用于通过低温蒸馏分离空气的方法和设备的制作方法

文档序号:4763743阅读:120来源:国知局
专利名称:用于通过低温蒸馏分离空气的方法和设备的制作方法
技术领域
本发明涉及一种用于通过低温蒸馏分离空气的方法和设备。本发明具体涉及用于生产高压氧和/或氮的方法和设备。
本发明是对2003年5月5日提交的法国专利申请No.0350141和No.0350142中所述的发明的改进。
背景技术
由空气分离设备生产的气态氧通常处于约20到50巴的高压。基本的蒸馏方法通常是在以1.4到4巴的压力运行的低压塔的底部生产氧的双塔方法。必须通过氧压缩机或通过泵压液体方法将氧压缩到较高的压力。由于与氧压缩机有关的安全问题,目前大多数制氧设备都基于泵压液体方法。为了汽化高压液态氧,有必要设置附加的马达驱动的增压压缩机,以将一部分供给空气或氮提高到40-80巴范围内的压力。实质上,用增压机替代了氧压缩机。
为了简化制氧设备,希望减少马达驱动的压缩机的数量。如果能够不使用增压机而对设备性能的影响不大,则可以在能耗方面显著降低成本。另外,考虑用于常规制氧设备的空气净化装置可以在约5-7巴的压力下运行,该运行压力基本为高压塔的压力,希望将该压力提高到更高的水平以使设备更紧凑而且成本更少。
美国专利5,475,980中所述的冷压缩方法提供了一种采用单个空气压缩机驱动制氧设备的技术。在此方法中,待蒸馏的空气在主换热器中冷却,然后通过由向双塔方法的高压塔中排气的膨胀机驱动的增压压缩机进一步压缩。这样,空气压缩机的排气压力在15巴左右,该压力范围也非常有利于净化装置。此方法的一个不利点在于由于通常用于冷压缩设备的附加的流动循环,主换热器的尺寸增加。可以通过增大换热器的温差减小换热器的尺寸。但是,这样将导致能源使用效率不高并且压缩机排气压力升高,因此,成本增加。图1对该现有技术进行说明,其中,系统中添加了一油压制动器以耗散制冷所需的能量。在较大的设备中,可以使用膨胀机代替该油压制动器。
在图1中,所有的供给空气在压缩机1中压缩、在净化装置2中净化、然后作为流11送到换热器5的高温端。所有供给空气冷却到中间温度、作为流7从换热器排出、然后在冷压缩机8中压缩。将压缩流9以较高的中间温度送回换热器、冷却到低于冷压缩机8的进口温度的温度、然后分成两部分。将流15送到由压缩机8和油压制动器制动的克劳德(Claude)膨胀机13。剩余的空气10在换热器中液化并分成两部分,一部分送到高压塔30,其余部分34送到低压塔31。
使富氧液流28膨胀,并从高压塔送到低压塔。使富氮液流29膨胀,并从高压塔送到低压塔。从高压塔的顶部取出高压气态氮14,然后在换热器中使其升温,以形成成品流24。从低压塔31的底部取出液态氧20、通过泵21加压、然后作为流22送到换热器5,在换热器5中该液态氧通过与加压空气10热交换而汽化以形成气态加压氧23。从低压塔31取出顶部富氮气流25,使其在换热器5中升温,然后形成流26。
现有技术如美国专利5,379,598、5,596,885、5,901,576以及6,626,008中也说明了一些不同形式的冷压缩方法。
在美国专利5,379,598中,一部分进给空气通过增压压缩机然后通过冷压缩机进一步压缩,以产生汽化氧所需的加压流。此方法仍然具有至少两个压缩机,并且净化装置仍在低压下运行。
在美国专利5,596,885中,一部分进给空气在暖增压机(warm booster)中进一步压缩,同时至少一部分空气在冷增压机中进一步压缩。来自两个增压机的空气被液化,并且部分经过冷压缩的空气在克劳德膨胀机中膨胀。
美国专利5,901,576描述了多个冷压缩方法的布置,该冷压缩方法利用高压塔底部的汽化的富液的膨胀或高压氮的膨胀来驱动冷压缩机。在一些情况下,也使用马达驱动的冷压缩机。这些方法中供给空气的压力约为高压塔的压力,并且,在多数情况下也需要增压压缩机。
