音。
为了提高微处理器的冷却效率,同时为了控制电动风扇的噪音,调整冷却空气的流速和散热片的数量以及将散热片设计成适当的形状是重要的。
散热片与传统的散热器的主体是通过铸造形成一体的。暴露在冷却空气通道中的散热片的数量以及布置的位置都是固定的。而为了以适当的流速来提供冷却空气,散热片的数量以及位置都不能改变。因此,在控制风扇的噪音的同时就不能以最佳的效率将微处理器的热量散去。
为了提供根据散热片的数量和位置变化的冷却单元,必须准备大量铸造模具。但这会增加冷却单元的制造成本。
为了实现第一个目的,根据本发明第一方面的一种冷却单元包括一个与发热部件热连接并具有一个冷却空气通道的主体;一个向冷却空气通道提供冷却空气的风扇;以及多个暴露在冷却空气通道中并用来导热的热交换元件。每个热交换元件可拆卸地固定在主体上并与主体热连接。
为了实现第二个目的,根据本发明第二方面的一种电子设备包括一个装有一发热部件的壳体;一个位于该壳体中并对该发热部件冷却的冷却单元。该冷却单元包括一个从该发热部件接收热量的主体,一个位于该主体中并接收冷却空气的冷却空气通道,以及多个暴露在冷却空气通道中并用来导热的热交换元件。每个热交换元件可拆卸地固定在主体上并与主体热连接。
与冷却空气接触的热交换元件可拆卸地固定在主体上。这样一来,使用的热交换元件的数量和位置就可以根据冷却空气的流速以及冷却空气在冷却空气通道中的流速分布来自由改变。
这样,热交换元件对冷却空气流动的阻碍程度就可以根据冷却空气的流速加以调整。这使得不但可以根据通道中的冷却空气的流速、而且还可以根据发热部件产生的热量的多少来获得冷却单元的最佳冷却能力。
为了实现上述的第一个目的,根据本发明第三方面的一种冷却单元包括一个与发热部件热连接并具有一个冷却空气通道的主体;一个向冷却空气通道提供冷却空气的风扇;以及多个暴露在冷却空气通道中并用来导热的热交换元件。每个热交换元件包括一个柱状部件以及多个散热部件。该柱状部件可拆卸地固定在主体上并与主体热连接。该散热部件从柱状部件的圆周表面向外突出并在柱状部件的轴向上隔开布置。该热交换元件具有这样一种位置关系,即它的散热部件与其它的热交换元件的散热部件重叠。
根据本发明的第一和第二方面所述的冷却单元,热交换元件的数量和位置可以根据冷却空气的流速以及冷却空气在冷却空气通道中的流速分布来自由改变。另外,还可以准备各种形式的热交换元件,每个热交换元件具有一个直径不同的柱状部件以及形状不同的散热部件。在这种情况下,根据冷却空气在冷却空气通道中的流速来选择任一种型式的热交换元件可固定在主体上。
另外,在冷却空气通道中任意相邻的热交换元件相互之间是不干扰的。因此可以以高密度设置许多热交换元件,从而在冷却空气通道中缩短了它们之间的距离。这增加了根据冷却空气的流速调整该元件对冷却空气的流动阻碍的自由度。并且,这也使得不但可以根据冷却空气通道中的冷却空气的流速、而且还可以根据发热部件产生的热量的多少来获得冷却单元的最佳冷却能力。
本发明其它的目的和优点将下面描述,在某种程度上将会在说明中变得更加明显,或者通过对本发明的应用而获得了解。本发明的这些目的和优点可以通过下文特别指出的手段和组合获得实现。
附图的简要说明引入并构成说明书一部分的附图与上述的发明概述以及下述实施例的详细说明结合在一起用来解释本发明的基本原理。


图1为根据本发明的第一实施例的便携式计算机的透视图;图2为该便携式计算机的截面图,显示的是壳体以及布置在壳体中的冷却单元的位置关系;图3为沿着图2中所示的F3-F3线所示的便携式计算机的截面图;图4是一透视图,表示的是冷却空气通道以及布置在冷气通道中的热交换元件之间的位置关系;图5是一俯视图,表示的是热交换元件以及使用在计算机中的半导体组件之间的位置关系;图6为一个热交换元件的截面图,其中的柱状部件拧接在一个底板中;图7是用于本发明的第二实施例的一个热交换元件的截面图;图8是沿着图7所示的箭头X方向看的热交换元件的视图;图9是用于本发明的第三实施例的一个热交换元件的截面图;图10是图9所示的热交换元件的分解截面图;图11是用于本发明的第四实施例的一个热交换元件的截面图;图12是用于本发明的第五实施例的一个热交换元件的截面图;发明的详细说明下面将参照附图1至6对本发明的第一实施例的一台便携式计算机进行说明。
