将加压液态天然气的加压气化气再液化的方法

文档序号:4761980阅读:666来源:国知局
专利名称:将加压液态天然气的加压气化气再液化的方法
技术领域
本发明概括地涉及一种用于将加压液化天然气的加压气化气再液化的改进方法。
由于天然气使用方便、燃烧清洁,因而近年来已被广泛使用。许多天然气资源位于偏远地区,远离该气体的商业市场。有时可采用管道将生产的天然气运送到商业市场上。但是当无法采用管道运送时,通常将生产的天然气处理成液化天然气(其被称为LNG)再运送到市场。
由于液化天然气时需大量的制冷量,因此LNG的制冷系统非常昂贵。通常天然气流进入一个LNG站的压力约为4,830kPa(700psia)到7600kPa(1100psia)、温度约为20℃到40℃。主要成分为甲烷的天然气与用作能源的重质烃不同,不能仅凭增加压力来液化。甲烷的临界温度为-82.5℃,这意味着不管压力如何其仅能在低于该温度时才能液化。由于天然气为气体混合物,因此在一定温度范围内液化。天然气的临界温度通常在大约-85℃和-62℃之间。大气压下,天然气组合物通常在约-165℃和-155℃之间的温度范围内液化。由于制冷设备在LNG设备总成本中占据重要部分,因此人们付出许多努力来减少制冷成本。
现有技术中存在许多通过在升压下将气体顺序通过多个冷却级从而将气体连续冷却至较低温度直至液化的天然气液化系统。传统的液化是在大气压或接近大气压下将气体冷却到温度约为-165℃。冷却一般是通过与一种或多种制冷剂如丙烷、丙烯、乙烷、乙烯及甲烷换热来实现。尽管用于液化天然气的制冷循环有许多,然而现今最常用于LNG站的三种为(1)“阶式循环”,其在换热器中采用多种单一组分制冷剂,换热器逐级布置以将气体的温度降到液化温度;(2)“膨胀循环”,其将气体从高压膨胀到低压,温度也相应下降;以及(3)“多组分制冷循环”,其在一种特殊设计的换热器中使用多组分制冷剂。大部分天然气液化循环都采用这三种基本类型的变型或组合形式。
减少制冷成本的一个方法是在温度高于-112℃(-170°F)而压力足以使液体位于或低于其泡点的条件下生产液化天然气。这种加压了的液体天然气被称为PLNG以区别于处于大气压或接近大气压的LNG。由于PLNG的温度可比传统的LNG高50℃以上,因此PLNG所需的制冷量明显地较少。对于大多数天然气组合物来说,PLNG的压力在约1,380kPa(200psia)到约3,450kPa(500psia)之间。在PLNG的存贮、运输及处理中,会产生大量“气化气”(boil-off)。因此需要一种用于将PLNG气化气再液化以便再次形成PLNG、同时所需能量更为经济的方法。
本发明涉及一种用于将由加压液态天然气生成的加压气化气再液化的方法。该方法中,冷量通过制冷循环被提供给换热器,优选地,闭式制冷循环系统具有作为冷却介质的混合制冷剂。加压的天然气被加料通过该换热器,并在其中至少部分液化。然后将天然气膨胀到低压以形成温度高于约-112℃(-170°F)、压力足以使物流处于或低于其泡点的液流。然后将液流通过第一分相器从而将膨胀步骤之后可能存在的任何蒸气从液流中去掉。要被再液化的气化蒸气通过换热器从而为换热器提供冷量以冷却送入的天然气并且加热进来的气化气。然后将气化气压缩冷却,随后再循环回换热器而被进一步冷却。然后将压缩并冷却了的气化气膨胀到低压并送到第二分相器,第二分相器形成蒸气流和液流。第二分相器生成的蒸气流从该方法排出以便进一步优选地被用作加压燃料,并且更为优选地,蒸气流在通过换热器以便加热燃料之后完成这一脱除过程以便用作燃料。第二分相器产生的液流被送到第一分相器以形成温度高于约-112℃以及压力足以使液体处于或低于其泡点的加压产品流。
