吸收式冷冻机的制作方法

文档序号:4761972阅读:262来源:国知局
专利名称:吸收式冷冻机的制作方法
技术领域
本发明涉及一种按普拉顿-姆恩特斯制(Platen-Munters System)系统的吸收式冷冻机,它包括一个用于汽化一种溶解在溶剂内的致冷剂的发生器、溶剂分离器,溶剂在其中与致冷剂进分分离、用于液化致冷剂的冷凝器、致冷剂借助于干燥气体并通过冷却在其中汽化的蒸发器、可能的第一气体换热器、以及吸收器,在吸收器内已汽化的致冷剂输入由致冷剂和溶剂组成的贫化的混合物内,混合物在发生器内重新汽化。
为了运行已知的按普拉顿-姆恩特斯制(Platen-Munters System)的吸收式冷冻机,需要一个温度远远高于100℃的热源。反之,当温度小于等于100℃时效率趋近于零。因此现有具有较低温度的热源,例如来自工业废热系统诸如远距离加热装置的热水、太阳能加热装置等,不适用于传统设计的这种吸收式冷冻机,因为通常不能达到必要的高温。
因此,本发明的目的是提供一种前言所述类型的吸收式冷冻机,采用它即使在温度较低时,优选地在约75℃时,也能获得高的效率。
按本发明为达到这一目的,蒸发器出口或可能设在蒸发器下游的第一气体换热器的出口和发生器出口汇入一根引入吸收器的旁通管中,因此经第一气体换热器来自蒸发器由汽化的致冷剂和干燥气体组成的混合物引向发生器出口并通过旁通管,在那里此混合气体与来自发生器的部分除气的热溶液接触并从混合气体中提取其他致冷剂。
因此,从蒸发器经第一气体换热器来到的混合物,不是直接引向吸收器,而是引向发生器出口并在那里通过旁通管。也可以取消此第一气体换热器,于是在这种情况下混合物从蒸发器出口引向旁通管进口。在两种情况下都可以在吸收器进口区达到一个低的溶液浓度,无需强烈地加热发生器,这种低的溶液浓度对于低的致冷温度而言是前提条件。因此,温度低的热源可以应用于按本发明的吸收式冷冻机。采用低的发生器温度减少了同时汽化的水量,从而避免了在蒸发器内效率损失。
按本发明的另一项设计可以规定设第二气体换热器,它的一次侧设在蒸发器的出口或可能的第一换热器出口与旁通管进口之间,它的二次侧设在旁通管出口与吸收器进口之间,所以来自旁通管的混合气体被冷却。冷却混合气体可以改善来自发生器贫化了的液体的增浓。
旁通管允许低的工作温度,但也会造成能量损失。按本发明另一种实施形式可以规定,在蒸发器出口与吸收器进口之间或在旁通管进口与出口之间设一控制阀,借助它可计量通过旁通管绕行的气体量,未绕行的部分直接流向吸收器。因此可以按供热源暂时所要求的温度下降控制旁通管的效果。
按本发明的一种方案,控制阀可以是一个使旁通短路的直通阀,因此当阀打开时旁通管无效,而在阀关闭时旁通管可达到全效。
按本发明的另一种方案,控制阀可以是一个三通阀,它将来自蒸发器的混合气体在去旁通管的流量与去吸收器的流量之间分配。由此可以非常准确地调整旁通管的效果。
为了增大在流过旁通管的混合气体与流过旁通管的液体之间的接触面,旁通管的内壁加上一种耐氨的纤维材料层,这种耐氨的纤维材料优选地由玻璃纤维网膜构成,它满足有关大的表面和高的稳定性的要求。
本发明另一项特征在于,可在旁通管里面装一个贴靠在其内壁上的螺旋弹簧,在这种情况下耐氨的纤维材料夹紧在内壁与螺旋弹簧之间。
以此方式防止减小用于流过旁通管的气体的旁通管流通截面。
为了达到特别高的效率,按本发明的另一种实施形式,致冷剂由氨构成以及溶剂由水构成。
此外还可以规定旁通管可以加热,因此旁通管温度可以调整到这样一个值,即,此时流入的混合气体可以从贫化的溶液中提取氨的很大部分。
本发明还涉及一种用于吸收式冷冻机的气泡泵,它有至少一根垂直的泵管,泵管可通过液态或气态载热介质加热,以及一种致冷剂溶液通过形成气泡可在泵管内向上运动。