图1显示的是一种典型的便携式电子设备,即便携式计算机1。该携式计算机1包括一个主体2以及一个支撑在该主体2上的一个显示元件3。
主体2包括一个形似平板箱的壳体4。壳体4具有一个底壁4a、一个顶壁4b、一个前壁4c、一对侧壁4d,以及一个后壁4e。顶壁4b包括一个手掌放置处6和一个键盘部分7。手掌放置处6位于壳体4的前半部分。键盘部分7位于手掌放置处6的后边。一个键盘9设置在键盘部分7上。后壁4e具有一个排气口5。
显示单元3包括一个显示外壳11和一个液晶显示面板(LCD)12。铰链(未显示)将显示外壳11连接在壳体4的后端,从而使得显示外壳11可转动。显示外壳11包容着液晶显示面板12。液晶显示面板12具有一个显示屏12a。显示屏12a通过显示外壳11的前壁上的一个开口13暴露在外。
如图2和3所示,壳体4容纳有一个电路板16。电路板16位于键盘9之下,并平行于壳体4的底壁4a延伸。电路板16具有一个相对着顶壁4b和键盘9的上壁16a。在上壁16a上安装着一个发热部件,即半导体组件17。
半导体组件17为一个微处理器,也就是便携式计算机1的主要部件。半导体组件17布置在电路板16的上壁16a的后端边缘位置。半导体组件17包括一个基底18和一个集成电路片19。集成电路片19低温焊接在基底18上。集成电路片19消耗的电能很大,因为它以高速处理着例如字符、声音以及图像的多媒体数据。工作的时候集成电路片19会产生大量的热。为了有效工作必须对其冷却。
壳体4容纳着一个用空气对半导体组件17冷却的冷却单元21。如图4和5所示,冷却单元21包括一个主体22、一个风扇23以及多个热交换元件24。主体22、风扇23和热交换元件24组装在一起构成了一个模块。
主体22由导热优良的金属例如铝制成。该主体为一个在壳体4的深度方向延伸的长条平板箱。主体22包括一个基板25和一个顶板26。基板25包括一个底板27、一个前板28以及侧板29a和29b。前板28直立在底板27的前部边缘上。侧板29a和29b分别直立在底板27的左右边缘上。顶板26位于并且固定在前板28以及侧板29a和29b的上部边缘上。因而其与底板27相对。顶板26和基板25确定了一个冷却空气通道30。冷却空气通道30在壳体4的深度方向上延伸。在冷却空气通道30的下游端具有一个空气出口31。空气出口31正对着壳体4的排气口5。
如图2和3所示,主体22安装在电路板16上。其基板25和电路板16通过螺钉固定在壳体4的底壁4a上。
基板25的底板27具有一个前半部33a和一个后半部33b。后半部33b正好位于半导体组件17上方。后半部33b具有一个向下方凸出的热量接收部分34。热量接收部分34的下表面的作用是作为热量接收面35。热量接收面35通过导热片或者导热油与集成电路片19热连接。这样一来,热量就可以从集成电路片19传递给热量接收部分34,并从那里进一步传递给基板25。因此热量就可以传递给主体22了。
风扇23布置在冷却空气通道30的上游端。其具有一个离心式叶轮37和一个扁平马达38。扁平马达38驱动着叶轮37。叶轮37和扁平马达38支撑在基板25的底板27的前半部33a上。叶轮37处于水平位置,并位于基板25的顶板26和底板27之间,并且其轴线01处于垂直方向。顶板26和底板27同样还构成了一个风扇盒。顶板26和底板27分别具有冷却空气的进气口39a和39b。当半导体组件17的温度升高到一个预定温度值的时候,叶轮37会围绕轴线01自动转动。
当风扇23转动的时候,空气通过进气口39a和39b被抽向叶轮37的中心。空气、或者冷却空气从叶轮37的周围流到冷却空气通道30中。
在第一实施例中,叶轮37如图所示顺时针转动。因此,当从基板25的一侧板29a看的时候,叶轮37的叶片朝着出气口31移动,并且当从基板25的另一侧板29b看的时候,叶轮37的叶片向空气出口31远离的方向移动。
