薄膜处理设备的制作方法

文档序号:4974108阅读:220来源:国知局

专利名称::薄膜处理设备的制作方法
技术领域
:本发明涉及一种薄膜处理设备,其适于制造水性有机溶剂中的纤维素溶液。所述设备特别适于但不仅限于制造用于生产再生纤维素纤维(lyocellfibre)的纤维素溶液。
背景技术
:再生纤维素的生产是公知技术。主要地,料浆形式的纤维素与水、用于纤维素的有机溶剂和稳定剂混合。在加热和减压的作用下,一部分水蒸发离开,从而产生有机溶剂中的纤维素溶液,该纤维素溶液中还包含剩余部分的水。这种溶液然后进行纺织处理,由此所述溶液被形成为成形件,通常为丝线,然后处理所述丝线以溶去水性有机溶剂,从而沉积出纤维素并因而形成纤维素成形件。量产纤维是大规模使用的产品,而且纤维生产过程必须使纤维的生产成本相对于作为竞争产品的纤维素纤维(例如,棉或黏胶丝纤维或甚至诸如聚酯纤维之类的人造纤维)具有经济可行性。这意味着,所述生产过程在经济上使得对于再生纤维素纤维、特别是量产再生纤维素纤维的制造而言,用于生产溶液的设备需要具有可年产数万吨溶液量的规模。对大规模生产纤维的需求已经导致采用特定的纤维素溶液制造工艺。在可替代的过程中,纤维素和水和/或有机溶剂按量混合在一起,以实现直接溶解。然而,这很难大规模进行。在现已商业化的与本发明相关的另一过程中,所述过程涉及制造纤维素、稳定剂、过量水和有机溶剂的预混合物,然后加热和蒸发所述过量水以浓縮允许纤维素溶解的有机溶剂。通过这种商业化过程生产溶液的已有设备的最成功形式是竖直取向的薄膜处理设备,例如,由BussAG制造并以商标Filmtruder销售的设备。在EP0356419Bl中公开了这种类型的薄膜处理设备,本发明也可用于这种设备。在这种公开设备中,预混合物通过入口被泵送至薄膜处理设备中并向下传送通过薄膜处理设备,上述操作部分地在重力作用下进行,但主要通过中心转子上的输送叶片向下推动进行。薄膜处理设备的内表面被加热,并施加真空以使过量水蒸发离开。这产生了水性溶剂中的纤维素溶液,此纤维素溶液通过排出口被泵送出薄膜处理设备之外。有机溶剂的优选形式为N-甲基吗啉N氧化物(N-methylmorpholineNoxide),通常縮写为匪0。通过薄膜处理设备生产的纤维素溶液可用于制备多种类型的产品。通过这种纤维素溶液制造的主要产品为纤维素纤维。不过,也可生产许多其它纤维素材料,例如,膜或海绵或管。EP0660743公开了一种使用薄膜处理设备生产纤维素溶液的改进过程。尤其是,此文献涉及根据溶液产量和能耗而对EP0356419的过程进行优化。对这种已知过程的进一步的修改在WO97/11973中公开。必须注意的是,虽然生产能力的增加对于工程人员而言是不言自明的任务,不过,对于所述工艺(尤其是再生纤维素工艺)的规模化存在一些苛刻限制。这是因为在薄膜处3理设备中形成的纤维素溶液具有放热的性质。因此,难以在面对由于系统温度升高所致的放热反应风险的同时增加再生纤维素工艺的生产能力。
发明内容本发明的目的在于,对用于制造纤维素溶液、特别是以商业化规模制造纤维素溶液的薄膜处理设备的使用进行更进一步的改进。因此,本发明进一步的目的在于,提供一种可用于制造纤维素溶液的改进的薄膜处理设备。在第一方案中,上述目的通过根据权利要求1所述的薄膜处理设备得以实现。根据本发明的薄膜设备的优选实施例在从属权利要求中公开。根据本发明的薄膜处理设备包括具有至少一个柱形部分的转子,至少一个刮擦叶片被布置在所述柱形部分上,所述刮擦叶片包括至少两个齿,所述齿相互间隔分开,由此形成间隙,其特征在于,一个齿的长度L与位于所述齿的邻近处的间隙的长度G之间的平均比率V相应地大于2:1。