用于运输工具的可再充电电池组件的制作方法

文档序号:11592099阅读:202来源:国知局
用于运输工具的可再充电电池组件的制造方法与工艺

本发明涉及一种用于运输工具的可再充电电池组件,其中,可再充电电池组件包括金属-空气可再充电电池。



背景技术:

由于金属-空气可再充电电池能够实现的高能量密度,金属-空气可再充电电池特别适合用于移动应用,例如,适合用于运输工具。锂-空气可再充电电池是金属-空气可再充电电池的示例。下面将简要解释它们的功能。当锂-空气可再充电电池放电时,电子在锂阳极处释放,并且正锂离子穿过电解质到达碳阴极。在碳阴极处,锂离子在还原过程中与氧发生反应,首先得到氧化锂,然后得到过氧化锂。为了发生这种还原过程,碳阴极涂覆有催化剂,且是高度多孔的,并因此包括非常大的表面面积。当锂-空气可再充电电池充电时,这个过程是反向的。氧在碳阴极处释放;金属锂沉积在锂阳极处。

因为金属锂可与水发生剧烈反应,所以锂阳极对湿气敏感。由于碳阴极的高孔隙度,碳阴极一方面易于受到诸如灰尘或沙粒等颗粒物的污染,另一方面,空气中含有的有害气体可充当催化剂毒物,催化剂毒物会不可逆地损坏碳阴极。到目前为止,锂-空气可再充电电池以及还有其他金属-空气可再充电电池仅在实验室条件下得到测试并在此装载有高纯度气体。



技术实现要素:

因此,本发明的目的正是提供一种改进的可再充电电池组件。

于是,提出了一种用于运输工具的可再充电电池组件,可再充电电池组件包括:至少一个金属-空气可再充电电池、过滤装置以及壳体,过滤装置被构造成以一方式来调节金属-空气可再充电电池的进入空气,使得进入空气呈现预定的空气湿度,金属-空气可再充电电池和过滤装置被接收在壳体中,其中,进入空气借助于流动转向装置可在壳体中转向,以使得过滤装置可借助于金属-空气可再充电电池的废热而被再生。就此而言,可采用借助于转向器被引导经过金属-空气可再充电电池并由此被加热的进入空气或金属-空气可再充电电池的热的废空气。

特别地,可在壳体中提供多个金属-空气可再充电电池,多个金属-空气可再充电电池彼此相邻或彼此上下堆叠布置。金属-空气可再充电电池优选地包括由金属制成的阳极或第一电极以及由介孔碳制成的阴极或第二电极。取决于采用哪种金属作为用于第一电极的材料,过滤装置被构造成将进入空气中所包含的相对空气湿度调整到该金属所需要的值。例如,当第一电极由锂制成时,由于锂与水的高反应性,需要从进入空气去除全部的空气湿度或至少近似全部的空气湿度。另一方面,当使用硅作为电极材料时,需要借助于过滤装置将进入空气中所包含的空气湿度控制到经限定的且恒定的值。以这种方式,在金属-空气可再充电电池的使用寿命期间防止金属电极材料受到损坏。以这种方式,在运输工具的真实条件下可采用所述再充电电池组件。在实验室条件下为金属-空气可再充电电池供应高纯度气体是不必要的。通过调节进入空气,保护金属-空气可再充电电池以免损坏。金属-空气可再充电电池的使用寿命得以增加,并且能够在各种条件下使用。优选地,可再充电电池组件包括诸如湿度传感器的传感装置和联接到传感装置的控制和/或调节装置。借助于传感装置,可以及早确定过滤性能或干燥性能的变化,该变化可借助于对应的指示装置显示为状态指示或维护指示。优选地,金属-空气可再充电电池加热进入空气。借助于被金属-空气可再充电电池加热的进入空气,可使过滤装置再生。

可再充电电池组件特别适合用于运输工具,例如机动车辆、卡车、摩托车、飞行器、工程车辆、有轨车辆和船只。此外,可再充电电池组件还可被用于如建筑技术等的不活动应用。

在实施例中,流动转向装置被构造成使进入空气的流动方向反向以便使过滤装置再生。流动转向装置可包括空气路径、空气进口、通气瓣阀、通气筛等。

在另外的实施例中,可再充电电池组件包括用于加热进入空气和/或过滤装置的加热元件。加热元件可以是加热膜、加热板、加热丝、加热织物或加热毛网垫(heizvlies)。借助于被加热元件加热的进入空气,可使过滤装置再生。特别地,过滤装置可被加热元件直接地加热。

