一种雾化水滴在载冷气流中冻结制取颗粒冰的方法及装置的制作方法

文档序号:4775699阅读:145来源:国知局
专利名称:一种雾化水滴在载冷气流中冻结制取颗粒冰的方法及装置的制作方法
技术领域
本发明涉及一种制取颗粒冰的方法及装置,具体来说,涉及一种雾化水滴在载冷 气流中冻结制取颗粒冰的方法及装置。
背景技术
制冰在食品保鲜、工业冷却、空调和冰蓄冷等领域得到广泛应用。由于冰的导热 系数比金属的导热系数小两个数量级,如0°c时铜和铝的导热系数分别为401W/ (m-K)和 236 W/ (πι·Κ),而冰的导热系数仅为2 W/ (πι·Κ),因此当冰层在固体传热面上形成后将产生 很大的传热热阻,传热温差增大,制冰能耗升高,制冰速度也随冰层厚度的增加而变慢,这 将显著地降低制冰系统的制冰效率。近些年来,为减小或克服冰层热阻问题,产生了一些新 的制冰方法,如制取片冰当冰层在制冷面上形成后,及时通过刮冰装置将冰从换热面上去 除,获取片冰;又如制取流体冰让水在低温液体中冻结成冰,形成冰水混合物,从而避免 冰在固体传热面上生成。这些方法都可以显著降低制冰过程的能耗,得到了快速发展和应 用。但是,现有的上述制冰方法使用的制冰设备复杂,投资较高,不适合大规模制冰,并且在 制冰热效率上也有待进一步提高。

发明内容
技术问题本发明所要解决的技术问题是提供一种雾化水滴在载冷气流中冻结 制取颗粒冰的方法,可以避免在固体传热面上产生冰层的热阻问题,提高制冰过程热效率。 同时,本发明还提供了一种制取颗粒冰的装置,该装置结构简单,成本低廉,适合于大规模 工业制冰。技术方案为解决上述技术问题,本发明的雾化水滴在载冷气流中冻结制取颗粒 冰的方法包括首先,通过循环增压风机,将载冷气流输送到制冷装置中冷却,形成低温气 流,然后,将低温气流送入颗粒冰冻结通道中,同时,雾化喷嘴向颗粒冰冻结通道中喷洒雾 化水滴,雾化水滴和低温气流相遇,雾化水滴被低温气流冷却而冻结成颗粒冰,接着,将载 冷气流和颗粒冰一起排入旋风分离器中,在旋风分离器中,颗粒冰与载冷气流分离,载冷气 流从旋风分离器的上部通过管道进入循环增压风机,再次进入下一个循环;颗粒冰沿着旋 风分离器的内壁下滑,从旋风分离器的下部排出并收集。按照上述方法制取颗粒冰的装置,包括循环增压风机、制冷装置、给水箱、雾化喷 头、颗粒冰冻结通道和旋风分离器;颗粒冰冻结通道是左右两端为开口且水平放置的空心 管道,循环增压风机的输出端与制冷装置的输入端连接,制冷装置的输出端与颗粒冰冻结 通道的入口连接,颗粒冰冻结通道的出口与旋风分离器的输入端连接,旋风分离器的上部 输出端与循环增压风机的输入端连接,旋风分离器的下部输出端为开口,给水箱与雾化喷 嘴连接,雾化喷嘴位于颗粒冰冻结通道内部。有益效果与现有技术相比,本发明的技术方案具有以下有益效果1.具有制冰 能耗低和制冰效率高的优点。采用本发明的方法制取颗粒冰,颗粒冰是雾化水滴在流动过程中在与低温气流换热,冻结而成。在传统制冰方式中,水在固体传热面上形成,由于冰的 导热系数比金属的导热系数小得多,因此当冰在传热面上形成后,产生较大热阻,传热温差 增大,制冰能耗升高。该制取方法通过雾化水滴在低温空气中迅速冻结的方法制得小尺寸 的颗粒冰,极大地增加雾化水滴与载冷气流两相间的接触换热面积。该制取方法充分利用 气固两相间传热强度大的特点进行流化制冰,具有制冰能耗低、制冰速度快和能够大规模 制取颗粒冰的优点。2.整个装置结构简单,成本低廉,具有能够大规模制取颗粒冰的优点。本发明的 制取颗粒冰的装置,包括循环增压风机、制冷机蒸发器、给水箱、雾化喷头、颗粒冰冻结通 道、旋风分离器和颗粒冰收集器。整个装置结构简单,成本低廉。另外,根据需要,合理选择 各部件的型号,可以实现大规模工业制冰的目的。