在吸收式冷冻机内的液体循环往往通过所谓“Mammut泵”或“气泡泵”维持,例如在典型的普拉顿-姆恩特斯制(Platen-MuntersSystem)中,在那里水用作溶剂和氨用作致冷剂。因为为了运行这种吸收式冷冻机可以从热源提取能量,所以它特别适用于转换太阳能致冷。传统的气泡泵显然不适合或只能很差地用温度可变的载热介质加热,例如在获取太阳能时发生的那种温度变化。
这种气泡泵由两个互相连通的容器组成,它们注入含水的氨溶液。两个容器之一,亦即泵的有效部分设计为径直向上的细管,它被加热,所以在管内释出氨。于是形成的气泡向上推动在细管内的溶液。在有些气泡泵中,在径直向上的细管下部有一小的集气罐,细管从上面插入集气罐。在气体向上冲撞处于罐上面的细管中的液体之前聚集在那里。
在提及的两类气泡泵中有一临界的低温区,在此温度范围内气泡的形成如此之慢,以致为了充填此细泵管的整个横截面它们的量太小,因此它们向上游动但并没有携带液体。其结果是降低了在细泵管内的氨浓度。但按照氨的水溶液的热力学参数温度却上升了,在此温度下却可以释放氨。在泵的温度缓慢上升的情况下,所要求的最低温度因而也同时增加并可能发生这样一些情况,即此时气泡泵的工作持久地失效,因为在细泵管内几乎只有水而没有氨。上述集气罐应能降低这种危险性。但恰恰在使用太阳能时,尽管如此有时也会产生一种随时间的温度变化过程,这一过程使得即使是带集气罐的气泡泵由于所说明的效应同样使其工作失效。当起动或冷却过程太慢时,致冷剂溶液可能失去过多气体,并由此使气泡泵长期不运行。
这一间题也可能在用气体加热的氨吸收式冰箱内发生,例如当气体喷嘴污染堵塞时。只有在将整个冰箱短时倒置,使富氨的溶液重新进入细泵管内之后,泵才能再次有效工作。对于大型的冷冻机禁止这种处理方式,因此大型冷冻机组通常不配备气泡泵,而是安装电动输送泵。
在持续运行中,最佳的效率要求与加热温度无关地准确计量泵唧容量。
因此本发明的目的是提供一种上述类型的气泡泵,采用它可避免气泡泵在临界温度区内失效,并能持续运行吸收式冷冻机。
为达到此目的按本发明采取的措施是,至少一根的泵管下端与一个可加热的细长的泵起动容器连接,该泵起动容器有一进口孔和一个出口孔,并可被在泵管内流动的致冷剂溶液沿基本上水平的方向流过,其中进口孔和出口孔按这样的方式布置,即,使得在泵起动容器内形成的气泡保持在此容器内,在这种情况下致冷剂溶液的液位在冷态处于泵管有效的泵送区之下。
在致冷剂溶液进入泵管前大部分处于泵起动容器中,此容器加热到一个始终略低于实际上气泡泵加热温度的温度。若现在此加热温度上升,则在上述泵起动容器内形成气泡,由于此容器的形状它不会流出并因此挤压溶液,于是溶液的液位上升直至在此期间加热的泵管,所以泵送过程被起动。若反之在泵管上的温度处于临界区内,此时例如只释放很少的氨,因此泵起动容器已经冷却到使氨在那里溶入溶液内,气泡消失,溶液从气泡泵撤回。与在这方面已知的直接加热其中插入泵管的集气罐相比这是一个重要的不同点,因为在那里只要在气泡泵有效区内的温度仍处于最低气体析出温度以上,就不可能发生气泡缩合。另一个不同点在于,泵起动容器优选地以卧管的形式或其他类似的增大表面的形式存在,采用这种形式,致冷剂溶液作为在气泡下面薄的底层流过容器并在此过程中打旋,因此才有可能在冷却时充分地重新吸收气泡,因为对于一种例如在传统的集气罐内那样没有涡流的液体而言,冷却时在表面形成一个比重很小的液态氨的薄层,它妨碍继续的溶解过程。因此在按本发明的气泡泵中,当加热温度降至临界区内时,致冷剂溶液自动从气泡泵离开。另一方面,氨-水溶液只有在温度高于与当时的系统压力对应的最低气体析出温度时才能处于气泡泵的有效区内。
按本发明的另一项设计可以规定,泵起动容器由一个水平布置的有覆盖面的空心圆柱体构成,其中,进口孔和出口孔设在相对的覆盖面的下部区内。
因此在加热时自动形成的气泡被阻止经出口孔逸出。
