一种用于水解产氢光催化反应的催化剂及其制备方法

文档序号:31028127发布日期:2022-08-06 01:19阅读:256来源:国知局
一种用于水解产氢光催化反应的催化剂及其制备方法

1.本发明属于纳米复合物光催化剂材料技术领域,具体涉及一种用于水解产氢光催化反应的催化剂及其制备方法。


背景技术:

2.当代社会对能源的需求加剧了化石能源的枯竭和人居环境的恶化,制约了经济社会的进一步发展。在自然科学领域,人们迫切地需要开发新型清洁能源来解决这两大问题,并取得了一定的成效。例如应用自然界中的风能、水能和太阳能发电,来替代燃烧煤炭和石油等传统的发电方式。助力于人类社会的可持续发展,但这些措施依然存在许多缺点,比如对地理位置要求较高、连续性差、产生的能量不宜存储等,限制了全方位的推广。
3.氢能源这一概念从被提出起就被视为一种清洁高效的能源,并且对环境无任何污染,不加重全球碳循环负担,被誉为真正的“绿色能源”,目前许多汽车燃料就是采用氢气来替代目前被称为“工业血液”的石油,达到降低碳排放的目的。世界上许多国家也越来越重视发展氢能源,我国经过近些年来快速的经济发展,也越来越重视,加大了对于氢能源的研究,努力寻求清洁高效的制氢模式。
4.自1972年本田和藤岛在tio2电极上发现光电化学(pec)水分解后,半导体材料因其在人工光驱动水分解中的特殊光学和电学特性而受到广泛关注。到目前为止,研究人员正在积极开发新的催化剂以提高催化效率,但催化剂的高成本和低效率仍然限制了其进一步的商业开发和大规模生产。其中,二氧化钛因其良好的性能、高稳定性和丰富的土壤储存量而被认为是一种极具吸引力的光催化剂。二氧化钛主要有三种常见的相存在形式:锐钛矿(四方相)、金红石(四方相)和板钛矿(正交相)。与其他形式相比,堆积密度较低、空穴较多的原始层状tio2(b)引起了学者们的关注。
5.目前为止,tio2(b)已更多地用于可充电锂离子电池、传感器、太阳能发电和其他领域。由于其光生电子密度低、离子扩散效率低和导电性差,tio2(b)的光催化性能并不理想。目前,最新的研究已经开发出各种策略来提高纯tio2(b)的光催化性能。比如很多研究工作尝试将tio2(b)与其他半导体结合。但结合形式通常是两种物质的连续堆积,形成复合纳米结构。在回收条件下,这种结构是不利的。结构的不稳定性导致结构的坍塌和团聚,甚至在构建的异质结中出现晶格失配等现象,使其性能失效。
6.有鉴于此,本发明提出一种新的高效解水产氢光催化剂及其制备方法,是晶格嵌入式zno@tio2(b)纳米花的结构,可以提高光催化制氢的稳定性。


技术实现要素:

7.本发明的目的在于提供一种用于水解产氢光催化反应的催化剂的制备方法,该制备方法简单使破碎的zno纳米晶体嵌入tio2(b)晶格中,制备出新的晶格嵌入式zno@tio2(b)纳米花。
8.为了实现上述目的,所采用的技术方案为:
9.一种用于水解产氢光催化反应的催化剂的制备方法,为:将zno纳米棒分散到溶剂中后,加入ticl4和水,进行水热处理,洗涤、干燥,得zno@tio2(b)纳米花催化剂,即所述的催化剂。
10.进一步的,所述的溶剂为乙二醇;
11.所述的洗涤过程采用去离子水和无水乙醇进行洗涤。
12.进一步的,所述的水热处理的温度为140-160℃,时间为3.5-4.5h;
13.所述的干燥温度55-65℃,干燥时间20-24h。
14.进一步的,所述的水热处理的温度为150℃,时间为4h;
15.所述的干燥温度60℃,干燥时间24小时。
16.进一步的,所述的催化剂中zn和ti的摩尔比1:1-6。
17.进一步的,所述的zno纳米棒用电沉积的方法合成。
18.再进一步的,所述的zno纳米棒的合成过程为:将含有硝酸锌和乌洛托品的水溶液,置于石英电解池中,在90℃下进行电沉积处理后,离心、洗涤、干燥,得到zno纳米棒。
19.再进一步的,所述的硝酸锌和乌洛托品的摩尔浓度分别0.04-0.06mol/l、0.04-0.06mol/l;
20.所述的电沉积过程,以cfs、铂板和饱和甘汞电极(sce)分别用作工作电极、对电极和参比电极;工作电极上电压为负1.1v,反应时间为2h;
21.所述的干燥在60℃下真空干燥。