在另外的实施例中,过滤装置被构造成将颗粒物过滤到进入空气外,颗粒物特别是灰尘、沙粒等。以这种方式,防止介孔第二电极发生阻塞或堵塞。为了颗粒物过滤,过滤装置可包括由纸和/或塑性材料制成的过滤介质。此外,过滤介质可被涂覆、浸渍和/或设置有纳米纤维层。

在另外的实施例中,过滤装置被构造成从进入空气l化学过滤有害气体,有害气体特别是氮氧化物、氨、硫氧化物、硫化氢、一氧化碳等。有害气体可以充当催化剂毒物,催化剂毒物可永久损坏提供在第二电极上的催化剂。过滤装置可以包括例如用于化学过滤的活性炭。此外,过滤元件可以包括碳酸钾k2co3和/或氢氧化钙ca(oh)2,碳酸钾k2co3和/或氢氧化钙ca(oh)与诸如硫氧化物sox或硫化氢h2s的酸性有害气体发生化学反应,以便中和这些有害气体。以这种方式,催化剂作用得以永久维持。

在另外的实施例中,过滤装置可借助于流动转向装置被用进入空气冲洗,以便使化学过滤性质再生。为了当过滤装置的化学过滤性能降低时使过滤装置再生,可使用新鲜的进入空气来冲洗过滤装置。处于此目的,可在壳体中提供适当的通道和阀装置。

在另外的实施例中,壳体呈现出流量分配几何结构,流量分配几何结构被构造成将进入空气分配成使得进入空气可流动经过至少一个金属-空气可再充电电池的表面。特别地,进入空气可流动经过第二电极的表面。以这种方式,提高了金属-空气可再充电电池的效率。

在另外的实施例中,为了调节进入空气,过滤装置包括旋转储存装置,旋转储存装置能够相对于壳体旋转。旋转储存质量块具有热传递的优点。用于金属-空气可再充电电池的进入空气可借助于旋转储存装置被预热。这对于所谓的冷启动阶段是特别有利的,因为与燃料电池系统相似的金属-空气可再充电电池在更短的时间段中达到其操作温度。此外,可再充电电池组件可以包括控制和/或调节装置,控制和/或调节装置借助于传感装置(例如温度或湿度传感器)并且通过阀装置的控制来控制穿过壳体的空气流。例如,可借助于旋转储存装置来对于连续再生实施旋转速度控制。具有旋转储存装置的可再充电电池组件的实施例使得干燥剂或吸附剂的使用寿命能够得到延长。以这种方式,降低了操作成本,而同时维持了金属-空气可再充电电池的正确操作条件。

在另外的实施例中,干燥剂被接收在旋转储存装置中。旋转储存装置可涂覆有干燥剂。

在另外的实施例中,干燥剂借助于旋转储存装置可被连续地再生。以这种方式,被金属-空气可再充电电池加热的排出空气可帮助使干燥剂或吸附剂再生。采用加热元件的形式的辅助加热装置可被设计成是更小的或可被完全除去。

可再充电电池组件另外可能的实施方案还包括上面所描述的或下面关于实施例描述的可再充电电池组件的特征或结构的未明确提到的组合。就此而言,本领域的技术人员还将添加或修改各方面以作为对可再充电电池组件的相应基本形式的改进或补充。

可再充电电池组件的另外的实施例是从属权利要求的主题以及下面所描述的可再充电电池组件的实施例的主题。在下文中,将参考附图借助于实施例更详细地解释可再充电电池组件。

附图说明

图1是处于充电状态的金属-空气可再充电电池的实施例的示意性截面图;

图2是处于放电状态的根据图1的金属-空气可再充电电池的示意性截面图;

图3是处于放电状态的金属-空气可再充电电池的另一实施例的示意性截面图;

图4是处于放电状态的金属-空气可再充电电池的另一实施例的示意性截面图;

图5是可再充电电池组件的实施例的示意性截面图;

图6是可再充电电池组件的另一实施例的示意性截面图;

图7是可再充电电池组件的另一实施例的示意性截面图;