按本发明的另一项设计可以规定,泵起动容器被一加热套围绕,液态或气态的载热介质可通过它导引。因此允许与在气泡泵内的温度无关地确定泵起动容器的温度,在这种情况下优选地选择一个比在气泡泵内存在的温度始终略低的温度,所以在泵起动容器内部事先已经到达临界温度区,以及收缩的气泡将致冷剂溶液从泵管抽回。
因此按本发明的另一种实施形式可以规定,在气泡泵与泵起动容器之间所要求的小的温差可以这样达到,即,使加热的载热介质首先流过气泡泵,然后才流过泵起动容器。
按本发明另一种可选用的实施形式,泵管可被第一同心加热套围绕,此加热套用于流过液态或气态的载热介质;以及,在泵管与第一同心加热套之间设第二同心加热套,它用于液态的载热介质,在第二同心加热套内载热介质的液位是可调的。
因此,构成按本发明的气泡泵的容器的总热阻可适应于所要求的热流。此外,向泵管供热可与通过第一同心加热套流动的载热介质的温度无关地调整。
按本发明的另一项设计,在包括发生器、吸收器和冷凝器的吸收式冷冻机中,可在发生器与吸收器之间的连接管上或在发生器与冷凝器之间的连接管上设温度传感器;以及设一控制器,借助此控制器可以根据通过传感器测得的温度调整泵送容量。
在吸收式冷冻机上的测量以及准确的计算证明,冷冻效率只有在气泡泵的泵送容量的常数时才是最佳的。但在采用太阳能的情况下可变的加热温度使泵送容量剧烈波动。
泵送容量必要的调整可这样实现,即,输入气泡泵的热量可与温度无关地调整,这既可以通过改变在来自太阳能机组的载热介质与气泡泵的泵管之间的接触面积也可以通过改变在此处的导热系数来调整。
按本发明另一种实施形式,调整气泡泵内导热系数的附加的可能性在于,改变载热介质的流速。因为在介质与固体之间的导热系数随介质的流速增加以及载热介质反正必须不断地循环,所以导热系数的这种调整可有利地与载热液体流速的调整结合起来。
有利地,在冷冻系统的发生器与吸收器之间或在发生器与冷凝器之间的温度变化曲线可用作泵送容量的度量,因为较大的泵送容量使温度较高的区域向靠近吸收器或冷凝器的方向移动。
按本发明的另一项特征可以规定,第二同心加热套与气体换热器连接,借助气体换热器在加热时膨胀的气体,可以调整在第二同心加热套内部的液位。这种在加热时膨胀的气体将液体从围绕着气泡泵细管的可变的加热套挤出,此可变的加热套便意味着是可变的热阻。
有利地,气体温度计的位置意味着泵送容量的调整可能性。若将气体温度计移近吸收器或移近冷凝器,在那里管的接触面较冷,则自动增大了围绕着气泡泵的加热套并使气泡泵更强有力地泵送。若相反提高泵的加热温度,则泵更加快速地泵送并使气体温度计内的温度上升,由此将液体从加热套挤出并使泵节流。
下面借助于附图表示的实施例详细说明本发明。其中

图1按本发明的吸收式冷冻机一种实施形式的示意图;图2按本发明的吸收式冷冻机另一种实施形式的示意图;图3在取决于旁通管控制阀的调整的不同运行温度时按本发明的吸收式冷冻机实验取得的效率变化曲线;图4通过旁通管的剖面斜视图;以及图5按本发明的气泡泵的一种实施形式。
下面所说明的吸收式冷冻机基本上如典型的普拉顿-姆恩特斯制(Platen-Munters System)那样工作,这种系统尤其应用于Elektrolux和Servel吸收式冰箱中并有许多文件证明。
吸收式冷冻机包括发生器7,用于借助气泡泵1蒸发溶解在溶剂内的致冷剂、溶剂分离器2,溶剂在其中与致冷剂进行分离、冷凝器3,用于液化致冷剂、蒸发器4,致冷剂借助于干燥气体并通过冷却在其中汽化、第一气体换热器6、以及吸收器5,在吸收器内汽化的致冷剂输入由致冷剂和溶剂组成的贫化的混合物内,混合物在发生器7内重新蒸发。
为了更好地理解,借助一种实施例说明本发明,在此实施例中,溶剂由水构成,致冷剂由氨构成。但在本发明的范围内也可以采用其他恰当的溶剂和致冷剂。
按本发明规定,设在汽化器4下游的第一气体换热器6的出口与发生器7的出口汇入一根引入吸收器5的旁通管8内,来自汽化器4经过第一气体换热器6由汽化的致冷剂和干燥气体组成的混合物引向发生器7出口并在那里通过旁通管8,在那里此混合气体与来自发生器7的部分除气的热溶液接触并从混合气体中提取其他致冷剂。