美国专利6,626,008说明了利用冷压缩机以改进蒸馏方法的热泵循环,该蒸馏方法用于生产用于双蒸发器氧处理的低纯度的氧。此类方法也通常采用低空气压力和增压压缩机。
因此,本发明的目的是提供一种方案以简化压缩系并减小净化装置尺寸从而克服常规方法的不便之处。此外,可以获得低能耗。从而可以降低制氧设备的总产品成本。

发明内容
根据本发明,提供了一种在包括高压塔和低压塔的塔系统内通过低温蒸馏分离空气的方法,该方法包括以下步骤i)在第一压缩机中将所有供给空气压缩到第一出口压力;ii)将处于第一出口压力的空气的第一部分送到第二压缩机,并且将该部分空气压缩到第二出口压力;iii)在换热器中冷却处于第二出口压力的空气的至少一部分以形成处于第二出口压力的被冷却的压缩空气,将处于第二出口压力的被冷却的压缩空气的至少一部分送到第三压缩机,并将处于第二出口压力的被冷却的压缩空气的至少一部分压缩到第三出口压力;iv)液化处于第三出口压力的空气的至少一部分,并将液化空气送到塔系统中的至少一个塔,其中至少50%,优选地至少60%,更优选地至少70%的送到塔系统的液化空气在第三压缩机中压缩过;v)在换热器中冷却处于第一出口压力的空气的第二部分,然后在膨胀机中将空气的第二部分的至少一部分从第一出口压力膨胀到塔系统的一个塔的压力,并将膨胀过的空气送到该塔;
vi)从塔系统的一个塔取出液体,对该液体加压,并在换热器中通过热交换使该液体汽化。
根据本发明的可选特征—在第二压缩机的上游冷却第一部分空气的至少一部分;—在第二压缩机上游,在换热器中冷却第一部分空气的至少一部分;—在第二压缩机上游,使用制冷装置冷却第一部分空气的至少一部分;—在第一(出口)压力和第二(出口)压力中的至少一个压力下,在换热器中液化另外的空气;—第三压缩机仅压缩待液化的空气。
根据本发明的另一方面,提供了一种用于通过低温蒸馏分离空气的设备,该设备包括a)塔系统;b)第一压缩机、第二压缩机以及第三压缩机;c)膨胀机;d)用于将空气送到第一压缩机以形成处于第一出口压力的压缩空气的管道;e)用于将处于第一出口压力的第一部分空气送到第二压缩机以形成处于第二出口压力的空气的管道;f)换热器,用于将处于第二出口压力的空气的至少一部分送到该换热器以形成处于第二出口压力的冷却过的压缩空气的管道;g)用于将处于第二出口压力的冷却过的压缩空气的至少一部分送到第三压缩机以生产处于第三出口压力的空气的管道;h)用于将处于第三出口压力的液化空气从换热器取出的管道以及用于将该液化空气送到塔系统的至少一个塔的管道,其中,送到塔系统的至少50%的液化空气在第三压缩机中压缩过;i)用于将处于第一出口压力的第二部分空气从换热器取出的管道以及用于将第二部分空气的至少一部分送到膨胀机的管道;j)用于将在膨胀机中膨胀过的空气送到塔系统的至少一个塔的管道;
k)用于从塔系统的一个塔中取出液体的管道,用于对该液体的至少一部分加压以形成加压液体的装置,以及用于将该加压液体的至少一部分送到换热器的管道。
根据本发明的其它可选方面,所述设备可包括一附加的膨胀机以及用于将来自塔系统的塔的氮或空气送到该附加的膨胀机的装置。
在此情况下,第二压缩机和第三压缩机中的一个可以联接到膨胀机,并且第二压缩机和第三压缩机中的另一个可以联接到附加的膨胀机。
第二压缩机和第三压缩机中的至少一个联接到空气膨胀机。
优选地,用于将处于第一出口压力的第一部分空气送到第二压缩机的管道连接到换热器的中间位置。优选地,第二压缩机和第三压缩机串联连接。
可以从下列膨胀机中选择膨胀机出口连接到高压塔的空气膨胀机、出口连接到低压塔的空气膨胀机、高压氮膨胀机以及低压氮膨胀机。
所述设备可包括从下列膨胀机中选择的附加的膨胀机出口连接到高压塔的空气膨胀机、出口连接到低压塔的空气膨胀机、高压氮膨胀机以及低压氮膨胀机。
优选地,附加的膨胀机连接到第二压缩机和第三压缩机中的一个。


