制备高纯度溴化氢的方法及设备的制作方法

文档序号:5008801阅读:1111来源:国知局
专利名称:制备高纯度溴化氢的方法及设备的制作方法
技术领域
本发明涉及制备高纯度溴化氢(HBr)的方法及设备。
背景技术
溴化氢代替氟化碳气体已用于半导体制造过程的刻蚀和其它方面,氟化碳气体影响臭氧层的问题已经提出,它的使用受到了限制。因此要求发展制备大量的高纯度的溴化氢技术。
制备高纯度溴化氢的传统方法的一个实例将参照图2予以叙述。含有溴化氢及杂质的原料贮存于钢瓶1。加热钢瓶1使原料蒸发。蒸发出来的溴化氢用压力调节阀2调节到一个预先确定的压力,并且被引入填充分子筛的吸附器3中。依靠分子筛除去气体中水分以外的杂质,因此纯化了溴化氢气体。然后纯化了的溴化氢气体引入产品钢瓶5。接着溴化氢气体被干冰及乙醇混合物的冷冻剂冷却、冷凝并贮存于产品钢瓶5。
然而在上述纯化溴化氢方法中,分子筛随着设备运行时间的推移而逐渐损坏。为了维持产品纯度在一个预先确定的水平上,分子筛必须经常更换。因而前面提到的纯化方法不适合于制备大量的高纯度溴化氢。

发明内容
本发明是为了提供一个能够制备大量的高纯溴化氢的方法及制备。
根据本发明制备高纯度溴化氢的方法,包括以下步骤提供一个精馏塔,包含有一个下部空间,一个下部精馏段,一个中部空间,一个上部精馏段,和一个上部空间,它们按照由底部由顶部的顺序排列;由溴化氢和沸点低于溴化氢的杂质组成的原料进入中部空间;让输入的原料的气相上升通过上部精馏段,同时气相与由顶部流下的第一回流液相接触,使气相到达上部空间,并把未冷凝的气体贮存在上部空间;冷却贮存在上部空间的未冷凝气体,因此冷凝了一部分未冷凝的气体;使冷凝的液体用作为第一回流液并且通过上部精馏段向下流到中部空间;将输入的液相原料与在中间空间第一回流液混合,因此形成第二回流液,并且使第二回流液通过下部精馏段流到下部空间然后将液体贮存在下部空间;加热在下部空间所贮存的液体以蒸发部分液体,并且让形成的气体与顶部流下的第二回流液相接触,同时上升通过下部精馏段;将贮存在下部空间呈高纯度溴化氢状态的液体排出;同时也将贮存于上部空间未冷凝的气体排出。
在上部空间冷却未冷凝气体的冷却温度最好降到-30℃到-50℃的范围。另一方面,加热贮存在下部空间溶液的温度最好降到-15℃到-20℃的范围。
用于上述的方法制备高纯度溴化氢的装置包括一个包括纵向压力容器的精馏塔,它分成一个下部空间,一个配有多级的精馏塔板的下部精馏段,一个中部空间,一个配有多级精馏塔板的上部精馏段,和一个上部空间,它们按照由底部向顶部的顺序排列;将由溴化氢及沸点低于溴化氢的杂质组成的原料供给中部空间的设备;用于冷却及冷凝贮存在上部空间的部分气体的第一热交换器;用于加热及蒸发贮存在下部空间的部分液体的第二热交换器;将贮存在上部空间富集了杂质的气体排出精馏塔外的设备;和将以高纯溴化氢形式贮存在下部的液体取到精馏塔外的产品取出设备。
以下,我们将叙述使用本发明的纯化装置纯化溴化氢的方法。
含有溴化氢及沸点低于溴化氢的杂质的原料以气一液混合物的形式加到中间空间。气相含有相对大量的杂质;相反,液相含有相对少量的杂质。
原料的气相上升通过上部精馏塔。在上部精馏塔,含有相对少量杂质的溴化氢液体作为第一回流液流下来。因此,气相同反相流动的第一回流液相接触。由于这种接触,含有高沸点的气体即溴化氢的组份被冷凝,并混入第一回流液中。另一方面,包含在第一回流液中的低沸点即杂质组份被蒸发。贮存于上部空间的气体被第一热交换器冷却并部分冷凝。通过设置冷却温度到一适合条件,例如从-30℃到-50℃范围,有可能减少冷凝液体的杂质含量。冷凝液体返回上部精馏段,然后作为第一回流液通过精馏段流下来。结果未冷凝的气体贮存在上部空间,而含有相对少量杂质的溴化氢液体贮存在中部空间。富集杂质的未冷凝气体被排出上部空间。
