一种碳纳米管/UiO-66-NH2纳米复合材料的制备方法与流程

文档序号:17347054发布日期:2019-04-09 20:47阅读:2745来源:国知局
一种碳纳米管/UiO-66-NH2纳米复合材料的制备方法与流程

本发明属于金属有机骨架材料的制备技术领域,具体涉及一种碳纳米管/uio-66-nh2纳米复合材料的制备方法。



背景技术:

随着现代医疗水平的不断提高,药物和个人护理产品(ppcps)日益成为主要的新兴污染物。酮洛芬(ketoprofen,ket)作为一种典型的非甾体抗炎药,具有解热、镇痛、抗炎等作用,被广泛应用于治疗骨关节炎、关节僵硬脊柱炎、类风湿关节炎,以及非风湿性疾病或术后疼痛。酮洛芬进入水体后,即使是微量级别,也会对饮用水、再生水等水生生态系统带来威胁,同时影响人类身体健康,导致人体产生雌激素、头痛、耳鸣等其他不良反应。因此,研发一种技术用于处理水溶液中的这种微量污染物显得尤为重要。

目前已经探索了许多从水溶液中去除这种微量污染物的技术,如降解,植物吸收,吸附等。与其他技术相比,吸附法具有高效去除环境污染物且不产生副产物的优点,从而可作为从水中去除这种微量污染物的一种经济有效的方法。常用于吸附ppcps的吸附剂材料有碳材料,生物材料,黏土材料和纳米材料等。相比于其他吸附剂材料,纳米材料对ppcps通常具有更大的吸附量,此外,纳米材料便于再生,并且适用于大规模去除ppcps废水。

金属有机骨架(mofs)作为一种新型结晶多孔纳米材料,由多功能配体和金属离子构成,因其具有较高的比表面积,可控的孔隙率和较高的稳定性而成为当下用于环境修复的新型功能材料。但mofs也普遍存在一些缺点,这类材料通常热稳定性低,机械性能低以及容易受水,氧和其他化学溶剂的影响。mofs结构在暴露于水后极不稳定,在潮湿或含水条件下mofs结构会部分或完全被破坏。uio-66-nh2是以zr4+为金属,以2-氨基对苯二甲酸为配体制备得到的一种金属有机骨架材料,其结构可在500℃下保持稳定。而且uio-66-nh2具有lewis酸(zr4+)和弱碱(-nh2)的协同催化作用,因此具有很高的耐酸性和一定的耐碱性。然而,与其他mofs一样,uio-66-nh2对水极度敏感,遇水其结构稳定性急剧下降,暴露于潮湿空气后其吸附容量和表面积也会显著下降。



技术实现要素:

本发明的目的在于提供一种新型吸附材料碳纳米管/uio-66-nh2的制备方法,以改善单一mofs的孔隙率,比表面积,水稳定性和热稳定性,从而提高复合材料的吸附性能,将其广泛应用于实际生活中对ppcps类污染物的去除。

本发明采用溶剂热法在分散均匀的碳纳米管中沉淀uio-66-nh2,成功制备了具备疏水特性的mwcnt/uio-66-nh2纳米复合材料。bet表面积和粉末xrd研究表明,即使暴露于潮湿环境下,mwcnt/uio-66-nh2纳米复合材料的降解量显著降低。本发明中,酮洛芬(ket)被用作污染物来分析吸附材料mwcnt/uio-66-nh2的行为和机理,结果表明mwcnt/uio-66-nh2具备优异的吸附性能,可作为一种大规模去除ppcps类污染物的有前景的吸附剂。

为实现上述目的,本发明的具体技术方案包括以下步骤:

(1)多壁碳纳米管的纯化

将多壁碳纳米管浸入混合酸中,在80℃下搅拌24小时,目的是使多壁碳纳米管的缺陷位点处的羧基官能化。然后过滤并用去离子水洗涤至中性,最后在70℃下干燥。所得粉末称为纯化的多壁碳纳米管。