下面参照附图2至8更详细地说明本发明,附图中图1是根据现有技术的空气分离方法的工艺流程图;图2至7为表示本发明的低温空气分离方法的工艺流程图;图8示出在根据本发明的方法中用于压缩机和膨胀机的联接系统。
具体实施例方式
在图2的实施例中,通过空气压缩机1压缩大气空气,并在净化装置2中对大气空气进行提纯,以产生无杂质-如在低温设备中可能凝固的水分和二氧化碳-的空气流(流11)。此空气(流)的第一部分在增压制动压缩机(booster brake compressor)3中压缩以进一步提高其压力。然后,在主换热器5中将此加压的第一部分(流4)冷却到主换热器的中间温度T1,以产生冷空气流。将此冷空气的至少一部分(流7)送到冷增压制动压缩机8以压缩并更进一步提高其压力(流9)。然后,将流9以高于T1的温度T2送回换热器并在换热器5中冷却,以冷凝形成液化空气流(流10),将流10在阀中膨胀之后供给到蒸馏塔中的至少一个。根据所使用的压力,空气可能在主换热器中或在主换热器下游液化。流11的第二部分(流12)在换热器5中冷却以形成流15,将流15以低于T1的进口温度T3送到膨胀机13膨胀,然后进入高压塔。优选地,使用由膨胀机13产生的动力驱动增压制动压缩机3。可以从高压塔30提取富氮气体14,在换热器5中升温以形成流17,然后,以进口温度T5在膨胀机18中膨胀。优选地使用膨胀机18(产生)的动力驱动冷增压制动压缩机8。然后,膨胀机18的排气(流19)回到换热器5的冷端,以重新加热到接近环境温度,从而形成流24。泵21将从低压塔31的底部提取的液态成品氧20的压力升高到所期望的压力,然后将加压氧流22送到换热器5以汽化和加热,从而形成成品氧23。该双塔系统应用于很多专利或论文所说明的用于空气分离技术的常规类型的两塔工艺,该双塔系统具有高压塔30和低压塔31,它们通过位于低压塔底部的再沸腾器-冷凝器热连接。可以将氩塔(未示出)与双塔系统一起使用以提供浓缩氩流。
上述温度T1、T2、T3、T4以及T5被提供作为优选设置。根据汽化氧的压力和塔系统的压力可以更改这些温度的大小顺序,以使工艺性能最优化。
值得注意的是,增压制动压缩机3、8是单级压缩机,并且通常作为膨胀机-增压机组件的一部分来提供,因此,与独立的或马达驱动的增压压缩机相比,它们的构造较简单并且它们的成本结构较低。但是,如有必要,压缩机3、8也可以是独立的或电机驱动的增压压缩机。
图2的实施例的工艺参数范围如下流11的压力约11至17巴流4的压力约18至25巴流9的压力约27至50巴T1约-110℃至-140℃可以通过可选地提取一些经由流27或/和33的液化空气流来减少增压制动压缩机8压缩的流。这样,驱动增压制动压缩机8所需要的动力更少,因此,可以节省一些能量。以第一(出口)压力和第二(出口)压力液化的空气的量应该不多于送到塔系统的液化空气的50%,优选地不多于40%,更优选地不多于35%。
由增压制动压缩机8压缩的流为进给空气的至少10%,优选地为进给空气的15%至30%。
在图3的方案中,将全部流11送到换热器5,在初步冷却到高于温度T2的约-20℃至0℃的温度T6之后,分离流11。将空气的一部分35送到增压制动压缩机3的进口。这样提高了此增压制动压缩机3的性能并产生更高的排气压力。也可以去除压缩机3的后置冷却器换热器(未示出),以减少压降并降低设备成本。将空气的其余部分送到膨胀机13;或如前所述,将空气的其余部分分离成两部分,一部分送到膨胀机13,其余部分33液化。
图3的其余部分与图2所述相同。
在图4的实施例中,通过添加机械制冷装置39(使用FreonTM或一些其它的制冷剂),可以通过将增压制动压缩机8的进口温度T6降低到约-90℃至-50℃而进一步改进图3的实施例的性能。可以降低压缩机1的排气压力,以利于压缩机的选择并且减少工艺的能耗。制冷装置39可以以约-50℃至-20℃的温度运行。与能耗的总体减少量相比,该制冷装置的附加的能量需求很小。