本方法的一个优点在于将PLNG装船以及其它存贮容器时产生的蒸气可以最小程度再压缩而被液化。本方法还可减少回收一部分准备再液化蒸气用作燃料所需的总压缩功。由于作为燃料被脱除的蒸气部分中氮的浓度明显高于液化气产品中氮的浓度,所以这一作法是有利的。本发明方法中将氮排出与不排除氮并且将所有蒸气都液化相比,液化站所需的总压缩功最高可减少7%。
参照以下详细说明和附图可以更好地理解本发明及其优点。附图为本发明一个实施方案的简化流程图,其展示了将PLNG的气化气再液化的方法。该流程图代表实施本发明方法的一个优选实施方案。该附图并非要将作为本特定实施方案的正常和预期改进结果的其它实施方案排除在本发明范围之外。各种必需的子系统如阀门、物流混合器、控制系统、以及传感器为了说明简单与清楚起见都已从附图中删去。
业已发现一种天然气液化方法,其在将加压天然气流液化的同时将由加压液态天然气产生的气化气也液化。本发明特别适于将温度高于约-112℃(-170°F)、压力为足以使液化流位于或低于其泡点的液态天然气(在本发明中,其被称为“PLNG”)产生的气化气再液化。
本发明的方法还适合于将由含氮的PLNG产生的气化气液化。如果PLNG含有氮,则由PLNG产生的气化气通常含有更高浓度的氮。气化蒸气中的氮杂质主要来源于PLNG中的氮。氮比液化天然气更易挥发,优先闪蒸并在气化蒸气中富集。比如,含有0.3%(摩尔)氮的PLNG可生成含有约3%(摩尔)氮的蒸气。与传统的大气压下或接近大气压下液化的天然气相比,PLNG的温度和压力越高,氮越优先闪蒸出来。本发明方法将具有较高氮组成的气化蒸气液化以生成具有较低氮组成的PLNG。
本发明说明书中所用术语“泡点”是指液体开始转化成气体时的温度和压力。比如,若将一定体积PLNG保持在恒定压力下,而温度升高,当PLNG中开始形成气泡时的温度即为泡点。同样,如果一定体积PLNG保持在恒定温度下,而压力减小,那么开始形成气体的压力就被定义为泡点。在泡点处,PLNG为饱和液。PLNG优选为不仅被冷凝到其泡点,而且还被进一步冷却以便使该液体处于过冷状态。过冷PLNG可减少存贮、运输及处理过程中产生的气化蒸气的量。
在天然气的低温处理中,第一要考虑的是污染问题。适于本发明方法的天然气原料可包括从原油井获得的天然气(油井气)或从气井获得的天然气(气井气)。这样天然气的成分及压力可有明显的不同。这里所用的天然气流以甲烷(C1)为主要成分。该天然气通常还含有乙烷(C2)、更高级烃(C3+)以及少量杂质如水、二氧化碳、硫化氢、氮、丁烷、含有六个或更多碳原子的烃、污物、硫化铁、蜡及原油。这些杂质的溶解性随温度、压力和组成的变化而变化。在深冷温度下,CO2、水及其它杂质会形成固体,从而阻塞低温换热器的通道。如果能够预测到这些单一成分的温度压力固相线条件,那么可通过去掉这种杂质来避免这些潜在的问题。在本发明以下说明中,假定天然气流已经通过采用传统公知的方法进行适当处理脱去硫化物、二氧化碳并经干燥脱去水分形成“纯的、干的”(sweet,dry)天然气流。如果天然气流中含有可在液化过程中冻结的重质烃,或者如果PLNG中不能含有重质烃,那么重质烃可通过在下述液化过程之前或作为液化过程一部分的分馏来去掉。
现在参考

图1所示的流程图来说明本发明方法。一天然气供给流10以压力高于约1,380kPa(200psia)并且更为优选地高于约2,400kPa(350psia)、温度优选为高于约-112℃(-170°F)并且更为优选地高于约-94℃(-138°F)的状态下进入液化过程。当然,如果需要,也可采用不同的压力和温度,系统可相应作适当地改动。如果气流10的压力低于约1,380kPa(200psia),可通过合适的压缩装置(图中未示出)加压,该压缩装置可包括一个或多个压缩机。