因此大部分冷却空气从叶轮37的周围通过一条贯穿侧板29a的路径进入冷却空气通道30。换句话说,经过这条我们称作“第一空气通道30a”的路径流过的冷却空气要比我们称作“第二空气通道30b”的贯穿侧板29b的路径流过的冷却空气多。因此,冷却空气在冷却空气通道30中的分配是不均匀的。
如图2和3所示,基板25的底板27具有一个正对着冷却空气通道30的扁平导向面41。导向面41与热量接收部分34的热量接收面35相背离。冷却空气沿着导向面41流动。
热交换元件24安装在导向面41上。如图6所示的放大图,每个热交换元件24具有一个柱状部件43和多个散热部件44。柱状部件43和散热部件44被浇铸成一体、并为金属例如导热优良的铜基合金制成。而热交换元件24并不是如上所述的那样与基板25形成一体的。散热部件44是直径大于柱状部件43的圆盘。它们在柱状部件43的轴线方向隔开布置。每个散热部件44的上下表面被加工成为主散热面45。主散热面45与柱状部件43的圆周表面成直角。
每个热交换元件24的柱状部件43一端具有一个螺钉46。螺钉46安装在底板27的后半部33b上形成的一个螺纹孔47中。这样一来,每个热交换元件24就与底板27热连接起来了。这样,热交换元件24可移动地固定在底板27上并保护导向面41不在冷却空气通道30内。也就是说,热交换元件24是暴露在冷却空气通道30中的,其主散热面45与底板27的导向面41平行布置。
如图4和5所示,热交换元件被24布置成方阵的形式,相互隔开布置。它们布置在半导体组件17正上方的有限区域上。更精确地说,热交换元件24被布置成行列的形式。热交换元件24的行与冷却空气通道30平行,而热交换元件24的列与冷却空气通道30中冷却空气流动的方向成直角。每个热交换元件24的散热部件44与其它的热交换元件24隔开。
有些热交换元件24位于冷却空气通道30的第一空气通道30a中,而其它的热交换元件24位于冷却空气通道30的第二空气通道30b中。在第二空气通道30b中的热交换元件24要比第一空气通道30a中的多。这是因为,流过第二空气通道30b的冷却空气要比流过第一空气通道30a的少。因此,在第二空气通道30b中布置的热交换元件24的密度要比第一空气通道30a中的密度高。
当使用便携式计算机的时候,半导体组件17的集成电路片19会产生热量。热量传递给基板25的热量接收部分34。然后传递给冷却单元21的主体22。
热交换元件24成行列地布置在背离热量接收部分34的底板27的表面上。热交换元件24的柱状部件43热连接在底板27上。因此,大多数从热量接收部分34传递给底板27的热量会从每个热交换元件24的柱状部件43传递给散热部件44。散热部件44具有主散热面45,每个主散热面45位于柱状部件43的外周面上。这样,每个热交换元件24就具有了很大的散热面积。通过这种设计,热交换元件24就可以更有效地散射半导体组件17所产生的热量了。
当半导体组件17的温度升高到预定值的时候,风扇23开始转动。风扇23的叶轮37转动从而通过进气口39a和39b抽取空气,并迫使空气进入冷却空气通道30。而空气即冷却空气会施加在暴露在冷却空气通道30中的热交换元件24上。冷却空气流过热交换元件24的柱状部件43,并在散热部件44的主散热面45之间的间隙中流通。冷却空气在经过热交换元件24之后会从冷却空气通道30通过出气口31和壳体4的排气口5排出。
在上述冷却单元21中,冷却空气流过冷却空气通道30,并冷却主体22以及热交换元件24。通过冷却空气的冷却,主体22和热交换元件24有效地散发了半导体组件17产生的热量,并将热量从热量接收部分34传递给了主体22。这样,冷却单元21就可以使得半导体组件17保持在理想的温度条件下了。
在冷却单元21中,热交换元件24紧固在底板27上。也就是说,每个热交换元件24将其下端即柱状部件43的螺钉46安装在底板27的后半部33b上形成的螺纹孔47中。这样,热交换元件24就与底板27热连接在一起了。热交换元件24可以具有不同的数量,并可以选择其下端安装在任一螺纹孔47中。换句话说,根据冷却空气在冷却空气通道30中的流速以及在冷却空气通道30中的流速分布,可以在底板27的后半部33b的任何位置布置任何数量的热交换元件24。
