螺线状膜过滤系统的制作方法

文档序号:5009904阅读:370来源:国知局
专利名称:螺线状膜过滤系统的制作方法
技术领域
及背景本发明一般涉及过滤组件或单元,更具体地说涉及一种新型的和有用的方法及设备,该方法使用了曲线状或螺线状管结构膜,以便在溶液-膜的界面上最大限度地形成迪安涡流,从而改进了过滤的效果。
对于压力推动膜的方法,比如反向渗透、超过滤和微过滤,大多数组件设计都是基于单位体积内膜面积的最大化,也基于组件的装卸方便。为了降低CP和减少堵塞,现有许多方法,包括对膜表面进行化学改性和物理方法,比如冲洗等。基于湍流中的旋涡(eddy)或诱发的不稳定流的流体动力学方法也是已知的。可以通过在流道中放入插件来形成不稳定流。通过膜的不稳定流也已被本申请的共同发明人之一用来减少溶质在溶液-膜界面处的聚集,见贝尔弗特(Belfort,G.)的《膜过滤中的流体力学最新进展(Fluid mechanicsin membrane filtrationrecent developments)》,载《膜科学杂志》(J.Membrane Sci.)40,123-147(1989)。
现已利用了不同类型的不稳定流,这包括由粗糙的膜表面、脉动流和振动膜表面所造成的涡流和不稳定流。除了粗糙膜表面等以外,由以下各项目中所开发的旋转盘系统也可诱发不稳定流,(i.)70年代利特曼等人(Fred Littmand和Jerry Kroopnick)在DresserIndustries公司,德克萨斯州及此前在Stanford研究实验室,加利福尼亚州;(ii),90年代布朗·波维利公司(Brown Boveri Co.)在瑞典,马尔墨(Malmo)。最成功的去极化(depolarizing)方法之一使用了在转动环状过滤组件中形成的泰勒(Taylor)涡流。这种设计的主要限制是膜面积难以按比例放大,还在于能耗过高。在衬膜流道中由于在波纹流道中经常逆转的湍流(约8Hz)也能产生涡流。请见斯退尔曼德等(Stairmand,J.W和Bellhouse,B.J.)的《在脉冲湍流中与向皱壁上沉积的传质(Mass transfer in a pulsatingturbulent flow with deposition into furrowed walls)》载Int.Heat Mass Transfer杂志,27,1405(1985)。在一个平膜上面的螺旋形半圆柱流道中强迫流体流过也已达到此目的。见文茨勒(Winzeler)的1990年8月23日PCT专利申请WO90/09229。在涡流存在下,这两种方法都显示出增强了的性能,但它们都遇到一些困难,包括放大和密封问题。现在普遍推荐在螺旋缠绕形单元中使用间隔来导致混合。不幸的是,在一般为大多数螺旋缠绕状单元使用的泊肃叶(Poiseuille)流中的低轴向雷诺数(Reynolds numbers)的条件下,这种方法经常是无效的。请见Toray Inductries,Inc.在比如它们名为《Romembra TorayReverse Osmosis Element(反向渗透单元)》的小册子中公开的螺旋流过滤器。
在文献中已普遍确认,不稳定流如涡流已经有效地用于压力推动膜应用方面,用于去极化(depolaring)和清洗合成膜。见文茨勒等人(Winzeler,H.B.和Belfort,G.)的《压力推动膜工艺增强性能关于不稳定流的讨论(Enhanced performance for pressure-drivenmembrane processesThe argument for fluid instabilities),载《膜科学杂志》(J.MembraneSci.)(1993)80,35-47。在围绕着一种带有微过滤膜的曲线状管道流动所造成的迪安涡流存在下,本发明已表现出优异的流动性能改善。见US专利5,204,002,它在此处引作参考。本发明的一个目的就是在高压逆渗透(RO)、超过滤(UF)、微过滤(MF)或纳米级过滤(NF)膜工艺中提供用来使盐和悬浮液去极化的这种受控涡流。
发明概述本发明是在一个曲线流道中由于不稳定流动的冲击而导致涡流,特别是迪安涡流所使用的设备和方法。
本发明包括使用迪安涡流来消除堵塞和去极化,前者也即从膜表面上除去沉积物,后者也即从膜表面上除去靠近膜的悬浮溶解物,溶质。本发明也包括在如下用途中使用的螺旋形或其它缠绕膜式管(i)反渗透-主要用于保留盐和低分子量有机物;(ii)纳米级过滤-主要用于盐和低分子量有机物的分级;(iii)超滤-主要用于中分子量有机物的分极以及盐和低分子量有机物的输送;(iv)微滤-主要用来保留胶体、小颗粒以及输送盐、低分子量有机物和其它溶解的有机物及溶质。
本发明的迪安涡流不仅具有与泰勒涡流及振动流相似的优点,而且能够按比例放大。