供给流10通过换热器51从而将天然气液化。换热器51可包括由传统冷却系统50冷却的一级或多级换热器。比如,冷却系统50可包括以丙烷、丙烯、乙烷、二氧化碳、或任何其它合适的液体作制冷剂的单一或多组分制冷系统。制冷系统50优选为闭式循环的多组分制冷系统,其是一种公知的通过间接换热来进行冷却的装置。本说明中所用的术语“间接换热”是指两种流体流进行换热而在流体之间没有任何物理接触或混合。
本发明并不限于任何形式的换热器51,但是由于经济上的原因,优选采用散热片式换热器和螺旋式以及冷箱式换热器,这些都通过间接换热来冷却。本领域内普通技术人员可根据换热器51的流体的流量和组成来确定最佳制冷系统50和换热器51。
从换热器51出来的液化天然气流12流过一个或多个膨胀装置如膨胀阀52。该过程中压力的等焓降低导致少量气体闪蒸出来、天然气的其余部分液化,以及少量气体部分和剩余大量液体部分的温度整体降低。本发明在实际操作中为了生成PLNG产品,物流13中天然气的温度优选高于约-112℃。物流13经过一个分相器53,在其中形成液相产品流14,该液相产品流就是温度高于约-112℃(-170°F)、压力足以使液态产品位于或低于其泡点的PLNG。PLNG被输送到一合适的存贮装置(图1中未示出)如静止的贮罐或如运送PLNG的船、车、有轨车等运输工具中。为了将液体产品保持在液相,温度必须低于产品的临界温度,其通常是低于-62℃(-80°F)。分相器53通常会生成少部分可作为燃料从该方法中排出的蒸气流16。蒸气流16在用作燃料(物流26)之前优选在换热器51中被加热。
液化天然气在贮存、运输及处理(图1中未示出)过程中蒸发产生的气化蒸气作为物流18被引入本发明方法中。由PLNG产生的气化气的温度通常高于约-112℃(-170°F),压力通常高于约1,380kPa(200psia),气化气流18最高含3%氮。
气化气流过换热器51并在其中被刚好加热到深冷温度之上。而换热器则在气化气加压之前获得此气化气的冷量。气化气(流19)在离开换热器51后经压缩机55压缩。在本发明实际应用中,由于进来的气化气流18被加压,压缩机55仅需将气化气的压力提到产品流14的压力之上,优选地比产品流14的压力高约20到150psia,并且更为优选地比产品流14的压力高约40到50磅,因此压缩机55能量需求量最少,该压缩所需要的功比传统气化气再液化方法(图中未示出)中气化气压缩到供给流10的压力并与供给流10混合所需要的功少许多。
该压缩机在图1表示为单一装置,这在大多数场合下已足够了。然而我们应该清楚在本发明实践中也能采用多级压缩(如,带有两个中间冷却器的三级压缩)。当然也可在最后一级压缩的下游使用一个后冷却器。图1中只有一个后冷却器56,其优选采用环境空气或水作为冷却介质。
被压缩了的气化气(流21)在离开后冷却器56后,再流回换热器51从而被进一步冷却。在换热器51之后,气化气(流22)流过一膨胀装置如焦耳-汤姆森阀57从而使气化气的温度进一步降低。这一等焓压降导致一部分气体闪蒸出来、气化气的其余部分液化以及气化气部分和其余液体部分的温度整体下降。在本发明实践中为了从气化气生产高压液态天然气产品,流23中天然气的温度优选高于约-112℃,压力优选大致与流13的压力相同。流23通过分相器58形成液态产品流24,即一种温度高于约-112℃(-170°F)的加压了的液态天然气,然后再流到分相器53。
从分相器58出来的还有富含甲烷及含可观数量氮的蒸气流25。该蒸气流与蒸气流16混合后用作加压燃料。流12和22的出口温度得到控制使未冷凝的蒸气体积数量(流25)与液化站燃料的需求量相符。流25的体积随着流22的温度升高而增加。如果液化站燃料需求量少,可降低流22及流12的温度。本领域技术人员根据本说明的教导就能够确定如何通过调节换热器51来达到流25的所需体积。