已令人惊讶地发现,如果在位于薄膜处理设备上的叶片上的齿的长度L与邻近于所述齿的间隙的长度G之间的平均比率V增加,则薄膜处理设备的生产能力可显著增加。特别是已发现,通过使用根据本发明的薄膜处理设备,可增加生产能力,而同时使诸如系统温度之类的系统参数从工艺安全方面来看保持在可接受的水平。EP0660743Bl公开了位于叶片(其可采取具有集成齿的条的形式)上的齿可包括所述条的竖直长度的10%至40%。这意味着比率V显著小于2:1。应理解的是,对于相应布置在根据本发明的设备上的所有的齿和相邻间隙而言,齿的长度L与相应相邻间隙的长度G之间的比率V不必相同。在一个实施例中,对于布置在所述设备上的所有的齿而言,比率V可高于2:1。在其它实施例中,在所述设备的某些区域中,比率V可低于2:l,而在其它区域中,比率可显著更高。不过重要的是,根据位于所述设备上的所有齿计算出的比率v的平均值高于2:i。根据本发明的优选实施例,所述平均比率V大于3:1,优选地为3.3:1。同样,对于布置在所述设备上的所有的齿而言,比率v可大于2:1,优选地为3.3:i。所述齿的长度L可相应地在40mm至200mm的范围内,且优选地为90mm至110mm。在根据本发明的薄膜处理设备的更优选的实施例中,至少一部分所述齿形成大于0°的朝向竖直方向的角度a,其中,所有所述齿的平均角度a,j、于14°。已知的是,特别是为了制备纤维素溶液,被布置在薄膜处理设备上的至少一部分所述齿可以是倾斜的,以形成大于O。的朝向竖直方向的角度a,从而迫使材料被向下输送通过所述设备。现在已令人惊讶地发现,如果所有齿的平均角度、小于14°,则薄膜处理设备的生产能力可显著增加,而同时从工艺安全的方面来看不会超出工艺极限。对于词语"平均角度"而言,其为由所有齿朝向竖直方向形成的所有角度a的平均值。在一个实施例中,薄膜处理设备的所有齿可以是倾斜的,因而所有角度a将大于(T。在进一步的优选实施例中,仅有一部分齿倾斜。这意味着,一部分齿形成0。的朝向竖直方向的角度,而其余齿形成大于O。的朝向竖直方向的角度。于是,平均角度aj乃为所有角度a的平均值。例如,如果50%的齿朝向竖直方向倾斜26°角度,则平均角度am将为平均值,即,13。。优选地,平均角度Qm小于11°,优选地为IO。。在又一优选实施例中,根据本发明的薄膜处理设备的特征在于,所述刮擦叶片或所述齿的厚度T相应地大于5mm。已令人惊讶地发现,通过使用相应最小厚度T大于5mm的叶片或齿,薄膜处理设备的生产能力可显著增加,而同时从工艺安全的方面来看不会超出工艺极限。对于厚度T,其应被理解为叶片或齿的前面的相应厚度。所述前面是叶片的与将被处理的材料接触的面,其在薄膜处理设备的内表面之上分配和输送材料。厚度T可大于llmm,优选地为17mm至55mm,最优选地为22mm。根据本发明的薄膜处理设备尤其适于通过所述水性叔胺氧化物(tertiaryamineoxide)的纤维素悬浮液而制造在所述水性叔胺氧化物的可模塑的纤维素溶液。在下文中,将通过示例和附图更详细地描述本发明。图1是根据本发明的系统的示意性剖视图。图2是图1中所示系统的转子的顶部的端视图。图3是叶片与转子的连接的更详细视图。图4是图3的结构的立体图。图5是根据本发明优选实施例的薄膜处理设备的转子的一部分的视图。图6是例示出根据本发明优选实施例的薄膜处理设备的转子叶片的示例性形状的示意性俯视图。图7是显示出薄膜处理设备的叶片齿比率V对于比产量的影响的图线。图8是显示出薄膜处理设备的平均角度am对于比产量的影响的图线。图9是显示出薄膜处理设备的叶片厚度T对于比产量的影响的图线。具体实施例方式参见图l,其示意性显示出的系统用于执行形成叔胺N氧化物中的纤维素溶液的过程。叔胺N氧化物,例如N-甲基吗啉N氧化物,沿线路2被供应到容器1中。