为了实施本发明的一个实施例,必须用实验确定用于NF的迪安涡流去极化作用的效果和最佳范围,以便设计、制造和测试能产生简单实验性涡流的管式NF单元;使用核磁共振影象法来证实涡流的存在和保持时间;以及用可变壁流及可变参数性能来解快速迪安流的对流-扩散方程,并将此模型用于预测的目的。使用在涡流中作为轴向距离函数的浓度分布曲线来估计此方法的效果。这样的研究使我们有关如何产生不稳定涡流以及如何使用此涡流来减小浓度极化作用(Concentration polarization)的知识更为丰富。
因此,本发明的一个目的就是提供一种从膜表面上除去堵塞和使溶质去极化的方法,这包括在与膜表面相邻的流体溶液中提供溶质;在此穿过膜表面的流体溶液中产生迪安涡流,以及从膜上除去堵塞并使溶质去极化。
本发明的又一个目的是提供用于反渗透(RO)、微滤(MF)、纳米级过滤(NF)以及超滤(UF)工艺的设备,包括一种缠绕的膜式管;以及将一种流体供给该管,使该流体中至少一个组分通过该膜式管进行反渗透、纳米级过滤、微滤或超滤的装置。
在本文后面所附并构成本文一部分的权利要求中特别指出了作为本发明特征的新颖性的各种特征。为了更好地理解本发明,其操作的优点以及使用本发明所达到的特别目的,可参考附图和说明本发明优选实施方案的描述性内容。
附图简要说明

图1是半径比对临界雷诺数的关系图,其中虚线显示的是窄间隙理论(narrow gaptheory),实线显示的宽间隙理论(wide gapped theory)。
图2是按照本发明使用的螺旋管几何形状的示意图。
图3是用来帮助证实本发明效果的多重直线管设计的剖面示意图;图4是用来确认本发明效果的缠绕状多重管型中空纤维设计的剖面设计图;图5是图4的细部放大图6是用来确认本发明的实验系统的示意图。
图7是单位长度的轴向压力降与迪安数和Di比值之间的函数关系图,以水为进料;图8为在直线型和螺旋型纳米级过滤组件中含有MgSO4的盐溶液的溶质流量,其中膜间压力为1700KPa,迪安比为3.84,温度为298K;图9是一个与图8相似的图,其中MgSO4的浓度从1,000ppm变化至2,000ppm,压力增加至1,800KPa,迪安比为7.69,温度也是289K;图10、11、12和13是透过率系数与溶质或悬浮物浓度之间的关系图,表明了本发明的效果;图14是本发明的另一种实施方案的剖面示意图,其中的螺旋管既顺着轴向又顺着径向缠绕;图15与图14相似,是本发明的又一种实施方案,其螺旋管顺径向缠绕。
优选实施方案的描述迪安(Dean,W.R.)在其《曲线流道中流体的运动(Fluid motion in a curved channel)》一文(载Pro.Roy.Sco A 121(1928)402-420)中测定了在曲线流道流中出现涡流的环境。涡流(vertices)的出现取决于由雷诺数表征的流体速度和曲线流道的内外径之比。莱德(Reid)给出了窄间隙理论的临界雷诺数与半径比有关的方程Rec=k2η/(η-1)---(1)]]>式中η是曲线流道内半径ri和外半径ro之比,κ+35.94。见莱德(Reid,W.H.)《论曲线流道中粘性流的稳定性(On the stability of viscous flow in a curved channel)》载Proc.Roy.Sco.A,244(9158)186-198。
在US专利5,204,002中公开了宽间隙理论对Rec线性及弱非线性稳定性分析。图1显示了这两种理论的结果。它们都是相对于曲线狭缝而推导出的。然而它们都是基于没有规定流道的几何形状的迪安方程的。对于本发明,假定适合于曲线管的窄间隙理论。图1表明,当η>0.90时,窄间隙理论(虚线)与宽间隙理论(实线)相当接近。
下式给出了临界迪安数与临界雷诺数之间的关系Dec=Recd/k---(2)]]>式中k=(r0+ri)/2,且d=r0-ri,是管子的内直径。为了考虑圆形和螺旋形的不同半径,我们使用了盖马诺(Germano,M.)在《扩展到螺旋状管式流的迪安方程(the Deanequations extended to a helical pipe flow)》(载《流体力学杂志》(J.Fluid Mech.)203(1989)289-305)中给出的曲率半径rc=r2+p2r---(3)]]>式中
r=drod/2 + t+d/2 (4)p=m2π(d+2t)---(5)]]>此处t是管的壁(膜)厚,m是排到下一圈之内的管数(见图2)。
使用曲率半径的定义,我们可以得到rc/d=(1/2)1-η1+η---(6)]]>将方程(4)和(5)代入方程(3),然后将(3)代入方程(6),我们得到η=2((drod2+t+d2)2+m24π2(d+2T)2)-d(drod2+t+d2)2((drod2+t+d2)2+m24π2(d+2t)2)+d(drod2+t+d2)---(7)]]>下面检验此方程。