因此,按本发明的吸收式冷冻机可以用此较低的发生器加热温度工作,此发生器加热温度可以低于100℃。
但也可以取消第一气体换热器6,在这种情况下蒸发器4出口直接通入旁通管8内。
在图示的实施例中由一根或多根平行和垂直的细管构成的气泡泵1中,如果来自换热器11的热量不够,则向浓度大的氨溶液供热,因此在气泡泵1内形成氨气泡,它的体积与总气体量相比仅为百分之几,它们随后在发生器7内释放出来。上升的氨气泡将溶液通过细管向上引入水分离器2。从水中分离出来的氨通过上行管9继续向上流动到冷凝器3,在那里它通过冷却液化。液化的氨通过U形管19向下流入蒸发器4,在那里它作为薄膜润湿管壁,干燥气体例如氢气流过此管。与此同时,形成的氨蒸汽连续引走并导致蒸发器4冷却,由此维持按本发明的机器真正的制冷过程。在蒸发器4下端处由氨气和氢组成的混合物比重大于流入蒸发器4内要增浓的混合气体,其结果是保持氢循环继续进行。
在传统的系统中,混合气体直接继续流向吸收器5。但在按本发明的吸收式冷冻机中,在第一气体换热器6之后朝发生器7的方向分流,在那里基于温度条件和取决于浓度的蒸汽压力状况,混合气体在旁通管8内与来自发生器7的部分除气的热溶液顺流或逆流地提取其他的氨。
应当注意,在此过程中变得更重的气体重量不应增得过大,因为这会降低其流速。
因此可以在吸收器5上部达到低的溶液浓度,这是在发生器7无需强烈加热的情况下低的制冷温度的前提条件。由于比较低的发生器温度,限制了同时汽化的水量,因此水-氨混合蒸汽没有必要在上行管9内接着精馏,以及避免了晚些时候由于水在蒸发器内可能造成的效率损失。
通过蒸发器和可能的通过第一气体换热器6到来的由氨气和氢组成的混合物,按图1所示的实施例附加地经过第二气体换热器10的一次侧导向发生器7出口,然后顺流或逆流通过旁通管8,在通过第二气体换热器10二次侧冷却后进一步引向吸收器5,在那里它将其过剩的氨重新释放给来自旁通管8的浓度低的溶液。
在这种情况下吸收器5的尺寸必须比在传统的系统中的略大一些。因为从旁通管8流入吸收器5中的混合气体有比传统的普拉顿-姆恩特斯制(Platen-Munters System)中高的氨蒸汽压力,而且从下面流入吸收器5内,所以,从此吸收器部分流出的溶液有较高的浓度,这就允许晚些时候在发生器7内在较低的温度下推进除气过程。溶液从吸收器5通过液体换热器11去气泡泵1。在那里它上升,并在水分离器2之后,由于在气泡泵1内形成气泡只是轻度变稀的溶液流向发生器7,在那里通过加热发生真正的除气过程。
设在冷凝器端部3与氢循环之间的气体压力平衡罐12应防止在发生器温度过高时附加的氨进入氢循环中。在此气体压力平衡罐12内,较轻的氢在较重的氨上形成覆盖层,因此在氨循环中温度波动时只移动两种气体之间的边界层。通过此气体压力平衡罐12还防止在发生器温度较低时水通过U形管19进入冷凝器3和在那里妨碍冷凝。
在按图2的实施例中,去旁通管8绕行的混合气体的量可通过控制阀13计量,未绕行的剩余量如在已知的普拉顿-姆恩特斯制(Platen-Munters System)中那样直接流往吸收器5。控制阀有利地可以是一个使旁通管短路的直通阀。虽然旁通管8允许较低的工作温度,但消耗自己的能量。通过控制应使旁通管的效果受供热的温度下降的影响调整为小到正好需要的程度。
图3表示在旁通管控制程度不同时测得的按本发明的吸收式冷冻机的效率(纵坐标)与发生器7不同加热温度(横坐标)的关系曲线。曲线14表示在旁通管关闭时的效率,曲线15是在将控制阀13调整为使旁通管起一半作用时的效率,以及曲线16表示旁通管作用最大时的效率。
图4表示了一种增大在旁通管8内混合气体与溶液之间接触面的可能性。具有大的表面17的玻璃纤维网膜或类似的耐氨材料,优选地用螺旋弹簧18压靠在旁通管8的壁上。