另一方面,原料的液相在中部空间与从上部精馏段流下来的第一回流液混合,所得到的混合溶液作为第二回流液通过下部的精馏段流下来并贮存在下部空间。在下部空间的贮存液体,即后面将要描述的高纯度溴化氢,由第二热交换器加热并部分地蒸发。通过设置加热温度到一合适的条件,例如从-15℃到-20℃范围,在贮存液体里杂质的含量可以降低。产生的气体上升通过下部空间并与反向流动的第二回流溶液相接触,因此,气相溴化氢冷凝并混入到第二回流液中;另一方面,包含在第二回流液中的杂质被蒸发。结果,高纯度的溴化氢液体贮存在下部空间。取出高纯度的溴化氢液体并作为产品收回。
第一热交换器既可以设置在上部空间外边亦可设置在它的里边。在第一热交换器设置在外边的情况下,贮存在上部空间的未冷凝的气体被引入第一热交换器,并通过与冷冻剂的热交换热得到部分冷凝。此后,产生的液体回到上部空间而保留未冷凝的气体被排出。在第一热交换器设置在上部空间里边的情况下,部分未冷凝的气体通过与冷冻剂的热交换在上部空间冷凝。另一方面,未冷凝的气体的其余部分从上部空间的顶部附近区段排出。
第二热交换器要求设置在下部空间的外边。在这种情况下,贮存在下部空间的液体被引入第二热交换器,并且通过与空气热交换达到部分蒸发。此后,所产生的气体回到下部空间。
采用这个程序,下部空间的温度和压力获得成功的控制,并且贮存于下部空间的液体的主要杂质被蒸发了,结果是液体中溴化氢的纯度增加了。
进而,希望在下部空间里设置除了第二热交换器外的第三个热交换器。在这种情况下,原料加入的方法是利用位于第三热交换器的加热介质一侧的通道将原料加到中部空间的。
因此原料成功地冷却到预先确定的温度,并且输入到中部空间。
最好是将贮罐安置在精馏塔的外边。在这种情况下,贮存在下部空间的高纯度液态溴化氢通过产品取出设备转移到贮罐并贮存其中。
在这种情况下,通过将热交换器设置在高于贮槽内贮存液体内表面的水平上,将溴化氢气体冷却到-15℃--20℃,并被冷凝。
附图简述

图1表示根据本发明制备高纯度溴化氢的装置的实施方案的方块图。
图2表示现有技术制备高纯度溴化氢的装置的实施方案的方块图。
实现本发明的最佳方式图1表示根据本发明制备溴化氢的装置的方块图实例。
这装置主要由下列三部分组成一个原料输入部分10,一个精馏塔20,和一个产品贮存罐30。此外,这装置包括附加的设备,例如冷冻机40,去污设备45,及管道和阀门。精馏塔20和附加设备一起安置在热绝缘容器28里边。
原料输入部分10包括一个钢瓶15,用于贮存含有溴化氢及沸点低于溴化氢的杂质的原料;一个加热器16,为了供给钢瓶15加热原料11使用,一个压力调节阀80,连接在钢瓶15的顶部。压力调节阀80通过管道51连接精馏塔20。
精馏塔20由以下五个部分连续地从下向上排列而成,因此形成一个整体的单独的压力容器。下部空间26是由压力容器21的底部到下部精馏段25的下表面之间的空间组成。下部精馏段25是由多级精馏塔板组成。中部空间24是下部精馏段25的上表面到上部精馏段23的下表面的空间组成。上部精馏塔25是通过安装多级精馏塔板组成。上部空间22是从压力容器21的顶部到上部精馏段23的上表面之间的空间组成。
在下部空间26内安装了第3个热交换器73。第3个热交换器73的热介质入口处,通过管道51及压力调节阀80,连接到原料输入部分10。另一方面,它的出口处是通过管道52及膨胀阀81连接到精馏塔20的中部空间24。