22.再进一步的,所述的硝酸锌和乌洛托品的摩尔浓度分别0.05mol/l、0.05mol/l;
23.在所述的电沉积过程前,需将cfs分别置于丙酮、去离子水和乙醇中进行超声波处理。
24.本发明的另一个目的在于提供一种用于水解产氢光催化反应的催化剂,采用上述的制备方法制备而成,该催化剂提供了更多的电子参与光催化氧化还原反应,显著提高了光催化制氢的性能和循环稳定性。
25.与现有技术相比,本发明的有益效果在于:
26.本发明的技术方案,在zno纳米棒的简单溶解过程使破碎的zno纳米晶体嵌入tio2(b)晶格中。这种晶格嵌入的zno@tio2(b)ii型异质结的优势在于,在与tio2(b)体相中的异质界面驱动有效电荷分离的同时,它将提供更多的电子参与光催化氧化还原反应,显著提高光催化制氢的性能和循环稳定性。
附图说明
27.图1为实施例5中纳米花的扫描电镜图,图比例尺为100纳米;
28.图2为实施例1-7中合成样品的n2吸附-解吸等温线;
29.图3为实施例1-7中合成样品的光催化分解水产氢产率;
30.图4为实施例1-7中合成样品的光催化分解水产氢速率;
31.图5为实施例5中纳米花的光催化分解水产氢循环稳定性。
具体实施方式
32.为了进一步阐述本发明一种用于水解产氢光催化反应的催化剂及其制备方法,达
到预期发明目的,以下结合较佳实施例,对依据本发明提出的一种用于水解产氢光催化反应的催化剂及其制备方法,其具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构或特点可由任何合适形式组合。
33.下面将结合具体的实施例,对本发明一种用于水解产氢光催化反应的催化剂及其制备方法做进一步的详细介绍:
34.酸液溶蚀法提供了一种新方法。首先,zno是一种两性氧化物,为实现晶格插层材料的体相提供了可能性。通过电沉积,本发明将合成具有比市售zno纳米颗粒更广泛优势的高结晶度zno纳米棒。利用ticl4水解的特性,即水解过程的环境呈酸性,tio2(b)的形核生长会伴随着zno的腐蚀。通过控制zno的输入,在这个过程中会发生zno纳米棒的不完全晶格断裂。最后,zno的晶格将嵌入tio2(b)的晶格中。tio2(b)的低体积密度单元结构可能是合成晶格嵌入zno@tio2(b)纳米花的关键。在该体系中,由于zno具有与tio2(b)相似的能带,因此zno的能带水平将与tio2(b)很好地匹配,并稳定地形成ii型异质结。
35.本发明的技术方案为:
36.一种用于水解产氢光催化反应的催化剂的制备方法,所述的制备方法为:将zno纳米棒分散到溶剂中后,加入ticl4和水,进行水热处理,洗涤、干燥,得zno@tio2(b)纳米花催化剂,即所述的催化剂。
37.优选的,所述的溶剂为乙二醇;
38.所述的洗涤过程采用去离子水和无水乙醇进行洗涤。
39.优选的,所述的水热处理的温度为140-160℃,时间为3.5-4.5h;
40.所述的干燥温度55-65℃,干燥时间20-24h。
41.优选的,所述的水热处理的温度为150℃,时间为4h;
42.所述的干燥温度60℃,干燥时间24小时。
43.优选的,所述的催化剂中zn和ti的摩尔比1:1-6。
44.优选的,所述的zno纳米棒用电沉积的方法合成。
45.进一步优选的,所述的zno纳米棒的合成过程为:将含有硝酸锌和乌洛托品的水溶液,置于石英电解池中,在90℃下进行电沉积处理后,离心、洗涤、干燥,得到zno纳米棒。
46.进一步优选的,所述的硝酸锌和乌洛托品的摩尔浓度分别0.04-0.06mol/l、0.04-0.06mol/l;
47.所述的电沉积过程,以cfs、铂板和饱和甘汞电极(sce)分别用作工作电极、对电极和参比电极;工作电极上电压为负1.1v,反应时间为2h;
48.所述的干燥在60℃下真空干燥。
49.进一步优选的,所述的硝酸锌和乌洛托品的摩尔浓度分别0.05mol/l、0.05mol/l;
50.在所述的电沉积过程前,需将cfs分别置于丙酮、去离子水和乙醇中进行超声波处理。
51.下述实施例中,若无特殊说明,所使用的实验方法均为常规方法,所用的试剂,材料等均可从化学试剂公司购买。
52.实施例1.