而且还提供了纤维素供应线路3和水供应线路4。通常,通过将这些组分混合而形成的预混合物通常包括重量百分比为12%的纤维素,重量百分比为20%的水,和重量百分比为68%的N-甲基吗啉N氧化物。利用由电动马达6旋转的螺旋叶片5,这三种组分在容器1中被混合。螺旋叶片搅动混合物,并将混合后的组分沿管线7送到整体上由8表示的薄膜处理设备。所述管线优选地具有使其总是被充满的直径,或者可在所述管线通入薄膜处理设备的出口中提供限制结构,使得管线7中的材料不会暴露于处理设备8中的真空。薄膜处理设备8包括处于柱形构件9内的转子,柱形构件9在外侧利用加热元件5IO被加热。加热元件可为电加热元件、或充油元件、或完全的充蒸汽或充热水的加热套。在柱形部分9的下端存在引向排放线路12的渐縮部分11。在柱形部分9的上端存在设置有排出导管14的供应腔13,可通过排出导管14去除蒸发的水汽。预混合后的材料通过管线7被送入腔13中,并当整体上由16表示的转子旋转时通过分配板15而围绕薄膜处理设备分配。利用外部电动马达17使转子16的中心轴旋转。转子16设置有一系列叶片18,这些叶片18将在下文中进行更详细的描述。在操作中,将较低压力施加于导管14中,由此,当利用加热元件IO加热预混合物时,水在薄膜处理设备的操作过程中被蒸发,从而在预混合物被加热时减少其水含量。这种连续加热和蒸发导致预混合物中的水(即,非溶剂)的组分降低到一定程度,使得纤维素形成真正的在叔胺N氧化物中的溶液。因此,在薄膜处理设备8的下部分中形成有粘性溶液,粘性溶液通过锥形构件20上的倾斜叶片19被向下推入薄膜处理设备的渐縮部分11的底部处的颈部中。通过螺旋构件21的旋转,溶剂中的纤维素溶液被送到由电动马达23驱动的泵22。由此,溶液通过适合管道结构被送到纺织喷嘴25。螺旋构件21利用电动马达26'进行旋转,对电动马达26'的控制与对电动马达6和17的控制相结合以控制通过系统的溶液流动。图2至4更详细显示出图1中整体上以16例示的转子的结构。从图2和3中可见,转子包括柱形中心部分26,柱形中心部分26在其下端具有渐縮锥形部分。柱形部分在其上端具有终端板28,马达15的旋转轴连接到终端板28。转子中心部分26基本上为中空柱体,中空柱体具有整体上从其突出的一系列(例如为六个)平行的叶片根部(例如29、30)。这些叶片根部延伸转子中心部分26的长度。叶片根部被焊接到转子中心区域并形成转子中心区域的集成部分。形成薄膜处理设备实际叶片的一系列板31、32、33、34、35和36被栓接到所述根部,例如根部30。如图3中更清楚所示,叶片板38利用传统螺栓40栓接到叶片根部39。如图4中可见,叶片板41具有延伸到叶片板41的远边缘的一系列齿构件42、43、44和45,叶片板41利用螺栓47、48和49被紧固到叶片根部46。叶片齿42至45可以是倾斜的以将粘性预混合物和粘性溶液向下推动通过薄膜处理设备。由于薄膜处理设备8的转子16以竖直配置布置,因此,倾斜叶片作用与重力作用相结合以促进预混合物和溶液向下移动通过处理设备。图5示意性例示出本发明的优选实施例,参见两个相邻叶片41、35(未示出),其上分别布置有齿42、43、44和齿42'、43'、44'。根据图5中所示的实施例,一部分齿沿竖直取向(S卩,齿42、43、44),而另一部分齿(即,齿42'、43'、44')朝向竖直方向倾斜,由此形成大于O。的角度ci。每个齿具有长度L(如图5中分别对于齿42和42'所示)。为实现本发明的目的,对倾斜的齿而言,长度L是指齿在铅垂线上的投影的长度(如图5中对于齿42'所示)。相邻的齿,例如齿42和43,相互间隔分开,由此形成间隙G。齿长度L与间隙长度G的比率为比率V。