图1是本发明的部件连接示意图。图中有循环增压风机1、制冷装置2、给水箱3、雾化喷嘴4、颗粒冰冻结通道5、旋 风分离器6、颗粒冰收集器7,图中箭头表示载冷气流流动方向。
具体实施例方式下面结合附图,对本发明的技术方案进行详细的说明。本发明的一种雾化水滴在载冷气流中冻结制取颗粒冰的方法,包括首先,通过循 环增压风机1,将载冷气流输送到制冷装置2中冷却,形成低温气流。该载冷气流可以是空 气、二氧化碳或者氮气。然后,将低温气流送入颗粒冰冻结通道5中,同时,雾化喷嘴4向颗 粒冰冻结通道5中喷洒雾化水滴。雾化水滴和低温气流在颗粒冰冻结通道5中相遇。雾化 水滴被低温气流冷却而冻结成颗粒冰;雾化水滴在冻结过程中,将热量释放给低温气流,使 得低温气流的温度升高。接着,将载冷气流和颗粒冰一起排入旋风分离器6中。在旋风分 离器6中,颗粒冰与载冷气流分离。载冷气流从旋风分离器6的上部进入循环增压风机1, 再次进入下一个循环。颗粒冰沿着旋风分离器6的内壁下滑,从旋风分离器6的下部排出 并收集。如图1所示,按照上述方法制取颗粒冰的装置,包括循环增压风机1、制冷装置2、 给水箱3、雾化喷头4、颗粒冰冻结通道5和旋风分离器6。颗粒冰冻结通道5是左右两端为 开口且水平放置的空心管道。循环增压风机1的输出端与制冷装置2的输入端连接,制冷 装置2的输出端与颗粒冰冻结通道5的入口连接,颗粒冰冻结通道5的出口与旋风分离器 6的输入端连接,旋风分离器6的上部输出端与循环增压风机1的输入端连接,旋风分离器 6的下部输出端为开口,给水箱3与雾化喷嘴4连接,雾化喷嘴4位于颗粒冰冻结通道5内 部。制冷装置2可以是多种,本技术方案优选制冷机蒸发器。根据传热理论可知,加大换热温差和减小粒径以增大相对换热面积是增加换热量 的两种途径。加大换热温差意味着能耗的增加。本发明采取了水滴在喷管中雾化的方式来 实现小颗粒冰的制取。整个系统以气流作为循环载冷介质,气流与制冷装置进行换热冷却, 形成低温气流,进入颗粒冰冻结通道5中。雾化喷头4向颗粒冰冻结通道5中射入雾化水 滴。雾化水滴被载冷介质气流迅速冷却,在颗粒冰冻结通道5内冻结成颗粒冰,并与载冷气流一起进入旋风分离器6中。在离心力的作用下,颗粒冰与载冷气流形成分离,颗粒冰沿着 旋风分离器6的内壁下滑至旋风分离器6的下部;载冷气流通过循环增压风机1,再次进入 制冷装置中被冷却,进行下一循环。在传统制冰方式中,水在固体传热面上形成,由于冰的导热系数比金属的导热系 数小得多,因此当冰在传热面上形成后,产生较大热阻,传热温差增大,制冰能耗升高。本发 明的技术方案是使水通过雾化装置形成细小水滴,与低温载冷气流接触形成多相流动,在 流动过程中冻结成冰颗粒。由于雾化的水滴的直径很小(能达到微米级),故其与气流间的 换热面积大大的增加,如把直径为IOmm的冰颗粒雾化成直径为0. Imm的冰滴,其表面积将 增大100倍,从而极大地强化了水滴冻结过程的传热特性传热温差小,传热效率高。本发 明提供的技术方案克服了液体在固体表面冻结时因结冰厚度的增加而导致冰的导热热阻 的增大、相对换热面积的减少、制冰效率的降低,进而使能耗增大的缺点,实现了降低制冰 能耗,并能够在极短的时间内使细小水滴发生冻结之目的。本发明的制取颗粒冰的装置包括循环增压风机1、制冷装置2、给水箱3、雾化喷头 4、颗粒冰冻结通道5和旋风分离器6。整个装置结构简单,成本低廉,适合于大规模工业制 冰。进一步,所述的制取颗粒冰的装置,还包括颗粒冰收集器7,该颗粒冰收集器7位 于旋风分离器6下部输出端的下方。在整个制取颗粒冰的装置中增加设置颗粒冰收集器7, 可以方便的收集制成的颗粒冰。进一步,所述的雾化喷嘴4可以是一个,也可以是两个或两个以上。当雾化喷嘴4 是两个或两个以上时,雾化喷嘴4沿颗粒冰冻结通道5的周向均勻布置。设置两个或两个 以上雾化喷嘴4,可以提高制冰效率,可以满足大规模生产颗粒冰的要求。