图8a-8e是加热元件的不同实施例的示意图;以及

图9是可再充电电池组件的另一实施例的示意性截面图。

在附图中,只要没有相反指示的内容,则相同的附图标记表示相同的或功能上相同的元件。

具体实施方式

图1示出了处于充电状态的金属-空气可再充电电池1的示意性截面图。图2示出了处于放电状态的金属-空气可再充电电池1的示意性截面图。金属-空气可再充电电池1包括由金属特别是锂li制成的阳极或第一电极2,以及阴极或第二电极3。在下文中,仅明确描述锂-空气可再充电电池1。

第二电极3由介孔碳c构成并且不直接参与电化学过程。根据国际纯化学和应用化学联合会(iupac)的定义,介孔固体主体是具有孔直径在2nm和50nm之间的多孔材料。碳c用作电导体和电连接件,所述介孔结构用于使表面积最大化,以便促进氧o2与锂离子li+在第二电极3的区域中发生反应。

第一电极2由金属锂li组成。替代地,第一电极2可由不同的金属组成,例如硅。取决于锂-空气可再充电电池1的实施例,在两个电极2、3之间存在电解质4,电解质4可以是液体或固体。在后一种情况下,提供固态可再充电电池。此外,电解质4可以是不与锂li反应的有机液体。

图3示出了具有水基电解质4的锂-空气可再充电电池1的实施例的示意性截面图。为了防止金属锂li与电解质4发生反应,在第一电极2和含水电解质4之间提供了保护层5。保护层5可以是应用于金属锂li的玻璃陶瓷层。例如,保护层5是所谓的lisicon层(lim2(po4)3)。保护层5使得锂li能够在含水环境中保持稳定。

图4示出了混合锂-空气可再充电电池1的实施例的示意性截面图。此处,在第一电极2和保护层5之间布置了有机电解质4,在保护层5和第二电极3之间布置了含水电解质4。

所有类型的锂-空气可再充电电池1的基本工作原理基本上是相同的。在放电期间(图2、3、4),电子e-在第一电极2处被释放,并且正锂离子li+穿过电解质4转移到第二电极3,在第二电极3中,锂离子li+与氧o2发生反应,首先得到氧化锂li2o,并随后得到过氧化锂li2o2。就此发生下面的还原过程:o2+4e-→2o2-。为了使该还原过程能够发生,第二电极3涂覆有催化剂,且是高度多孔的,并因此包括非常大的表面面积。因此,第二电极3一方面易于受到诸如灰尘或沙粒的颗粒物的污染,颗粒物可以阻塞或堵塞第二电极3;另一方面,诸如硫氧化物sxoy、氨nh3、氮氧化物nox、硫化氢h2s、一氧化碳co、二氧化碳co2等的有害气体充当催化剂毒物,催化剂毒物会不可逆地损坏第二电极3。此外,第二电极3也对湿气敏感。

当锂-空气可再充电电池1充电(图1)时,这个过程是反向的。氧o2在第二电极3处释放;金属锂li沉积在第一电极2处。因为金属锂li可与水发生剧烈反应,所以第一电极2对湿气敏感。

图5示出了用于运输工具的可再充电电池组件6。可再充电电池组件6优选地包括多个锂-空气可再充电电池1,在图5中,只有锂-空气可再充电电池1中的一个被标记了附图标记。锂-空气可再充电电池1优选地在共用壳体7中彼此相邻布置。锂-空气可再充电电池1被供应有进入空气l。在锂-空气可再充电电池1的上游,提供了过滤装置8和分离装置9。分离装置9可以是旋风分离器(zyklonabscheider)。分离装置9被构造成从进入空气l去除颗粒物,特别是去除粗颗粒物。过滤装置8布置在分离装置9和锂-空气可再充电电池1之间。经预净化的进入空气l经由提供在壳体7中的流动通道10、11被供应到过滤装置8。流动通道10、11形成壳体7的流量分配几何结构12。

过滤装置8适合于颗粒物过滤。这意味着过滤装置8被构造成机械地保留进入空气l中所含的颗粒物,例如灰尘、花粉、沙粒等。以这种方式,防止阻塞或堵塞介孔第二电极3。为了颗粒物过滤,过滤装置8可包括由纸和/或塑性材料制成的过滤介质。此外,过滤介质可被涂覆、浸渍和/或提供有纳米纤维层。