(2)水热法制备碳纳米管/uio-66-nh2复合材料

将zrcl4和2-氨基对苯二甲酸加入到的n,n-二甲基酰胺中,然后加入少量的乙酸。控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比例,再向混合溶液中加入一定质量的已经官能化处理的多壁碳纳米管,将混合溶液超声处理10分钟,经过三次超声处理,然后搅拌过夜使金属盐和有机配体充分混合。在搅拌12小时后将混合物转移至高压反应釜中,并在120℃下加热24小时。待反应容器冷却至室温后,将过滤得到的蓝黑色粉末用dmf溶液和甲醇溶液洗涤3次,转移至100℃的恒温烘箱中,干燥过夜即得mwcnt/uio-66-nh2纳米复合材料。

所述步骤(1)中的混合酸为硫酸和硝酸的混合溶液;混合酸中硫酸和硝酸的体积比为3:1。

所述步骤(2)中控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:450-550。

所述步骤(2)中加入的已经官能化处理的多壁碳纳米管质量控制为uio-66-nh2材料质量的2wt%-10wt%。

本发明的有益效果为:

(1)提供了一种新型吸附材料碳纳米管/uio-66-nh2的制备方法,该方法工艺简单,所用原材料生产成本低,材料来源广泛,符合环境友好要求;且不需要高温、煅烧之类的前处理,从而减少了能耗和反应成本,便于批量生产;

(2)经过酸化之后的碳纳米管表面附着了大量的羧基官能团,这些羧基官能团作为mof材料生长在碳纳米管表面的生长结合位点,影响mof材料的孔隙率并提高复合材料的结构稳定性,同时碳纳米管具备很好的分散性,可以改善mof材料的团聚现象,使复合材料很好的分散在水溶液中,增大吸附剂与吸附质的接触面积,使得复合材料具备更加优异的吸附效果,对ppcps类污染物的吸附性能大大提升且易于脱附再生,可作为一种大规模去除ppcps类污染物的有前景的吸附剂。

(3)uio-66可以通过使用不同基团修饰的对苯二甲酸制备出具有不同功能的衍生物mofs,这些不同的uio-66衍生物因为含有酸性和衍生基团的性质,所以具有不同于uio-66的协同性质。uio-66-nh2是通过使用nh2修饰的对苯二甲酸(2-氨基对苯二甲酸)制备出的uio-66衍生物。nh2的存在可以增大复合材料的比表面积,同时可以改善复合材料对污染物的吸附性能,增大对酮洛芬的吸附量。

(4)酸化之后的碳纳米管表面附着了大量的羧基官能团,其可以为uio-66-nh2在碳纳米管表面生长提供成核位点。其次碳纳米管具有很好的分散性能,而uio-66-nh2纳米材料容易产生团聚现象,将碳纳米管和uio-66-nh2复合可以有效改善单一的uio-66-nh2纳米材料团聚现象;同时碳纳米管具备一定的疏水性能,而uio-66-nh2纳米材料亲水性较好,在潮湿环境下结构性能易受影响,将碳纳米管和uio-66-nh2纳米材料复合可以使复合材料具备一定的疏水性能,提高复合材料的水稳定性,从而减少在吸附酮洛芬的过程中和酮洛芬竞争吸附位点的水分子,从而增大对酮洛芬的吸附量。