本领域技术人员,特别是那些获益于本专利教导的人,都知道以上公开的特定方法还有许多改进及变化。比如,取决于系统的整体设计及供给气体的组成,本发明可采用各种温度和压力。此外,供给气体的冷却顺序可根据整体设计要求进行补充或重新配置以达到最佳、高效的换热要求。如上所述,以上公开的特定实施方案与实施例不应用作本发明保护范围的限定,本发明的保持范围由附带的权利要求及其等价内容来确定。
权利要求
1.用于将由加压液态天然气生成的加压气化气再液化的方法,其中包括以下步骤(a)通过制冷循环向换热器提供冷量;(b)将加压天然气流过该换热器以冷却该天然气,所述加压天然气的温度高于加压气化气;(c)将冷却的天然气膨胀到低压,从而使至少部分该冷却的天然气液化,该液化气体的温度高于约-112℃(-170°F)、其压力足以使该液化气体位于或低于其泡点;(d)如果膨胀步骤(c)之后存在蒸气相,在第一分相器中分离任何蒸气相与液化气体;(e)在换热器中加热准备再液化的气化气,并由此为换热器提供冷量;(f)压缩并冷却被加热的气化气;(g)使压缩的气化气返回换热器以进一步冷却该压缩气化气;(h)将压缩的气化气膨胀到低压以形成气相和液相;(i)在第二分相器中将步骤(h)的气相和液相进行相分离;(j)将步骤(i)中的液相通到第一分相器;(k)回收第二分相器中的蒸气;以及(l)从第一分相器将液体作为温度高于约-112℃(-170°F)、压力足以使液体位于或低于其泡点的加压液态天然气取出。
2.权利要求1的方法,其中进一步包括使步骤(k)中回收了的蒸气流过换热器的步骤。
3.权利要求1的方法,其中进一步包括通过调节气化气流过换热器时的冷却量从而以预定数量来生产步骤(k)中回收的蒸气的步骤。
4.权利要求1的方法,其中引入本方法中的气化气所具有的温度高于-112℃(-170°F)、压力高于1,379kPa。
5.权利要求4的方法,其中气化气的压力高于2,413kPa。
6.用于从含有加压液态天然气的容器中生成的含氮气化气的再液化方法,其中该加压液态天然气的温度高于约-112℃(-170°F)、压力足以使该液化流位于或低于其泡点,该方法包括以下步骤(a)将制冷剂在一闭式环路中循环通过换热器;(b)将加压的天然气通过该换热器以冷却该天然气;(c)将冷却的天然气膨胀到低压以形成液化气体;(d)如果膨胀步骤(c)之后存在蒸气相,在第一分相器中将任何蒸气相与液化的气体分离;(e)在换热器中加热准备再液化的气化气,由此为换热器提供冷量;(f)压缩并冷却被加热的气化气;(g)将压缩的气化气返回换热器以便进一步冷却该压缩气;(h)将压缩的气化气膨胀到低压以形成气相和液相;(i)在第二分相器中对步骤(h)的气相和液相进行相分离;(j)将步骤(i)中的液相通到第一分相器中;(k)将含氮蒸气从第二分相器中取出;以及(l)从第一分相器中将液体作为温度高于约-112℃、压力足以使该液体位于或低于其泡点的加压液态天然气取出。
全文摘要
本发明公开了用于将由加压液态天然气生成的气化气再液化的方法,该方法中,借助制冷循环(50)向换热器(51)提供冷量;加压天然气(10)通过该换热器(51)冷却,然后膨胀(52)到低压以形成液流,该液流通到第一分相器(53);气化蒸气流过换热器(51)然后在其循环返回通过换热器(51)之前被压缩(55)并冷却(56);然后将该压缩冷却的气化气膨胀(57)后通到第二分相器(58)中;将第二分相器(58)产生的蒸气流(25)从该方法中取出;将第二分相器形成的液流通到第一分相器(53)以生产出温度高于约-112℃、压力足以使该液体位于或低于其泡点的加压液体。
文档编号F25B9/02GK1324440SQ99812493
公开日2001年11月28日 申请日期1999年10月22日 优先权日1998年10月23日
发明者E·L·金贝尔三世 申请人:埃克森美孚上游研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1