此外,过滤装置8适合于对进入空气l的化学过滤。特别地,过滤装置8被构造成从进入空气l化学过滤有害气体,例如硫氧化物sox、氨nh3、氮氧化物nox、硫化氢h2s、一氧化碳co和二氧化碳co2。这些有害气体可充当催化剂毒物,催化剂毒物可永久地损坏提供在第二电极3上的催化剂。过滤元件14可包括例如用于化学过滤的活性炭。此外,过滤元件14可包括碳酸钾k2co3和/或氢氧化钙ca(oh)2,碳酸钾k2co3和/或氢氧化钙ca(oh)2与诸如硫氧化物sox或硫化氢h2s的酸性有害气体发生化学反应,以便中和这些有害气体。以这种方式,催化剂作用得以永久维持。为了当过滤装置8的化学过滤性能降低时使过滤装置8再生,可以用新鲜的进入空气l冲洗过滤装置8。出于该目的,在壳体7中提供了适当的通道和阀装置。

过滤装置8还被构造成以一方式来调节供应到锂-空气可再充电电池1的进入空气l,使得进入空气l呈现预定的相对空气湿度。特别地,过滤装置8被构造成从进入空气l去除全部湿度。以这种方式,防止了第一电极2的金属锂li与水发生反应。当使用其它类型的金属-空气可再充电电池(诸如硅-空气可再充电电池)时,过滤装置8可被构造成确保空气湿度为经限定的且恒定的值。

过滤装置8可包括干燥剂,例如二氧化硅珠。二氧化硅珠可被撒到过滤装置8的过滤介质上,并可被胶合到过滤介质。此外,过滤介质可具有层结构,其中,例如,可在两个无纺层之间布置一层二氧化硅珠。另外地或可选地,过滤介质可包括吸收体材料,特别是所谓的超级吸收体、功能化膜等。对于上面所描述的功能中的每个,过滤装置8可包括适合的过滤元件。

经净化的进入空气l被引导成使得在锂-空气可再充电电池1的放电期间,进入空气l抵靠它们的电极3尽可能均匀地流动。以这种方式,提高了锂-空气可再充电电池1的效率。此外,减少了所需要的安装空间。在壳体7中,可提供另外的空气通道,空气通道被构造成耗散来自锂-空气可再充电电池1的热量。以这种方式,防止了锂-空气可再充电电池1的过热。替代地或可选地,为了使空气冷却,还可提供液体冷却。出于此目的,可在壳体7中提供液体通道。

如果过滤装置8的干燥性能降低,则可使干燥剂再生。出于此目的,使用锂-空气可再充电电池1的经预热的进入空气l或热排出空气a。图6示出了可再充电电池组件6的实施例的示意性截面图,在可再充电电池组件6中,可使过滤装置8的干燥剂再生。出于该目的,空气进口13、14侧向地提供在壳体7上,锂-空气可再充电电池1的进入空气l或排出空气a可穿过空气进口13、14流动进入过滤装置8。进入空气l被引导经过锂-空气可再充电电池1以使得废热传递到正经过的进入空气l,由此进入空气l可被加热。相比图5中所示的锂-空气可再充电电池的放电,用于再生的流动方向反向定向。侧向空气进口13、14可形成可再充电电池组件6的流动转向装置22。此外,流动转向装置22可包括阀装置。为了再生,沿锂-空气可再充电电池1的方向堵塞空气路径。锂-空气可再充电电池1的经加热的进入空气l或热排出空气a经由空气进口13、14被侧向吹入或吸入壳体7,并作为排出空气a'被壳体7的中央空气进口15吹出。排出空气a'呈现比进入空气l更高的空气湿度。为了使干燥剂再生,在加热阶段中例如维持180℃的温度达近似2小时。在锂-空气可再充电电池1的放电状态下,关闭空气进口13、14,而沿锂-空气可再充电电池1的方向开放空气路径。借助于锂-空气可再充电电池1的进入空气l或排出空气的废热来使干燥剂或吸附剂再生。因为过滤装置8不能同时被用作过滤器并被再生,所以会提供两个过滤装置8,两个过滤装置8以不连续操作的方式交替地操作。