根据本发明的优选实施例,对于位于转子柱形部分上的所有的齿和相邻间隙而言,平均比率V应相应地大于2:1。而且,根据本发明的优选实施例,作为所有齿(包括不倾斜的齿)的角度a的平均值,平均角度Qm应小于11°。图6示意性例示出齿42的实施例的形状。齿42具有前面42a,前面42a与将被处理的材料接触并在柱形部分9的内表面之上分配和输送材料。前面42a大致平行于柱形部分9的内表面延展。根据本发明的优选实施例,齿的前面42a呈现出厚度T,厚度T应大于5mm。示例薄膜处理设备的生产能力尤其受限于两个因子l)叶片的最大周向速度;2)设备内的最大温度(在套处测量)。在示例性的薄膜处理设备中,因子1)(S卩,最大周向速度)可具有约7m/s的值。最大温度(因子2))应不超过160°C,以避免发生放热反应的风险。这两个值的乘积(其将在下文中被称为最大"F因子")限定了生产能力增加的范围。即,在未达到技术极限或不发生危险的放热反应的情况下,不可能使生产能力增加至高于该乘积值。关于本示例,因子1)和2)的乘积,即,最大"F因子",为1120°Cm/s。示例1:本示例采用具有八叶片(厚度T=llmm)转子的薄膜处理设备。所述设备用于将水性NMM0的纤维素悬浮液处理为具有13%纤维素的纤维素溶液。在对照示例中,叶片上布置的齿的长度相应地为62mm。邻近于所述齿的间隙的长度相应地为31mm。S卩,平均比率V为2:1。在根据本发明的示例中,齿的长度为102mm,而间隙的长度保持为31mm不变。艮卩,平均比率V为3.3。为了实现本示例的目的,词语"长度"是指齿的实际面长度。对于设备中所用的倾斜的齿而言,其在铅垂线上的投影长度仅稍稍不同于实际面长度,并因而不会改变平均比率V。通过调节周向速度和/或薄膜处理设备加热套的温度,设定不同的操作点。这些操作点与特定的比产量(每m2设备表面积所生产的以kg/d为单位的纤维,其中基于llX的含水量;这是指可通过由所述设备所生产的纤维素溶液而纺出的纤维的量)相关。测量F因子,F因子基于为实现特定产量所必需的处理条件(周向速度和温度)。实验结果总结在下表中7<table>tableseeoriginaldocumentpage8</column></row><table>由上表并由图7中可见,与比率V仅为2:1(F因子983.8)的设备相比,使用具有较高比率V(V二3.3:1)的薄膜处理设备能够实现在低得多的F因子(891.9)下以1750kg/d.m2的比产量进行生产。对于图7,进一步可见的是,如果对通过F因子相对于比产量的绘图所获得的基本线性的图线进行外推,则与V仅为2:l的薄膜处理设备的1940kg/d.n^相比,使用比率V为3.3:l的薄膜处理设备可获得2390kg/d.m1勺最大产量,其中未超过最大F因子112(TCm/So示例2:其实验设置与示例1中相同,其不同之处在于在对照示例中,叶片上布置的齿的长度相应地为62mm。邻近于所述齿的间隙的长度相应地为31mm。所有齿的平均角度am(朝向竖直方向)为14°。齿具有llmm的厚度T。在根据本发明的示例中采用相同设备,不过所有齿的平均角度cim为10°。仍然测量F因子,F因子基于为实现特定产量所必需的处理条件(周向速度和温度)。实验结果总结在下表中8<table>tableseeoriginaldocumentpage9</column></row><table>由上表并由图8中可见,与平均角度、为14°(F因子747.5)的设备相比,使用朝向竖直方向的平均角度a^为10°的薄膜处理设备能够实现在低得多的F因子(702.1)下以1250kg/d.m2的比产量进行生产。对于图8,进一步可见的是,如果对通过F因子相对于比产量的绘图所获得的基本线性的图线进行外推,则与a^为14。