图5示意表示一种按本发明的气泡泵。经吸收式冷冻机的吸收器35来自发生器32的致冷剂溶液流到气泡泵36下部的进口,气泡泵设有一垂直的泵管26,它可通过液态或气态的载热介质加热,以及在泵管内致冷剂溶液,例如氢水,由于形成气泡可向上运动。必要时也可以设一根相应于图1至4所示实施形式的旁通管。在传统的吸收式冷冻机中采用按本发明的气泡泵同样带来优点。
按本发明规定,泵管26下端与一可加热的细长的泵起动容器25连接,后者有一进口孔和一出口孔21、22,并可被流入泵管26中的致冷剂溶液沿基本上水平的方向流过。在这里,进口孔和出口孔21、22布置为,使在泵起动容器25内形成的气泡24保持在此容器内,致冷剂溶液23的液位在冷态处于泵管26有效泵送区下方。
泵起动容器由一个具有覆盖面的水平布置的空心圆柱体25构成,其中进口和出口孔21、22设在相对的覆盖面的下部区内。泵起动容器任何其他适用的造型都是允许的。
在图5中表示的气泡24将液位向上一直压到泵管26内。在那里,溶液被在第一同心加热套27内的载热介质通过部分充填的第二同心加热套28进一步加热,由此形成一些小气泡,它们将液体输送到气体分离器31中,从那里起部分除气的溶液流回发生器32,而气体朝一个图中未表示的冷凝器的方向向上继续流动。载热介质30首先流过气泡泵的外加热套27,再从那里通过泵起动器25的加热套20流回热源。在气泡泵与泵起动容器25之间小的温差可这样达到,即,加热用的载热介质先流过气泡泵,然后再流过泵起动容器25。载热液体的流速是可调的,以改变在气泡泵内的热流。
此外,可在发生器32与吸收器35之间的连接管上或在发生器32与未表示的冷凝器之间的连接管上设温度传感器,借此可以根据由传感器侧得的温度调节泵送容量。
一种可能的实施形式包括一气体温度计34。它在发生器32与吸收器35之间的管道上被加热,由此膨胀的气体通过软管33将载热液体从内部加热套28挤压到压力平衡罐29内,其结果是减小泵管26的加热表面。以此可按需调整通过泵管26的热流。
权利要求
1.按普拉顿-姆恩特斯制(Platen-Munters System)的吸收式冷冻机,包括一个用于汽化一种溶解在溶剂内的致冷剂的发生器(7)、溶剂分离器(2),溶剂在其中与致冷剂进行分离、用于液化致冷剂的冷凝器(3)、致冷剂借助于干燥气体并通过冷却在其中汽化的蒸发器(4)、可能的第一气体换热器(6)、以及吸收器(5),在吸收器内致冷剂输入由致冷剂和溶剂组成的贫化的混合物内,混合物在发生器(7)内重新汽化,其特征为蒸发器(4)出口或必要时在蒸发器(4)下游所设的第一气体换热器(6)的出口和发生器(7)出口汇入一根引入吸收器(5)的旁通管(8)中,因此经第一气体换热器(6)来自蒸发器(4)由汽化的致冷剂和干燥气体组成的混合物引向发生器出口并通过旁通管(8),在那里此混合气体与来自发生器(7)的部分除气的热溶液接触并从混合气体中提取其他致冷剂。
2.按照权利要求1所述的吸收式冷冻机,其特征为设第二气体换热器(10),它的一次侧设在蒸发器(4)的出口或可能的第一气体换热器(6)的出口与旁通管(8)的进口之间,它的二次侧设在旁通管(8)的出口与吸收器(5)的进口之间,从而冷却来自旁通管(8)的混合气体。
3.按照权利要求1或2所述的吸收式冷冻机,其特征为在蒸发器(4)出口与吸收器(5)进口之间或在旁通管(8)进口与出口之间设一控制阀(13),借助它可计量通过旁通管(8)绕行的气体的量,未绕行的部分直接流向吸收器(5)。
4.按照权利要求3所述的吸收式冷冻机,其特征为控制阀是一种使旁通管(8)短路的直通阀(13)。
5.按照权利要求3所述的吸收式冷冻机,其特征为控制阀是一个三通阀,它将来自蒸发器(4)的混合气体在去旁通管(8)的流量和去吸收器(5)的流量之间分配。
6.按照前列诸权利要求之一所述的吸收式冷冻机,其特征为旁通管的内壁加上一种耐氨的纤维材料(17)层。
