一种用于沼气净化的飞灰基吸附材料的制备方法

文档序号:25996008发布日期:2021-07-23 21:10阅读:74来源:国知局

本发明属于固体废弃物处置和沼气提纯净化领域,具体涉及一种用于沼气净化的飞灰基吸附材料的制备方法。



背景技术:

沼气是有机物在厌氧条件下经微生物发酵产生的一种可燃性气体,其主要组分包括ch4(50%~80%)和co2(20%~40%),还含有少量的h2s(0.5%~3%)、o2、co、n2等。co2的存在会大大降低沼气的热值和能量密度,增加点火温度;而h2s则是一种剧毒气体,不仅会在输运和存储过程中腐蚀管道、金属仪表等,而且燃烧后产生的so2会造成环境污染。因此,脱除沼气中co2和h2s等杂质气体,是实现沼气安全高效利用的关键步骤。

目前,沼气净化技术很多,主要包括高压水洗法、物理吸收法、化学吸收法、膜分离法等。高压水洗法由于吸收剂(水)的选择性差、动力消耗高、设备庞大等因素,近年来应用较少;物理吸收法主要以低温甲醇法、碳酸丙烯酯法为主,吸收效果较好,但投资成本高、吸收剂损失大;化学吸收法主要以乙醇胺、二乙醇胺、n-甲基二乙醇胺等醇胺类溶剂为吸收剂,容易出现溶剂发泡及降解变质,且存在腐蚀性强、选择性低等不足;膜分离脱除co2和h2s技术具有环境友好、操作安全等优点,但由于制膜工艺复杂、成本高、稳定性有待提高等因素而尚未实现工业化应用。

飞灰是煤、生物质和垃圾等焚烧过程中在烟气除尘净化系统收集得到的固体残余物,其主要成分是al2o3、sio2,同时含有一定量的cao、mgo、fe2o3、tio2、k2o、na2o等碱性氧化物,对co2和h2s等酸性气体具有一定的吸附作用。然而,飞灰比表面积较低,且碱性位点较少,进一步优化飞灰的结构特征和化学组成,是实现对沼气高效净化以及飞灰资源化利用的关键。



技术实现要素:

本发明的目的在于克服现有技术的不足,提供一种用于沼气净化的飞灰基吸附材料的制备方法。

本发明所述方法,具体如下:

以焚烧飞灰为原料,采用球磨机粉碎并过筛,然后将飞灰置于立式管式炉中,于600~900℃通入富氮水溶液活化1~3小时,在惰性气氛下冷却至室温后,采用过量浸渍法于碱/碱土金属氯化盐溶液中超声浸渍1~3小时,最后旋蒸干燥,即可得到负载碱/碱土金属氯化盐的飞灰基吸附材料。

优选的,所述飞灰来源于煤、生物质、生活垃圾等焚烧。

优选的,所述球磨机粉碎是指采用球磨机干法球磨粉碎。

优选的,所述过筛是指筛选粒径小于等于0.20mm的飞灰;更优选的,筛选粒径小于等于0.15mm的飞灰。

优选的,所述富氮水溶液是指氨水、尿素水溶液、水合肼溶液等,溶液浓度为10~20wt%。

优选的,所述富氮水溶液的体积空速为10~30ml/(h·g)。

优选的,所述惰性气氛是指氮气、氩气、氦气气氛。

优选的,所述碱/碱土金属氯化盐溶液是指氯化钠、氯化镁、氯化钙、氯化钡水溶液,溶液浓度为1~5wt%。

优选的,所述旋蒸干燥条件为:干燥温度为70~80℃,干燥真空度0.07~0.10mpa,干燥转速60~90r/min。

优选的,所述碱/碱土金属氯化盐负载量为0.5wt%~2wt%。

本发明的有益效果是:

本发明以煤、生物质、垃圾焚烧飞灰为原料制备用于沼气净化的吸附材料,具有原料来源广泛、成本低廉、制备工艺简便等特点,将飞灰变废为宝,实现了飞灰的高效处置和资源化利用。同时,本发明耦合了球磨粉碎、富氮溶液高温活化等技术对飞灰进行活化改性,提高了吸附材料的比表面积和孔容,丰富了吸附材料表面的碱性位点,不仅实现了对沼气中co2和h2s等杂质气体的高效协同脱除,而且具有较高的co2/ch4和h2s/ch4分离系数。此外,本发明的吸附材料通过碱/碱土金属氯化盐负载,进一步降低了净化过程中ch4的损耗,提高了沼气净化效率。

具体实施方式

本发明提供了一种用于沼气净化的飞灰基吸附材料的制备方法,下面结合具体实施方式对本发明做进一步说明。

下述实施例中分离系数计算方法如下:

αij=(x/y)i/(x/y)j

式中:x、y分别表示某组分吸附相和气相摩尔分数,i、j表示两种气体组分。

实施例1

以生物质焚烧飞灰为原料,经球磨机干法球磨后筛选粒径小于0.2mm的飞灰,将10g筛选的飞灰置于立式管式炉中,于900℃通入浓度为20wt%的尿素溶液,溶液流速为200ml/h,活化3小时,并在氦气氛围下冷却至室温,随后于浓度为1wt%的氯化镁溶液中超声浸渍3小时,最后在温度80℃、压力为0.10mpa、转速80r/min的条件下进行旋转干燥,获得负载0.5wt%氯化镁的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为84%,co2脱除率为87%,h2s/ch4和co2/ch4分离系数分别为11.83和12.25。

实施例2

将10g实施例1中筛选后的飞灰置于立式管式炉中,于800℃通入浓度为15wt%的水合肼溶液,溶液流速为200ml/h,活化2小时,并在氮气氛围下冷却至室温,随后于浓度为2wt%的氯化钡溶液中超声浸渍1小时,最后在温度80℃、压力为0.10mpa、转速80r/min的条件下进行旋转干燥,获得负载2wt%氯化钠的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为88%,co2脱除率为90%,h2s/ch4和co2/ch4分离系数分别为12.57和12.86。

对比实施例2

将10g实施例1中筛选后的飞灰置于立式管式炉中,于800℃通入浓度为15wt%的水合肼溶液,溶液流速为200ml/h,活化2小时,并在氮气氛围下冷却至室温,获得未负载氯化钡的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为86%,co2脱除率为89%,h2s/ch4和co2/ch4分离系数分别为8.51和8.81。

由此可见,飞灰基吸附材料通过负载氯化钡,可以降低吸附净化过程中ch4的损耗,提高沼气净化效率。

实施例3

以垃圾焚烧飞灰为原料,经球磨机干法球磨后筛选粒径小于等于0.15mm的飞灰,将10g筛选的飞灰置于立式管式炉中,于600℃通入浓度为10wt%的氨水溶液,溶液流速为100ml/h,活化1小时,并在氮气氛围下冷却至室温,随后于浓度为3wt%的氯化钠溶液中超声浸渍2小时,最后在温度70℃、压力为0.07mpa、转速60r/min的条件下进行旋转干燥,获得负载1.5wt%氯化钠的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为84%,co2脱除率为86%,h2s/ch4和co2/ch4分离系数分别为11.20和11.47。

对比实施例3

将10g实施例3中筛选后的飞灰置于立式管式炉中,于600℃通入浓度为10wt%的氨水溶液,溶液流速为100ml/h,活化1小时,并在氮气氛围下冷却至室温,获得未负载氯化钠的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为83%,co2脱除率为85%,h2s/ch4和co2/ch4分离系数分别为8.59和8.38。

实施例4

将10g实施例3中筛选后的飞灰置于立式管式炉中,于800℃通入浓度为15wt%的尿素溶液,溶液流速为300ml/h,活化2.5小时,并在氮气氛围下冷却至室温,随后于浓度为5wt%的氯化钡溶液中超声浸渍1小时,最后在温度80℃、压力为0.10mpa、转速90r/min的条件下进行旋转干燥,获得负载2wt%氯化钡的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为86%,co2脱除率为89%,h2s/ch4和co2/ch4分离系数分别为12.29和12.71。

实施例5

以煤焚烧飞灰为原料,经球磨机干法球磨后筛选粒径小于0.15mm的飞灰,将10g筛选的飞灰置于立式管式炉中,于700℃通入浓度为20wt%的水合肼溶液,溶液流速为240ml/h,活化1.5小时,并在氩气氛围下冷却至室温,随后于浓度为1wt%的氯化钡溶液中超声浸渍1.5小时,最后在温度80℃、压力为0.10mpa、转速80r/min的条件下进行旋转干燥,获得负载1.5wt%氯化钡的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为87%,co2脱除率为88%,h2s/ch4和co2/ch4分离系数分别为12.61和12.75。

实施例6

将10g实施例5中筛选后的飞灰置于立式管式炉中,于800℃通入浓度为15wt%的氨水溶液,溶液流速为200ml/h,活化2小时,并在氮气氛围下冷却至室温,随后于浓度为4wt%的氯化钠溶液中超声浸渍2小时,最后在温度80℃、压力为0.10mpa、转速80r/min的条件下进行旋转干燥,获得负载1.8wt%氯化钠的飞灰基吸附材料。将吸附材料用于沼气(co2为30%,h2s为2%,其余为ch4)净化,可实现h2s脱除率为85%,co2脱除率为84%,co2脱除率为82%,h2s/ch4和co2/ch4分离系数分别为12.14和12.00。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1