在换热器5的上游分离在压缩机1中压缩过的流11,将一部分38直接送到换热器而不经过任何中间冷却,利用制冷装置39冷却其余部分36以形成流37。将流37送到换热器5的中间位置并与被不完全冷却的流38汇合。
在空气分离技术中,采用空气膨胀机代替氮膨胀机是普通作法。图5的实施例说明了这样一种布置在第一压缩机之后,流11的一部分12在换热器5中冷却,提取流12的一部分以形成流50,将流50送到膨胀机52膨胀,然后进入低压塔31。膨胀机52的动力优选用于驱动冷压缩机8。值得注意的是,可以选择在换热器5前分离流12、将相应的空气流送到换热器中的单独的通道、然后使其在膨胀机52中冷却和膨胀、接着进入塔内。
可以如图6中所述稍微修改上述技术使膨胀机13的排气流54的空气的一部分53在换热器5中升温,然后送到膨胀机52膨胀,接着进入低压塔。在流54中存有冷凝的情况下,可以通过添加气-液分离器来提取供给到膨胀机52的气体,或甚至更好地使用高压塔的贮槽作为分离器,在此情况下,在高压塔的贮槽处提取供给到膨胀机的气体。
在很多需要大量高压富氮成品气的情况下,利用富氮气体膨胀机18不再经济。相反,如图7所示,可以从高压塔30直接提取和生产富氮气体14以生产氮成品41。在该情况下,可以选择提高压缩机1的压力来增加膨胀机13的输出功率,以便弥补由不使用氮膨胀机而引起的制冷不足。为了进一步简化膨胀机和增压制动压缩机的布置,可以将串联的膨胀机和增压制动器(booster brake)机械地结合成单个系统膨胀机13的动力驱动两个压缩机制动器(compressor brake)3和8。根据膨胀机和增压制动压缩机的流量和压力,可以使用变速器(传动装置)来优化系统性能。图8说明具有传动装置的布置。
可以修改所述方法将提取的液氮汽化作为附加的流或作为替换提取的氧流的流。
所说明的方法采用双塔系统,但是可以容易地理解该发明也适用于三塔系统。所说明的方法也适用于包括氩塔或混合塔的系统。可以使用任何类型的合适的材料和换热装置来填充这些塔。
在双塔或三塔系统在高压下运行的情况下,可以在膨胀机18中膨胀一些低压氮。
权利要求
1.一种用于在包括高压塔(30)和低压塔(31)的塔系统中通过低温蒸馏分离空气的方法,该方法包括i)在第一压缩机(1)中将所有供给空气压缩到第一出口压力;ii)将处于第一出口压力的空气的第一部分(4)送到第二压缩机(3),并且将该部分空气压缩到第二出口压力;iii)在换热器(5)中冷却处于第二出口压力的空气的至少一部分以形成处于第二出口压力的被冷却的压缩空气,将处于第二出口压力的被冷却的压缩空气的至少一部分送到第三压缩机(8),并且将处于第二出口压力的被冷却的压缩空气的至少一部分压缩到第三出口压力;iv)液化处于第三出口压力的空气的至少一部分(10),并且将液化空气送到塔系统的至少一个塔,其中送到塔系统的液化空气的至少50%在第三压缩机中压缩过;v)在换热器中冷却处于第一出口压力的空气的第二部分(12),并且在膨胀机(13)中将空气的第二部分的至少一部分从第一出口压力膨胀到塔系统的一个塔的压力,并将膨胀过的气体送到该塔;vi)从塔系统的一个塔内取出液体(20),对该液体加压,并且在换热器中通过热交换使该液体汽化。
2.根据权利要求1所述的方法,其特征在于,在第二压缩机(3)的上游冷却空气的第一部分的至少一部分。
3.根据权利要求2所述的方法,其特征在于,在第二压缩机(3)的上游在换热器(5)中冷却空气的第一部分的至少一部分。
4.根据权利要求2或3所述的方法,其特征在于,在第二压缩机的上游利用制冷装置冷却空气的第一部分的至少一部分。
5.根据上述权利要求中任一项所述的方法,其特征在于,在第一出口压力和第二出口压力中的至少一个压力下,在换热器中液化另外的空气(27,33)。
6.根据上述权利要求中任一项所述的方法,其特征在于,第三压缩机(8)仅压缩待液化的空气。