更具体地说,热交换元件24在第二空气通道30b的分布密度很高,而冷却空气在其中的流速较低。在第二空气通道30b中,热交换元件24的总散热面积很大。因此,第二空气通道30b中的热交换效率很高。相反,热交换元件24在第一空气通道30a的分布密度较低,而冷却空气在其中的流速较高。因此,在第一空气通道30a中的冷却空气的阻力较低。冷却空气可以在第一空气通道30a中快速流过,从而提高了第一空气通道30a的热交换效率。
因此,热交换元件24阻碍冷却空气流动的程度可以根据冷却空气的流速和流速分布加以调整。冷却单元21所具有的最佳冷却能力应能够根据半导体组件17产生的热量多少来决定,并且不受冷却空气流过冷却空气通道30的流速大小的影响。这样,半导体组件17产生的热量就可以相当高效地散发了。
如上所述,热交换元件24不是整体形成在基板25上的。热交换元件24的数量和位置可以自由改变,而不必为基板25的成形准备大量的模具。这有助于降低冷却单元21的制造成本,最终降低了使用该冷却单元21的便携式计算机1的价格。
如上所指出的那样,与冷却空气接触的热交换元件24是由比基板25的材料导热性更好的金属制成的,例如铜基合金。这使得热交换元件24与冷却空气相接触的时候提高了热交换效率。因此,热交换元件24的材料可用来提高半导体组件17的冷却效率。
在第一实施例中,热交换元件24是通过将其下端安装在基板25上的螺纹孔47中从而紧固在基板25上的。尽管如此,热交换元件24还可以通过其它的方式紧固在基板25上。例如,热交换元件24的柱状部件43可以压入到基板25上的孔中。或者,柱状部件43可以通过铜焊、铆接、低温焊接、熔接或者粘接在基板25上。
本发明并不局限于上述的第一实施例。它也可以应用在图7和8所述的另一实施例中。
在图7和8所示的第二实施例中,每个热交换元件24的散热部件44位于任意相邻的热交换元件24之间。因此,任意相邻的热交换元件24的散热部件44从热交换元件24的轴向看是部分重合的(图8)。
基板25的底板27具有多个凹槽51。凹槽51的开口形成在导向面41上并在导向面41上按行列布置。热交换元件24的柱状部件43的下端安装在凹槽51中。柱状部件43的下端具有螺纹孔。如图7所示,螺钉52贯穿底板27,从其下表面,即不同于导向面41的表面拧入柱状部件43的螺纹孔。这样,热交换元件24就紧固在底板27上了。
也就是说,每个热交换元件24开始是在其下端安装在底板27中的凹槽51中的,然后通过螺钉52紧固在底板27上。因此,尽管每个热交换元件24的散热部件44与任意相邻的热交换元件24是相互重叠的,但热交换元件24还是可以固定在底板27上。
任意相邻的热交换元件24的散热部件44是交织在一起的。热交换元件24的柱状部件43可以以很高的密度进行布置,以缩短它们之间的距离P,如图8所示。因此,在冷却空气通道30中可以以很高的密度布置许多的热交换元件24。这增加了根据冷却空气的流速来调整热交换元件24对冷却空气的流速阻碍的自由度。并且,这也有助于主体22更紧凑。
图9和10显示的是本发明的第三实施例。
第三实施例和第一实施例的区别在于暴露在冷却空气通道30中的热交换元件61的结构。
如图9所示,每个热交换元件61具有一个柱状部件62以及多个散热部件63。散热部件63从柱状部件62的圆周表面凸出。柱状部件62包括多个圆柱体64。每个圆柱体64具有两个端部64a和64b。每个端部64a和64b的表面都是平的。该平面与圆柱体64的轴线直角相交。
每个圆柱体64在其第一端部64a具有一个轴向螺纹孔65并在轴向上具有一个从第二端部64b伸出的螺钉66。螺钉66被拧到另一个圆柱体64的螺纹孔65中,这样一来,圆柱体64就通过首尾相连的形式紧固在一起,从而构成了柱状部件62。