进一步,下部空间26的外边与以大气作为热源的第二个热交换器72相连接。第二热交换器72冷却介质的入口处,与下部空间26的底部附近部位相连接。另一方面,它的出口处是通过管道55及压力调节阀82,与下部空间26的顶部附近部位相连接。必须注意的是第2热交换器72安装在热绝缘容器28的外边,低于下部空间26的预定液体表面的水平上。
向低于下部空间26的预定液面的部位,连接一管道53,为了取出液体(液化的高纯度溴化氢)。管道53通过压力调节阀84连接到产品贮存罐30顶部附近的部位。向较低空间26连接一个液面计27。
第一热交换器安装在上部空间22里边。第一热交换器71的冷却介质入口处,通过管道63、膨胀阀73与冷冻机40相连接。另一方面它的出口处通过管道64与冷冻机40相连接。应当指出,第一热交换器71可以安装在上部空间22的外边。
上部空间22的顶部连接管道56,用以排出贮存在顶部的(主要由杂质组成)未冷凝气体。管道56通过压力调节阀83、加热器76、管道57还与去污装置45相连接。
产品贮罐30是一个外边包着绝缘层的热绝缘容器。
在产品贮罐30的液面上边安装热交换器74。这个热交换器74的冷却介质的入口处,通过管道65及膨胀阀88连接到冷冻机40上。它的出口处通过管道66连接到冷冻机40上。
产品贮罐30的外边与使用空气作为热源的热交换器75相连接。热交换器75的冷却介质的入口处,通过管道59与产品贮罐30的底部附近相连接。另一方面,它的出口处通过压力调节阀85与产品贮存罐30的顶部附近相连接。
在产品贮罐30的底部连接着管道58为了将产品(高纯度液态溴化氢)输出。
产品贮罐30的顶部通过管道61,排出阀86和加热器77与去污装置45相连接。
以下,我们将解释用图1所示的精馏塔制备高纯度溴化氢的方法。表1示出主要由溴化氢组成的原料的典型配方。该原料由97.96%(体积)的溴化氢和包括氢(H2)、盐酸(HCl)、甲烷(CH4)、氮(N2)、二氧化碳(CO2)、一氧化碳(CO)及沸点低于溴化氢的那些物质组成。必须注意的是水气(H2O)含量为2ppm或更少。
表1原料溴化氢(HBr)的组成实例<

态贮存在钢瓶15中的原料通过加热器16加热,在大约35℃时蒸发成为压力约为20kg/cm2G的气体。然后该气体引入安置在下部空间26内的第三热交换器的加热介质侧。此后,该气体由贮存在下部空间26的液体(液化的高纯度溴化氢)的交换热所冷却。所得到的气体引入膨胀阀81。然后该气体被绝热膨胀,并以在温度约-20℃时大致8kg/cm2压力的气—液混合物的形式引入中部空间24。在本实例中原料的荷载量设定为1000Nm3/h。在中部空间24引入的原料中的气相含有相对大量的杂质而原料中的液相含有相对少量的杂质。
原料中的气相上升进入上部精馏段23。在上部精馏段23中,第一回流液即含有相对少量杂质的溴化氢从顶部往下流动。因此这气流与反相流动的第一回流液相接触。由于这种接触,高沸点组份即在气相中的溴化氢被冷凝,并混合到第一回流液中。另一方面,低沸点组份即在回流液中的杂质被蒸发。
在上部空间22里所贮存的气体,通过第一热交换器21被冷却到-30℃到-50℃范围。结果气相中主要的溴化氢被冷凝。于是大部分冷凝的液体是溴化氢,它含有少量低沸点杂质。
该冷凝液回到上部精馏段23,然后作为第一回流液通过上部精馏段23流下来。
结果,富集了杂质的未冷凝气体贮存在上部空间,含有相对少量杂质的溴化氢液体贮存在中部空间。
富集了杂质的未冷凝气体从上部空间22通过压力调节阀83及加热器76进入去污装置45。
在去污装置45中,氯化氢、溴化氢及少量的一氧化碳从未冷凝的气体中除去,所获得的未冷凝气体被排到外面。