53.tio2(b)合成步骤如下:
54.将9ml乙二醇转移至80ml聚四氟乙烯内衬不锈钢高压釜中。
55.然后,在室温下将0.3ml ticl4逐渐滴入悬浮液中,直到室温下没有hcl气体形成。之后,在混合物中加入等体积的去离子水。密封高压釜在150℃的烘箱中加热4小时。
56.最后,所得tio2(b)纳米花产品通过离心收集,并用去离子水和无水乙醇洗涤,在60℃的真空烘箱中干燥24小时。
57.经测定,tio2(b)纳米花的比表面积为395.574m2/g,光催化产氢速率为0.482mmol/g/h。
58.实施例2.
59.催化剂中zn:ti的摩尔比为1:1,合成步骤如下:
60.(1)制备zno纳米棒:
61.在一个含有0.05mol/l zn(no3)2和0.05mol/l乌洛托品混合水溶液的石英电解池中进行,石英电解池置于90℃的水浴环境中进行电沉积。
62.然后,通过离心收集白色产品,用去离子水和无水乙醇洗涤数次,并在60℃干燥过夜,得到zno纳米棒。
63.其中,电沉积制备方法所选电极以cfs、铂板和饱和甘汞电极(sce)分别用作工作电极、对电极和参比电极;工作电极上电压为负1.1v,反应时间为2h。
64.cfs工作电极在制备前需将cfs分别置于丙酮、去离子水和乙醇中进行超声波处理。
65.(2)制备纳米花:
66.在一个典型的合成过程中,通过超声波处理将222.2mg zno纳米棒分散在9ml乙二醇中15min后,将均匀zno悬浮液转移至80ml聚四氟乙烯内衬不锈钢高压釜中。
67.然后,在室温下将0.3ml ticl4逐渐滴入悬浮液中,直到室温下没有hcl气体形成。之后,在混合物中加入等体积的去离子水。密封高压釜在150℃的烘箱中加热4小时。
68.最后,所得zn:ti 1:1纳米花产品通过离心收集,并用去离子水和无水乙醇洗涤,在60℃的真空烘箱中干燥24小时。
69.经测定,zn:ti的摩尔比为1:1的纳米花的比表面积为344.024m2/g,光催化产氢速率为0.944mmol/g/h。
70.实施例3.
71.催化剂中zn:ti的摩尔比为1:2,合成步骤与实施例2相同,不同点在于:
72.称量0.6ml ticl4逐渐滴入18ml乙二醇悬浮液中。
73.经测定,zn:ti的摩尔比为1:2的纳米花的比表面积为352.465m2/g,光催化产氢速率为1.064mmol/g/h。
74.实施例4.
75.催化剂中zn:ti的摩尔比为1:3,合成步骤与实施例2相同,不同点在于:
76.称量0.9ml ticl4逐渐滴入27ml乙二醇悬浮液中。
77.经测定,zn:ti的摩尔比为1:3的纳米花的比表面积为369.583m2/g,光催化产氢速率为1.315mmol/g/h。
78.实施例5.
79.催化剂中zn:ti的摩尔比为1:4,合成步骤与实施例2相同,不同点在于:
80.称量1.2ml ticl4逐渐滴入36ml乙二醇悬浮液中。
81.经测定,zn:ti的摩尔比为1:4的纳米花的比表面积为379.411m2/g,光催化产氢速率为1.695mmol/g/h,经过36小时循环稳定性测试,样品稳定性稳定在90%以上。
82.本实施例制备的纳米化的扫描电镜图如图1所示。扫描电子显微照片(图1)揭示了合成材料中zn:ti的摩尔比为1:4的纳米花的微观结构。zno的溶解使破碎的zno纳米晶嵌入tio2(b)晶格中,制备出zno@tio2(b)纳米花。
83.本实施例制备的纳米化的光催化分解水产氢循环稳定性如图5所示。该结果进一步证实了zn:ti的摩尔比为1:4的纳米花的稳定性和可重复使用性,zno的嵌入方法改善了zno自身的光腐蚀现象,复合材料的高稳定性也受益于此。
84.实施例6.