散热部件63为盘状,其直径大于柱状部件62的直径。每个散热部件63的上下表面被制成平的主散热面67。每个散热部件63的中心都有一个通孔68。从任一圆柱体64的第二端部64b突出的螺钉66可以贯穿该孔68。
每个散热部件63布置在一个圆柱体64的第一端部64a以及与之相邻的圆柱体64的第二端部64b之间,只要穿过散热部件63的孔68的圆柱体64的螺钉66仍然拧到另一个圆柱体64的螺纹孔中即可。这样,柱状部件62和散热部件63就紧固在一起构成了热交换元件61。
散热部件63最上的散热部件63通过拧到圆柱体64顶端的第一端部64a上的螺纹孔65中的紧固螺钉69固定在最上的圆柱体64的第一端部64a上。
在这种结构的第三实施例中,散热部件63可以从构成柱状部件62的圆柱体64之间拆下,并插到圆柱体64之间。因此,每个热交换元件61的散热部件63的数量都可以改变。此外,形成每个柱状部件62的圆柱体64的数量也可都改变,从而可以用来调整柱状部件62的长度。
另外,也可以准备不同直径的散热部件63a,并且可以如图10所示的那样,根据流过冷却空气通道30的冷却空气的流速来选择散热部件63a的最佳直径。
通过这些方式,每个热交换元件61可以具有不同的形状。这种结构的特点是,不但可以根据冷却空气通道30中的冷却空气的流速、而且还可以根据半导体组件17产生的热量的多少来获得冷却单元的最佳冷却能力。
图11表示的是本发明的第四实施例。
第四实施例与第一实施例的不同之处在于每个热交换元件42的散热部件71的结构。
如图11所示,每个散热部件71具有一个中心体72以及多个臂状物73。臂状物73沿径向从中心体72伸出。臂状物73在柱状部件43四周规则分开。在冷却空气通道30中,每个热交换元件24的散热部件71与其它的热交换元件24的散热部件71相互隔开。
在第四实施例中,冷却空气通道30中的每个散热部件71都具有多个径向伸展的臂状物73。当冷却空气通过臂状物73的时候会形成紊流。这样一来,冷却空气通道30中的空气阻力就会增加。由于紊流的形成,冷却空气会与每个散热部件71的所有臂状物73接触。这有助于提高每个热交换元件24的热交换效率。
图12表示的是本发明的第五实施例。该实施例除了每个散热部件71的一些臂状物73位于相邻的散热部件71的一些臂状物73之间以外,与实施例四相同。
在第五实施例中,可以缩短任意相邻的热交换元件24之间的距离P。这是因为,每个散热部件71的一些臂状物73与相邻的散热部件71的一些臂状物73交叉的缘故。
这样,与第四实施例相比就可以在相同的单位面积中布置更多的热交换元件24。也就是说,在冷却空气通道30中可以布置更高密度的热交换元件24。这可以根据实际需要来获得更大的紊流扰动。
对本领域技术人员来说,其它的优点和改进可以很容易被发现。因此,从较宽的方面来说,本发明并不仅仅局限于所示和所述的具体细节和代表性实施例。因此,本发明可以在不脱离由所附权利要求及其等价物确定的总的发明构思的精神或范围前提下进行各种改进。
权利要求
1.一种用于冷却发热部件(17)的冷却单元,其特征在于包括一个与发热部件(17)热连接并具有一个冷却空气通道(30)的主体(22);一个向冷却空气通道(30)提供冷却空气的风扇(23);以及,多个暴露在冷却空气通道(30)中并用来导热的热交换元件(24,61),所述热交换元件(24,61)可拆卸地固定在主体(22)上并与主体(22)热连接。
2.如权利要求1所述的冷却单元,其特征在于,所述的每个热交换元件(24,61)包括一个柱状部件(43,62)以及至少一个从该柱状部件(43,62)的圆周表面向外突出的散热部件(44,63,71)。
3.如权利要求2所述的冷却单元,其特征在于,每个热交换元件(24,61)的柱状部件(43,62)可拆卸地与主体(22)螺纹接合。
4.如权利要求1所述的冷却单元,其特征在于,该主体(22)和每个热交换元件(24,61)导热性不同。
5.如权利要求2所述的冷却单元,其特征在于,每个热交换元件(61)的柱状部件(62)包括多个同轴、可拆卸地连接在一起的圆柱体(64),并且所述至少一个散热部件(63)位于两个相邻的圆柱体(64)之间。