按表1所列方案如果原料的荷载量是1000Nm3/h,则排放的未冷凝的气体量为69Nm3/h。
另一方面,在中部空间24,原料的液相同从上部精馏段23流下来的第一回流液相混合。该混合液作为第二回流液往下流通过下部精馏段25并贮存在下部空间26。
贮存在下部空间26里的液体,即像后面将叙述的高纯度溴化氢,被第二热交换器72和第三热交换器73加热到-15℃至-20℃范围。于是在液体中所含的少量杂质与溴化氢一起蒸发。
设置在下部空间之外的第二热交换器72,具有控制下部空间26的内部温度及压力的功能。由于第2热交换器72设置在低于下部空间26预定液面的水平上,所以贮于下部空间的液体由重力导入第2热交换器72中。该液体在其中受温热,部分蒸发并返回到下部空间顶部的附近部位。因此该液体可以通过热交换器72、管道55及压力调节阀82独自自动循环。换句话说该液体不需要泵或相类似的设备来循环。
所蒸发的气体上升通过下部精馏段25,并与反向流动的第二回流溶液相接触。包含在气相中的溴化氢冷凝,并混合到第二回流液中。另一方面,存在在第二回流液中的杂质被蒸发。
升到中部空间24的冷凝气体,与原料的气相混合,以上面叙述的方法进一步上升通过精馏段23。
结果,液化的高纯度的溴化氢(99.9999%)贮存在下部空间26。
液化的高纯度溴化氢作为产品从下部空间26取出,并通过管道53和压力调节阀84,然后贮存在设置在外边的产品贮存罐30。
按表1所示的方案,如果原料装载量是1000Nm3/h,纯化的高纯度溴化氢的量以气相体积表示是931Nm3/h。
在产品贮罐30里,液化的高纯度溴化氢的温度大约是-20℃,因此它的压力大约是8kg/cm2G。该实例中与精馏塔中的压力有关的关系如下下部空间26的压力高于中部空间24的约0.3kg/cm2,而产品贮存罐30的压力低于下部空间26的约0.5kg/cm2。
液化的高纯度的溴化氢来自产品贮存罐30的底部,使其通过管道58并且作为产品供入使用的设备中(图中未表示)。
连接在产品贮存罐30外边的热交换器75,通过与大气进行热交换来加热产品贮存罐30的液化溴化氢。蒸发产生的气体通过压力调节阀85,并回到产品贮存罐30顶部附近的部位。这条管线用于液化的溴化氢排出时控制该罐的压力。
安置在高于产品贮存30内部液面的热交换器74,用于冷却及冷凝该罐中产生的溴化氢,借此来调节罐的温度及压力。
此外,连接到产品贮存罐30顶部的安全阀86,用于当产品贮存罐过量压力增加时,通过加热器77及去污装置45将罐内的蒸气排到外边。
在此实施方案中,为了使用初始溴化氢的潜热和显热作为加热贮存在下部空间26内的液体的热源,第三热交换器73要安装在下部空间26。让原料通过第三热交换器并引入中部空间24。然而,本发明不限于本实施方案。下部空间26可以单独地由第二热交换器72加热。在这种情况下初始溴化氢气体可以直接从原料的加料段引入中部空间24。
按照以上所述在本发明的制备高纯度的溴化氢的方法及装置里,因为溴化氢是使用二级精馏塔来纯化,所以沸点低于溴化氢的杂质可以除掉而不会失败。因此,可以连续而大量地制备出纯度为99.9999%的液化溴化氢。
权利要求