85.催化剂中zn:ti的摩尔比为1:5,合成步骤与实施例2相同,不同点在于:
86.称量1.5ml ticl4逐渐滴入45ml乙二醇悬浮液中。
87.经测定,zn:ti的摩尔比为1:5的纳米花的比表面积为380.157m2/g,光催化产氢速率为0.824mmol/g/h。
88.实施例7.
89.催化剂中zn:ti的摩尔比为1:6,合成步骤与实施例2相同,不同点在于:
90.称量1.8ml ticl4逐渐滴入54ml乙二醇悬浮液中。
91.经测定,zn:ti的摩尔比为1:6的纳米花的比表面积为394.475m2/g,光催化产氢速率为0.771mmol/g/h。
92.实验测试:
93.(1)介孔结构:
94.图2为实施例1-7中合成样品的n2吸附-解吸等温线。
95.在颗粒表面吸附性能研究上面,我们采用qds-mp-30比表面积分析仪测量样品的比表面积。通过对合成样品的n2吸附-解吸等温线进行分析,所有样品均显示具有h3磁滞回线的iv型等温线,这意味着这些样品中存在一些介孔结构。zno负载后,zno@tio2(b)样品的比表面积呈下降趋势,然后随着zno负载量的进一步增加,bet比表面积从395.574m2/g下降到344.024m2/g,这可归因于破碎的zno纳米晶体占据了tio2(b)纳米片表面上的成核位点。复合样品均显示出与tio2(b)纳米花相似的等温线,表明嵌入tio2(b)纳米花晶格中的zno对介孔结构的影响较小。
96.(2)催化剂性能:
97.图3为实施例1-7中合成样品的光催化分解水产氢产率;
98.图4为实施例1-7中合成样品的光催化分解水产氢速率。
99.测试方法如下:在密闭玻璃气体循环系统(labsolar iii ag,北京泊菲莱有限公司)上进行了光催化分解水产氢实验。选择300w氙灯(北京泊菲莱有限公司,pls-sex300c)作为光源。将50mg催化剂加入反应器中,加入16ml去离子水,4ml 0.1m na2s和0.1m na2so3混合溶液,超声分散30min,装到催化系统中,抽真空至-0.1mpa,暗反应吸附1h后,开始光催化反应。在光催化反应期间,通过冷却水的流动将反应溶液的温度保持在5℃。使用5分子筛色谱柱(气相色谱仪(gc-7900,福立)分析气体成分。气相色谱仪配备有热导检测器(tcd)和高纯氩气(99.999%)作为载气。根据保留时间和用标准h2气体校准的峰面积计算氢气产
量。
100.如图3、4所示,纯tio2(b)在模拟太阳光照射下表现出非常弱的析氢性能(0.482mmol/g/h),表明它作为光催化剂是惰性的。随着zno用量的增加,复合材料的性能显着提高,直到纳米花中zn与ti的摩尔比为1:4时,逐渐降低。zn与ti的摩尔比为1:4的纳米花表现出最佳的光催化产氢性能,为1.695mmol/g/h,是tio2(b)纳米花的3.5倍。这是由于zno和tio2(b)之间形成异质结,zno@tio2(b)复合材料中的电荷载流子转移和分离比tio2(b)快。光催化性能的显着提高可归因于嵌入的zno和tio2(b)纳米片之间形成异质结接触,这可以增强电荷传输并抑制复合过程。
101.由本发明的实施例可知,zno@tio2(b)纳米花的高光催化性能可归因于纳米级的层次结构、大的比表面积。此外,zno@tio2(b)纳米花相中的异质界面呈现出ii型异质结的能带结构,进一步增强了光催化性能。总的来说,晶格嵌入的zno@tio2(b)纳米花解决了tio2(b)复合材料结构容易塌陷导致的稳定性差的问题。同时,zno@tio2(b)纳米花相中异质界面的均匀分布使得异质界面得到充分利用,提高了电子-空穴分离效率。该研究为异质结复合光催化剂提供了一种新的设计思路。
102.以上所述,仅是本发明实施例的较佳实施例而已,并非对本发明实施例作任何形式上的限制,依据本发明实施例的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明实施例技术方案的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1