的薄膜处理设备的2110kg/d.n^相比,使用平均角度Qm为lO。的薄膜处理设备可获得2550kg/d.n^的最大产量,其中未超过最大F因子1120°Cm/s。示例3:其实验设置与示例1和示例2中基本相同,不过,在此示例中采用的薄膜处理设备具有的转子仅有四个叶片。在对照示例中,叶片上布置的齿的长度相应地为62mm。邻近于所述齿的间隙的长度相应地为31mm。齿具有llmm的厚度T。在根据本发明的示例中采用相同设备,不过,齿具有22mm的厚度T。实验结果总结在下表中<table>tableseeoriginaldocumentpage10</column></row><table>由上表并由图9中可见,与厚度T为llmm(F因子924.5/1063.8)的设备相比,使用齿厚度T为22mm的薄膜处理设备能够实现在低得多的F因子(905.4/921.6)下以1250kg/d.m2的比产量进行生产。对于图9,进一步可见的是,如果对通过F因子相对于比产量的绘图所获得的图线进行外推,则与T为llmm的薄膜处理设备的1300kg/d.m2相比,使用齿厚度T为22mm的薄膜处理设备可获得1510kg/d.m2的最大产量,其中未超过最大F因子1120°Cm/s。权利要求一种薄膜处理设备(8),包括具有至少一个柱形部分(26)的转子(16),至少一个刮擦叶片(32,33,34,35,36,41)被布置在所述柱形部分上,所述刮擦叶片包括至少两个齿(42,43,44,42′,43′,44′),所述齿相互间隔分开,由此形成间隙,其特征在于,一个齿(41)的长度(L)与位于所述齿的邻近处的间隙的长度(G)之间的平均比率V相应地大于2∶1。2.如权利要求l所述的薄膜处理设备(8),其特征在于,所述平均比率V大于3:l,优选地为3.3:1。3.如权利要求1或2所述的薄膜处理设备(8),其特征在于,所述齿(42,43,44,42',43',44')的长度(L)相应地为40mm至200mm,且优选地为90mm至110mm。4.如前述权利要求中任一项所述的薄膜处理设备(8),其特征在于,至少一部分所述齿(42,43,44,42',43',44')形成大于0°的朝向竖直方向的角度a,所有所述齿的平均角度a,j、于14°。5.如权利要求4所述的薄膜处理设备(8),其特征在于,所述平均角度cim小于ir,优选地为10°。6.如前述权利要求中任一项所述的薄膜处理设备(8),其特征在于,所述刮擦叶片或所述齿(42,43,44,42',43',44')的厚度(T)相应地大于5mm。7.如权利要求6所述的薄膜处理设备(8),其特征在于,所述厚度(T)大于llmm,优选地为17mm至55mm,最优选地为22mm。8.—种如前述权利要求中任一项所述的薄膜处理设备的使用,用于通过水性叔胺氧化物的纤维素悬浮液而制造在所述水性叔胺氧化物的可模制的纤维素溶液。全文摘要本发明涉及一种薄膜处理设备(8),包括具有至少一个柱形部分(26)的转子(16),至少一个刮擦叶片(32,33,34,35,36,41)布置在所述柱形部分上,所述刮擦叶片包括至少两个齿(42,43,44,42′,43′,44′),所述齿相互间隔分开,由此形成间隙,其特征在于,一个齿(41)的长度L与位于所述齿的邻近处的间隙的长度G之间的平均比率V相应地大于2∶1。文档编号B01J10/02GK101754805SQ200880021156公开日2010年6月23日申请日期2008年6月13日优先权日2007年6月21日发明者C·施雷姆普夫,F·苏乔梅尔,W·弗尔梅尔申请人:连津格股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1