7.按照前权利要求6所述的吸收式冷冻机,其特征为耐氨的纤维材料由玻璃纤维网膜(17)构成。
8.按照权利要求6或7所述的吸收式冷冻机,其特征为在旁通管(8)里面装一个贴靠在其内壁上的螺旋弹簧(18),在这种情况下,耐氨的纤维材料(17)夹紧在内壁与螺旋弹簧(18)之间。
9.按照前列诸权利要求之一所述的吸收式冷冻机,其特征为致冷剂由氨构成,溶剂由水构成。
10.按照前列诸权利要求之一所述的吸收式冷冻机,其特征为旁通管(8)可加热。
11.吸收式冷冻机用的气泡泵,有至少一根垂直的泵管(26),它可通过液态或气态载热介质加热,以及一种致冷剂溶液通过形成气泡可在泵管内向上运动,其特征为至少一根的泵管(26)下端与一个可加热的细长的泵起动容器(25)连接,该泵起动容器(25)有一进口孔和一个出口孔(21、22)并可被在泵管(26)内流动的致冷剂溶液沿基本上水平的方向流过,其中进口孔和出口孔(21、22)按这样的方式布置,即,使得在泵起动容器(25)内形成的气泡保持在此容器内,在这种情况下致冷剂溶液的液位在冷态处于泵管(26)有效的泵送区下方。
12.按照权利要求11所述的气泡泵,其特征为泵起动容器由一个水平布置的有覆盖面的空心圆柱体(25)构成,其中,进口孔和出口孔(21、22)设在相对的覆盖面的下部区内。
13.按照权利要求11或12所述的气泡泵,其特征为泵起动容器(25)被一加热套(20)围绕,液态或气态的载热介质可通过它导引。
14.按照权利要求11、12或13所述的起泡泵,其特征为泵管(26)被第一同心加热套(27)围绕,加热套用于流过液态或气态载热介质;以及,在泵管(26)与第一同心加热套(27)之间设第二同心加热套(28),它用于液态的载热介质,在第二同心加热套(28)内部的载热介质液位是可调的。
15.按照权利要求14所述的起泡泵,其特征为载热液体的流速是可调的。
16.按照前列诸权利要求13至15之一所述的气泡泵,其特征为为达到在气泡泵与泵起动容器(25)之间所要求的小的温差,加热的载热介质首先流过气泡泵,然后再流过泵起动容器(25)。
17.按照前列诸权利要求11至16所述用于包括发生器、吸收器和冷凝器的吸收式冷冻机的气泡泵,其特征为在发生器(32)与吸收器(35)之间的连接管上或在发生器(32)与冷凝器之间的连接管上设温度传感器;以及,设一控制器,借助此控制器可以根据通过传感器测得的温度调整泵送容量。
18.按照权利要求17所述的气泡泵,其特征为第二同心加热套(28)与气体温度计(34)连接,借助气体温度计中在加热时膨胀的气体可调整在第二同心加热套(38)内部的液位。
全文摘要
本发明涉及一种利用普拉顿一姆恩特斯制(Platen-MuntersSystem)的吸收式冷冻机,包括一个用于汽化一种溶解在溶剂内的致冷剂的发生器(7)、溶剂分离器(2),溶剂在其中与致冷剂分离、用于液化致冷剂的冷凝器(3)、致冷剂借助于干燥气体并通过冷却在其中汽化的蒸发器(4)、可能的第一气体换热器(6)、以及吸收器(5),在吸收器内汽化的致冷剂加入由致冷剂和溶剂组成的贫化的混合物内,然后混合物在发生器(7)内重新汽化。蒸发器(4)出口或可能的设在蒸发器(4)下游的第一气体换热器(6)的出口和发生器(7)出口,汇入一根与吸收器(5)连接的旁通管(8)内。经第一气体换热器(6)来自蒸发器(4)由汽化的致冷剂和干燥气体组成的混合物引向发生器出口并从这里引入旁通管(8),在那里混合气体与来自发生器(7)的部分除气的热溶液接触并从混合气体中提取其他致冷剂。
文档编号F25B15/00GK1319174SQ99810598
公开日2001年10月24日 申请日期1999年9月3日 优先权日1998年9月4日
发明者格哈德·孔策 申请人:格哈德·孔策
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1