6.如权利要求1所述的冷却单元,其特征在于,该冷却空气通道(30)具有一个第一空气通道(30a)和一个第二空气通道(30b),冷却空气在该第一空气通道(30a)中的流速大于在该第二空气通道(30b)中的流速,该热交换元件(24,61)布置在第一和第二空气通道(30a,30b)中,并且该热交换元件(24,61)的数量和位置可根据冷却空气流过空气通道(30a,30b)的速度而改变。
7.如权利要求1所述的冷却单元,其特征在于,该主体(22)具有一个正对着冷却空气通道(30)的导向面(41),而该热交换元件(24,61)从该导向面(41)突出到冷却空气通道(30)中。
8.如权利要求7所述的冷却单元,其特征在于,该主体(22)具有一个从发热部件(17)接收热量的热量接收面(35),该导向面(41)侧对着该热量接收面(35)。
9.如权利要求2所述的冷却单元,其特征在于,所述至少一个散热部件(44,63)具有一个平的、在冷却空气流动的方向上延伸的主散热面(45,67)。
10.如权利要求2所述的冷却单元,其特征在于,每个热交换元件(24)的所述至少一个热交换部件(71)具有多个从柱状部件(43)的圆周表面沿径向突出的臂状物(73)。
11.一种用于冷却发热部件(17)的冷却单元,其特征在于包括一个与发热部件(17)热连接并具有一个冷却空气通道(30)的主体(22);一个向冷却空气通道(30)提供冷却空气的风扇(23);以及,多个暴露在冷却空气通道(30)中并用来导热的热交换元件(24),每个热交换元件包括一个可拆卸地固定在主体(22)上、并与主体(22)热连接的柱状部件(43),以及多个从该柱状部件(43)的圆周表面突出、并沿该柱状部件(43)的轴向隔开布置的散热部件(44),所述热交换元件(24)具有这样一种位置关系,即每个热交换元件(24)的散热部件(44)与其它的热交换元件的散热部件(44)重叠。
12.一种电子设备,其特征在于包括一个装有一个发热部件(17)的壳体(4);一个位于该壳体(4)中并冷却该发热部件(17)的冷却单元(21);所述冷却单元(21)包括一个从该发热部件(17)接收热量的主体(22),一个位于该主体(22)中并接收冷却空气的冷却空气通道(30);以及,多个暴露在冷却空气通道(30)中并用来导热的热交换元件(24,61),所述热交换元件(24,61)可拆卸地固定在主体(22)上并与主体(22)热连接。
13.如权利要求12所述的电子设备,其特征在于还包括一个位于该壳体(4)中并支撑该发热部件(17)的电路板(16);一个支撑在该主体(22)上并向冷却空气通道(30)输送冷却空气的风扇(23)。
14.如权利要求12所述的电子设备,其特征在于,所述每个热交换元件(24,61)包括一个柱状部件(43,62)以及至少一个从该柱状部件(43,62)的圆周表面突出的散热部件(44,63,71)。
15.如权利要求14所述的电子设备,其特征在于,该主体(22)具有一个暴露在冷却空气通道(30)中的导向面(41),每个热交换元件(24,61)的柱状部件(43,62)可拆卸地支撑在该导向面(41)上并从该导向面(41)突出到冷却空气通道(30)中。
全文摘要
一种冷却单元(21)包括一个主体(22),一个风扇(23)以及多个热交换元件(24)。该主体(22)从一个发热部件(17)接收热量并具有一个冷却空气通道(30)。该风扇(23)将冷却空气提供到冷却空气通道(30)中。该热交换元件(24)暴露在该冷却空气通道(30)中。每个热交换元件(24)可拆卸地固定在该主体(22)上并与该主体(22)热连接。
文档编号F25D1/00GK1362855SQ0114394
公开日2002年8月7日 申请日期2001年12月27日 优先权日2000年12月27日
发明者柴崎和也 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1