7.一种用于通过低温蒸馏分离空气的设备,该设备包括a)塔系统(30,31);b)第一压缩机(1)、第二压缩机(3)以及第三压缩机(8);c)膨胀机(13,18,52);d)用于将空气送到第一压缩机以形成处于第一出口压力的压缩空气的管道;e)用于将处于第一出口压力的空气的第一部分送到第二压缩机以形成处于第二出口压力的空气的管道;f)换热器(5),用于将处于第二出口压力的空气的至少一部分送到该换热器以形成处于第二出口压力的冷却过的压缩空气的管道;g)用于将处于第二出口压力的冷却过的压缩空气的至少一部分送到第三压缩机以生产处于第三出口压力的空气的管道;h)用于将处于第三出口压力的液化空气从换热器取出的管道以及用于将液化空气送到塔系统的至少一个塔的管道,其中送到塔系统的液化空气的至少50%在第三压缩机中压缩过;i)用于将处于第一出口压力的空气的第二部分从换热器取出的管道以及用于将空气的第二部分的至少一部分送到膨胀机的管道,用于将在膨胀机中膨胀过的空气送到塔系统的至少一个塔的管道;j)用于从塔系统的一个塔中取出液体(20)的管道,用于对该液体的至少一部分加压以形成加压液体的装置(21),以及用于将该加压液体的至少一部分送到换热器的管道。
8.根据权利要求7所述的设备,其特征在于,包括附加的膨胀机(18)以及用于将氮从塔系统的一个塔送到该附加的膨胀机的装置。
9.根据权利要求8所述的设备,其特征在于,第二压缩机(3)和第三压缩机(8)中的一个联接到膨胀机(13),第二压缩机(3)和第三压缩机(8)中的另一个联接到附加的膨胀机(18)。
10.根据权利要求7或8所述的设备,其特征在于,第二压缩机(3)和第三压缩机(8)中的至少一个联接到膨胀机(13)。
11.根据权利要求7至10中任一项所述的设备,其特征在于,用于将处于第一出口压力的空气的第一部分送到第二压缩机(3)的管道连接到换热器的中间位置。
12.根据权利要求7至11中任一项所述的设备,其特征在于,膨胀机(13,18,52)选自下列膨胀机出口连接到高压塔的空气膨胀机、出口连接到低压塔的空气膨胀机、高压氮膨胀机以及低压氮膨胀机。
13.根据权利要求7至12中任一项所述的设备,其特征在于,该设备包括选自下列膨胀机的附加的膨胀机(13,18,52)出口连接到高压塔的空气膨胀机、出口连接到低压塔的空气膨胀机、高压氮膨胀机以及低压氮膨胀机。
14.根据权利要求13所述的设备,其特征在于,附加的膨胀机(13,18,52)联接到第二压缩机(3)和第三压缩机(8)中的一个。
全文摘要
本发明涉及用于通过低温蒸馏分离空气的方法和设备。一种用于在包括高压塔和低压塔的塔系统中通过低温蒸馏分离空气的方法,包括将所有供给空气在第一压缩机(1)中压缩到第一出口压力,将处于第一出口压力的空气的第一部分送到第二压缩机(3),并将该空气压缩到第二出口压力,在换热器(5)中冷却处于第二出口压力的空气的至少一部分以形成处于第二出口压力的冷却过的压缩空气,将处于第二出口压力的冷却过的压缩空气的至少一部分(7)送到第三压缩机(8),并且将处于第二出口压力的冷却过的压缩空气的至少一部分压缩到第三出口压力,使处于第三出口压力的空气的至少一部分液化,并且将液化空气(10)送到塔系统的至少一个塔,其中送到塔系统的液化空气的至少50%在第三压缩机(8)中压缩过;在换热器中冷却处于第一出口压力的空气的第二部分(12),并且在膨胀机(13)中将空气的第二部分的至少一部分从第一出口压力膨胀到塔系统的一个塔(30,31)的压力,然后将膨胀过的空气送到该塔,从塔系统的一个塔取出液体(20)并且在换热器中通过热交换使该液体汽化。
文档编号F25J3/04GK1890525SQ200480036370
公开日2007年1月3日 申请日期2004年11月30日 优先权日2003年12月10日
发明者B·哈, J-R·布吕热罗勒 申请人:液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1