附图说明

图1为碳纳米管,uio-66-nh2,碳纳米管/uio-66-nh2的纳米复合材料的xrd图谱。

图2中,a为碳纳米管的sem图,b为uio-66-nh2的sem图,c为碳纳米管/uio-66-nh2的纳米复合材料的sem图。

图3中,a为碳纳米管的tem图,b为碳纳米管/uio-66-nh2纳米复合材料的tem图,c为uio-66-nh2的tem图。

图4为碳纳米管,uio-66-nh2,碳纳米管/uio-66-nh2的纳米复合材料的bet曲线。

图5为碳纳米管,uio-66-nh2,碳纳米管/uio-66-nh2的纳米复合材料的tga曲线。

图6为从uio-66-nh2纳米材料,碳纳米管/uio-66-nh2纳米复合材料中沉淀出的锆离子浓度变化曲线。

图7为碳纳米管/uio-66-nh2纳米复合材料经过四次循环再生对酮洛芬的吸附量对比图。

图8为碳纳米管,uio-66-nh2,以及碳纳米管/uio-66-nh2吸附酮洛芬前后的ftir图谱。

图9为时间因素对碳纳米管,uio-66-nh2,碳纳米管/uio-66-nh2的纳米复合材料对酮洛芬的吸附量的影响对比图。

图10为ph值对碳纳米管,uio-66-nh2,碳纳米管/uio-66-nh2的纳米复合材料对酮洛芬的吸附量的影响对比图。

图11为酮洛芬初始浓度对碳纳米管,uio-66-nh2,碳纳米管/uio-66-nh2的纳米复合材料对酮洛芬的吸附量的影响对比图。

图12为碳纳米管,uio-66-nh2和碳纳米管/uio-66-nh2复合材料对酮洛芬的去除率的曲线。

图13中,a为langmuir、b为frendlich、c为temkin等温线模型曲线。

图14中,a为准一级、b为准二级、c为elovich、d为颗粒内扩散动力学模型曲线。

具体实施方式

下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。

实施例1

(1)多壁碳纳米管的纯化混合溶液。

将多壁碳纳米管浸入体积比为3:1的硫酸和硝酸的混合酸中,在80℃下搅拌24小时,然后过滤并用去离子水洗涤至中性,最后在70℃下干燥。所得粉末称为纯化的多壁碳纳米管。

(2)水热法制备碳纳米管/uio-66-nh2复合材料

将zrcl4和2-氨基对苯二甲酸加入到n,n-二甲基酰胺中,然后加入少量的乙酸。控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:500,再向混合溶液中加入uio-66-nh2材料质量6wt%的已经官能化处理的多壁碳纳米管,将混合溶液超声处理10分钟,然后搅拌过夜。在搅拌12小时后将混合物转移至高压反应釜中,并在120℃下加热24小时。待反应容器冷却至室温后,将过滤得到的蓝黑色粉末用dmf溶液和甲醇溶液洗涤3次,转移至100℃的恒温烘箱中,干燥过夜即得mwcnt/uio-66-nh2纳米复合材料。

采用下述试验验证本发明的结果。

对本试验制备的碳纳米管/uio-66-nh2纳米复合材料采用x射线衍射仪进行检测,结果如图1所示,图1中碳纳米管/uio-66-nh2的xrd图与uio-66-nh2的xrd图能够很好地契合,表明在引入碳纳米管后,并没有改变或破坏原有的uio-66-nh2晶体的内部结构。在对uio-66-nh2引入多壁碳纳米管后,得到的uio-66-nh2的xrd图并没有出现明显的mwcnt的特征峰,这是因为mwcnt的最强特征峰通常出现在2θ=26-27°,以及次特征峰出现在2θ=44-45°,而这两个位置又恰好被uio-66-nh2本身的强特征峰掩盖住。

采用扫描电子电子显微镜和高分辨电子显微镜观察对本试验制备的碳纳米管/uio-66-nh2纳米复合材料进行测试,检测结果如图2和图3所示,可以明显的观察到碳纳米管和uio-66-nh2很好的结合在一起,表明两种物质已经复合在一起。

从图4可以看出在高p/p0区域,碳纳米管/uio-66-nh2纳米复合材料对n2的吸附量均高于碳纳米管,uio-66-nh2。

从图5中可见:低于346℃时,uio-66-nh2由于骨架中缺乏溶剂初始重量损失24.87%。在340至628℃,第二次重量损失为63.62%,原因是其主链上的结构有机配体被消除,表明uio-66-nh2结构崩溃。当温度达到628到800℃时,只能获得tg曲线的轻微变化。可以看到随着分解温度从346℃升高到800℃,碳纳米管的引入提高了碳纳米管/uio-66-nh2纳米复合材料的热稳定性。