由于靠近颗粒冰 冻结通道5入口的气流压力最大,雾化喷嘴4喷射出来的雾化水滴可以更有效附着在颗粒 冰的表面,所以优先选择将雾化喷嘴4布置在靠近颗粒冰冻结通道5的入口处。本发明的核心保护精神是通过雾化水滴在低温空气中迅速冻结的方法制得颗粒 冰,该方法充分利用气固两相间传热强度大的特点进行流化制冰。任何采用该方法,或对该 方法进行本技术领域内的常规改进,均落入本技术方案的保护范围。与此相应,任何对本技 术方案提供的制取颗粒冰的装置,进行本技术领域中的常规替代,亦属于本技术方案的保 护范围。
权利要求
1.一种雾化水滴在载冷气流中冻结制取颗粒冰的方法,其特征在于,该方法包括首 先,通过循环增压风机(1),将载冷气流输送到制冷装置(2)中冷却,形成低温气流,然后, 将低温气流送入颗粒冰冻结通道(5)中,同时,雾化喷嘴(4)向颗粒冰冻结通道(5)中喷洒 雾化水滴,雾化水滴和低温气流相遇,雾化水滴被低温气流冷却而冻结成颗粒冰,接着,将 载冷气流和颗粒冰一起排入旋风分离器(6)中,在旋风分离器(6)中,颗粒冰与载冷气流分 离,载冷气流从旋风分离器(6)的上部进入循环增压风机(1),再次进入下一个循环;颗粒 冰沿着旋风分离器(6)的内壁下滑,从旋风分离器(6)的下部排出并收集。
2.按照权利要求1所述的雾化水滴在载冷气流中冻结制取颗粒冰的方法,其特征在 于,所述载冷气流是空气、二氧化碳或者氮气。
3.一种按照权利要求1所述的方法制取颗粒冰的装置,其特征在于,该装置包括循环 增压风机(1)、制冷装置(2)、给水箱(3)、雾化喷头(4)、颗粒冰冻结通道(5)和旋风分离器 (6);颗粒冰冻结通道(5)是左右两端为开口且水平放置的空心管道,循环增压风机(1)的 输出端与制冷装置(2)的输入端连接,制冷装置(2)的输出端与颗粒冰冻结通道(5)的入 口连接,颗粒冰冻结通道(5)的出口与旋风分离器(6)的输入端连接,旋风分离器(6)的上 部输出端与循环增压风机(1)的输入端连接,旋风分离器(6)的下部输出端为开口,给水箱 (3)与雾化喷嘴(4)连接,雾化喷嘴(4)位于颗粒冰冻结通道(5)内部。
4.按照权利要求3所述的制取颗粒冰的装置,其特征在于,该装置还包括颗粒冰收集 器(7),该颗粒冰收集器(7)位于旋风分离器(6)下部输出端的下方。
5.按照权利要求3所述的制取颗粒冰的装置,其特征在于,所述的雾化喷嘴(4)为两个 或两个以上时,雾化喷嘴(4)沿颗粒冰冻结通道(5)的周向均勻布置。
6.按照权利要求3所述的制取颗粒冰的装置,其特征在于,所述的雾化喷嘴(4)靠近颗 粒冰冻结通道(5)的入口。
7.按照权利要求3至6中任何一项所述的制取颗粒冰的装置,其特征在于,所述的制冷 装置(2)是制冷机蒸发器。
全文摘要
本发明公开了一种雾化水滴在载冷气流中冻结制取颗粒冰的方法及装置,该方法主要包括首先,通过循环增压风机,将载冷气流输送到制冷装置中冷却,然后,将低温气流送入颗粒冰冻结通道中,同时,雾化喷嘴向颗粒冰冻结通道中喷洒雾化水滴,雾化水滴被低温气流冷却而冻结成颗粒冰,接着,将载冷气流和颗粒冰一起排入旋风分离器中,颗粒冰沿着旋风分离器的内壁下滑,从旋风分离器的下部排出并收集。按照上述方法制取颗粒冰的装置,包括循环增压风机、制冷装置、给水箱、雾化喷头、颗粒冰冻结通道和旋风分离器。利用该方法及装置制取颗粒冰,可以避免在固体传热面上产生冰层的热阻问题,提高制冰过程热效率,适合于大规模工业制冰。
文档编号F25C1/00GK102128531SQ201110079210
公开日2011年7月20日 申请日期2011年3月31日 优先权日2011年3月31日
发明者袁竹林, 赵乾乾 申请人:东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1