还可以在过滤装置8中实现多个不连续设置的湿度调节系统。以这种方式,即使对于长的使用阶段,对于充电时间对干燥剂的或吸附剂的再生而言不足够长的频繁再生或快速充电阶段,或者当在空气湿度高的环境中使用可再充电电池组件6时,也总是确保足够的干燥性能。此外,除了对大多数应用场合其尺寸设置符合要求的不连续系统,可提供“备份”或“紧急”系统,“备份”或“紧急”系统基于使用一次性使用的可更换滤筒。一旦被使用,在备份系统能再次用于新的使用之前,用户或服务技术人员必须更换该可更换滤筒。

图7示出了可再充电电池组件6的替代实施例的示意性截面图,在可再充电电池组件6中,过滤装置8的干燥剂可再生。可再充电电池组件6的这个实施例与根据图6的可再充电电池组件6的实施例的不同之处在于,在再生模式中,不仅到锂-空气可再充电电池1的空气路径被堵塞,而且到中央空气进口15的空气路径也被堵塞。空气路径可例如借助于闸门被堵塞。锂-空气可再充电电池1的经加热的进入空气l或热排出气体a流动穿过侧向空气进口13进入壳体7,流动穿过过滤装置8,并然后作为含湿气的排出空气a'流动穿过侧向空气进口14再次到壳体7外。

图8a-8d示出了用于加热进入空气l以便使干燥剂再生的加热元件16的不同实施例。图8a示出了以平坦元件形式的加热元件16。该加热元件可放置到过滤装置8上。图8b示出了具有呈曲折形状的加热丝的加热元件16。图8c示出了形成为具有孔或穿孔的加热膜的加热元件16。加热膜可以是pct元件(正温度系数)。图8d示出了如下的实施例:加热元件16形成为围绕过滤装置8缠绕的加热丝。在根据图8e的实施例中,加热元件16是加热的传导性织物或毛网垫,例如,织物或无纺物可涂覆有碳纳米管。

图9示出了可再充电电池组件6的另一实施例。在可再充电电池组件的壳体7中,提供了用于将进入空气l供应到锂-空气可再充电电池1的第一空气路径17以及用于排放来自锂-空气可再充电电池1的排出空气a的第二空气路径18。空气路径17、18可形成可再充电电池组件6的流动转向装置22。过滤装置8包括提供在第一空气路径17中以用于过滤进入空气l的过滤元件19。过滤元件19可被构造成从进入空气l去除颗粒物和有害气体。此外,过滤装置8包括能够相对于壳体7旋转的旋转储存装置20以便从进入空气l去除湿气。以这种方式可实现所采用的干燥剂或吸附剂的连续再生。就此而言,旋转储存装置20的一半可用作过滤器,而其另一半被再生。就此而言,被锂-空气可再充电电池1加热的排出气体a帮助使干燥剂或吸附剂再生。采用加热元件16的形式的辅助加热装置可被设计成是更小的或可被完全除去。此外,旋转储存质量块具有热传递的优点。用于锂-空气可再充电电池1的进入空气l可被旋转储存装置20预热。这对于所谓的冷启动阶段特别有利,因为与燃料电池系统相似的锂-空气可再充电电池1将会在更短的时间段中达到操作温度。

此外,可再充电电池组件6包括控制和/或调节装置21,控制和/或调节装置21借助于传感装置(例如温度或湿度传感器)并且通过阀装置的控制来控制穿过壳体7的空气流。例如,可以借助于旋转储存装置20来对于连续再生实施旋转速度调节。空气路径、传感装置、诸如瓣阀或阀装置的执行器以及控制装置21集成在壳体7中。优选地,壳体7是经注射模制的部件。锂-空气可再充电电池1可串联或并联布置。过滤装置8和锂-空气可再充电电池1可布置在共用的紧凑壳体7中,或者可在空间上分开布置。

通过基于锂-空气可再充电电池1关于不存在颗粒物和有害物质以及不包含湿度或调整成经限定的湿度的要求来调节锂-空气可再充电电池1的进入空气l,可再充电电池组件6在运输工具中的真实条件下是可用的。通过调节进入空气l,保护锂-空气可再充电电池1以免受到损坏。锂-空气可再充电电池1的使用寿命得以增加并且能够在不同条件下使用。由于传感装置,可以及早确定过滤性能或干燥性能的变化,并且该变化可借助于对应的指示装置显示为状态指示或维护指示。根据图9的带有旋转储存装置20的可再充电电池组件6的实施例使得干燥剂或吸附剂的使用寿命能够得到延长。以这种成本,降低了操作成本,而同时维持了用于锂-空气可再充电电池1的正确操作条件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1