图7为碳纳米管/uio-66-nh2纳米复合材料经过四次循环再生对酮洛芬的吸附量对比图,可以很清楚的看出经过四次循环再生后,碳纳米管/uio-66-nh2纳米复合材料对酮洛芬仍具备很强的吸附能力。

图8为碳纳米管(a),uio-66-nh2(b),以及碳纳米管/uio-66-nh2吸附酮洛芬前(c)以及碳纳米管/uio-66-nh2吸附酮洛芬后(d)的ftir图谱,从图8可以看出吸附后的mwcnt/uio-66-nh2新出现的明显吸收峰出现在1283-1270cm-1处,这对应于酮洛芬中羰基旁的碳的骨架振动,这一现象足以表明复合材料成功吸附了酮洛芬,同时证实了复合材料的吸附能力。

图9-图11分别研究了时间、ph以及酮洛芬初始浓度这三个影响因素对吸附过程的影响,可以看出三种吸附剂中,复合材料碳纳米管/uio-66-nh2较单一的mwcnt、uio-66-nh2对酮洛芬的吸附量和吸附速率都有了很大的提高。

从图12可以看出:碳纳米管/uio-66-nh2复合材料较单一的mwcnt、uio-66-nh2对酮洛芬的去除率有了很大提高。

图13和图14分别采用langmuir、frendlich、temkin等温线模型,准一级、准二级、elovich、颗粒内扩散动力学模型,通过对三种吸附剂的吸附数据利用等温线模型和动力学模型进行拟合,可以看出碳纳米管/uio-66-nh2复合材料更符合langmuir等温线模型和准二级动力学模型,说明酮洛芬在碳纳米管/uio-66-nh2复合材料上的吸附是一个均相的化学吸附过程。

实施例2

将实施例1中的控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:500,改为控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:550,其他同实施例1。

实施例3

将实施例1中的控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:500,再向混合溶液中加入uio-66-nh2材料质量6wt%的已经官能化处理的多壁碳纳米管,改为控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:450,再向混合溶液中加入uio-66-nh2材料质量4wt%的已经官能化处理的多壁碳纳米管其他同实施例1。

对比实施例1

水热法制备uio-66-nh2纳米材料

将zrcl4和2-氨基对苯二甲酸加入到n,n-二甲基酰胺中,然后加入少量的乙酸。控制zrcl4:2-氨基对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:500。然后将混合物转移至高压反应釜中,并在120℃下加热24小时。待反应容器冷却至室温后,用dmf溶液和甲醇溶液洗涤3次,转移至100℃的恒温烘箱中,干燥过夜即得uio-66-nh2纳米材料。

对比实施例2

将zrcl4和对苯二甲酸加入到n,n-二甲基酰胺中,然后加入少量的乙酸。控制zrcl4:对苯二甲酸:乙酸:n,n-二甲基酰胺的摩尔比为1:1:100:500,再向混合溶液中加入uio-66材料质量6wt%的已经官能化处理的多壁碳纳米管,将混合溶液超声处理10分钟,然后搅拌过夜。在搅拌12小时后将混合物转移至高压反应釜中,并在120℃下加热24小时。待反应容器冷却至室温后,将过滤得到的蓝黑色粉末用dmf溶液和甲醇溶液洗涤3次,转移至100℃的恒温烘箱中,干燥过夜即得mwcnt/uio-66纳米复合材料。

对比实施例3

将对比实施例1制得的uio-66-nh2和碳纳米管通过机械搅拌24h的方式进行物理混合,通过n2吸附-脱附仪对其结构参数进行表征,所测得的结构参数如表1所示,对比例3的性能较实施例1要差一些。

所制得的材料的相关结构参数及其吸附容量如表1所示。

表1

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1