1.一种制备高纯度溴化氢的方法,包括以下步骤提供一个精馏塔,包含有一个下部空间,一个下部精馏段,一个中部空间,一个上部精馏段,和一个上部空间,它们按照由底部由顶部的顺序排列;由溴化氢和沸点低于溴化氢的杂质组成的原料进入中部空间;让输入的原料的气相上升通过上部精馏段,同时气相与由顶部流下的第一回流液相接触,使气相到达上部空间,并把未冷凝的气体贮存在上部空间;冷却贮存在上部空间的未冷凝气体,因此冷凝了一部分未冷凝的气体;使冷凝的液体用作为第一回流液并且通过上部精馏段向下流到中部空间;将输入的液相原料与在中间空间第一回流液混合,因此形成第二回流液,并且使第二回流液通过下部精馏段流到下部空间然后将液体贮存在下部空间;加热在下部空间所贮存的液体以蒸发部分液体,并且让形成的气体与顶部流下的第二回流液相接触,同时上升通过下部精馏段;将贮存在下部空间呈高纯度溴化氢状态的液体排出;同时也将贮存于上部空间未冷凝的气体排出。
2.根据权利要求1制备高纯度溴化氢的方法,其中冷却在上部空间内未冷凝气体的温度在-30℃到-50℃范围内,和加热贮存在下部空间的溶液的温度在-15℃到-20℃范围内。
3.制备高纯度溴化氢的装置,包括一个包括纵向压力容器的精馏塔,它分成一个下部空间,一个配有多级的精馏塔板的下部精馏段,一个中部空间,一个配有多级精馏塔板的上部精馏段,和一个上部空间,它们按照由底部向顶部的顺序排列;将由溴化氢及沸点低于溴化氢的杂质组成的原料供给中部空间的设备;用于冷却及冷凝贮存在上部空间的部分气体的第一热交换器;用于加热及蒸发贮存在下部空间的部分液体的第二热交换器;将贮存在上部空部富集了杂质的气体排出精馏塔外的设备;和将以高纯溴化氢形式贮存在下部的液体取到精馏塔外的产品取出设备。
4.一种根据权利要求3制备高纯度溴化氢的装置,其中第一热交换器安置于上部空间之外,并用于引导贮存于上部空间的未冷凝气体,并通过与冷冻剂的热交换,部分地冷凝如此导入的未冷凝气体,而产生的液体溶液则返回到上部空间。
5.根据权利要求3制备高纯度溴化氢的装置,其中第一热交换器安装于上部空间之外,并用于通过与冷冻剂的热交换冷凝贮存于上部空间的未冷凝的气体。
6.根据权利要求3制备高纯度的溴化氢的装置,其中第二热交换器安装在下部空间之外,并用于引导贮存于下部空间的液体及通过与大气的热交换来使此液体蒸发,并使产生的气体返回到下部空间。
7.根据权利要求6制备高纯度溴化氢的装置,其中还包括一个安置在下部空间里的第三热交换器,其中输送原料的设备是用于通过一个安置在第三热交换器的加热介质一侧的通道,将原料送到中部空间。
8.根据权利要求3制备高纯度溴化氢的装置,其中还包括一个安置在精馏塔外的冷冻贮罐,其中所述产品取出设备是用于将贮存在下部空间的高纯度溴化氢输送到该冷冻贮罐。
9.根据权利要求8制备高纯度溴化氢的装置,其中一个热交换器安装在高于冷冻贮存罐内液面的水平面,并且产生的溴化氢气体在-15℃至-20℃范围的温度内被冷却而且冷凝。
全文摘要
本发明涉及制备高纯度溴化氢的方法及装置。含有低沸点杂质的初始溴化氢10被输送到中部空间24。让初始溴化氢的气相上升通过上部精馏段23,被带入与反相流动的第一返回液相接触。贮存于上部空间22的末冷凝气体被冷却并部分冷凝,让被冷凝的液体流下来通过上部精馏段23作为第一返回液。另一方面,起始溴化氢的液相与第一返回液在中部空间24混合。让混合溶液流下来通过下部精馏段25作为第二返回液。贮存在下部空间26的液体被加热并且部分蒸发。与此同时让蒸发的物质上升通过下部精馏段25,它被带入与反相流动的第二返回液接触。贮存在下部空间26的液体作为高纯度的溴化氢被输送出来。贮存于上部空间22的冷凝气体被排到外边。
文档编号B01D3/32GK1138314SQ9519114
公开日1996年12月18日 申请日期1995年9月13日 优先权日1994年9月14日
发明者长村孝, 富田伸二 申请人:缔酸株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1