设计并制造两个中空纤维膜组件,以比较在有涡流存在和没有涡流存在下纳米级过滤性能上的差别。第一个组件是如图3的直管形设计10,它包括有26根直线状中空纤维12,在密封件16和18密封处密封,并装在CPVC外壳14内。入口20向管内通入物料,也充当出口。还提供一个透过物出口22。第二个组件如图4和图5所示的螺旋管设计30,它包括了26根棒32,在其中每一根上都缠绕上呈螺旋状的中空纤维34。在塑料外壳40的两端36和38将中空纤维和棒密封。物料入口/出口42以及透过物出口44都与壳40相联接。不过管子并非一定要缠到棒上不可,这也在本发明范围之内。
直线型管式组件10的总长度为815mm,直径大约90mm。有效纤维长度为790mm,表面积147cm2。有一个出口22用于收集透过物。组件30的棒32,其直径为3.175mm,在上面紧密地缠绕着纤维34。由于螺旋管组件30的截面积比较大,壳40的外配件经受不住280KPa的最大操作压力。为了保护它们不爆裂,在组件的周围装有由2块10×10cm金属板制的夹板和4个螺杆。为了简化也为了重现性好,对所有的棒都选用相同的棒直径。不过,由于在组件内流过物料的流量是逐渐降低的,因而流体的流速也随之下降,在朝着组件出口处涡流会减弱,甚至消失。按照本发明,总是要试图操作使得雷诺数(或流速)大于临界雷诺数(或临界流速)。
能够缠上纤维而不会使之损坏的最小直径drod是3mm。
为了优化η,也为了得到螺旋管组件的最好性能,应使可能的最高迪安数与临界迪安数之比最大化,即maxD=De/Dec=Re/Rec(8)
由于在螺旋管组件中280KPa的最大压降限制了最大流速(或最大迪安数),因此根据图1决定减少临界雷诺数,也就是减小η,这就使我们得到最大的De。
为了确定螺旋管组件的最优化设计,我们将方程(7)中的η对中空纤维内径d和棒的直径drod做图。drod和在棒上缠绕的纤维数越小,则越能减小η。中空纤维的直径越大也会引起η减小。然而,这样的纤维则比较不结实,因此耐压。这样也就降低了最大压降和最大流速。
如上所述,已经测定了纤维能够在其上缠绕而不引起损坏的最小直径drod,发现它为3mm。
然后计算临界雷诺数和临界迪安数。如果给定了中空纤维的尺寸(d=0.270mm,t=0.175)和棒的尺寸(drod=3mm),我们从方程(7)得到η=0.876。由方程(1)我们得到Rec=45.89,由方程(3)我们得到ric=1.77mm,roc=2.04mm。
因此,我们由方程(2)发现Dec=17.28.
下面就计算临界速度和临界物料流量。由通过组件的体积流量可间接测量迪安数和雷诺数。与加入物料的流速相比,恒定流的速度可认为是可忽略的。由下式可给出通过一根中空纤维的临界体积流量QC-fiber=π4d2vc---(9)]]>式中,vc是临界速度,由下式给出vc=Red.cμρ---(10)]]>其中,对于水,粘度μ=9.855×10-3Kg/m-s,在25℃的密度ρ=1000Kg/m3,因此vc=0.0145m/sQC-fiber=8,32 10-6dm3/s(9)或者对于26根纤维来说,对于通过每个组件的临界体积流量,QC=26 QC-fiber=2.16 10-4dm3/s=12.98ml/min。
由方程(8)得到最大迪安比,最大迪安比Dmax=Demax/Dec=Remax/Rec=vmax/vc=Qmax/Qc对于此螺旋管组件,用实验测定了盐溶液和二氧化硅悬浮液的最大体积流量Dmax-盐溶液=13.1,Dmax二氧化硅悬浮液=11.6。
在每个组件中安装了多根中空纤维以便使单根纤维之间差异平均化。该中空纤维膜的内径为0.270mm,外径为0.620mm。支撑材料由聚醚砜制得,而涂层由界面聚合的聚酰胺制成。见麦克格雷(McGray,S.)1989年10月24日的US专利4,876,009《四酰胺基高流量膜(Tetrakis-amido high flux membranes)》。该膜专门制造用于在温度为0-60℃和pH3-9的纳米级过滤。平均破坏压力为320KPa。
为了保证在这两种组件进行测试的过程中有类似的温度、物料溶液等条件,设计一种实验系统用来操作螺旋管组件30,以及同时操作直线型管组件10作为参考。在图6中此实验系统标作50。它由如下组成一个19.5升容量的Nalgene槽52,一台隔膜泵54(WannerHydracell公司,纽约生产,型号M03),它由一台变速电机(Baldor公司,纽约生产,型号CDP3330)带动,并受控制器(SECO公司,纽约生产,型号160SRC)控制,以及两个膜组件。
用一个槽形的大体积容器52来减轻在实验设备中流体的脉动,并避免由于系统中泵和混合器造成的升温。用一个脉动缓冲器56(Cat Pump公司,型号6029)来缓冲残留的脉动,它装在泵54的排料线上并尽可能地靠近膜组件。在缓冲器中预先加上133KPa(195psi)的压力,这相当于组件入口最大压力的0.5倍。因此,它在136KPa(200psi)时有效地开始工作。泵和缓冲器通过一根柔性金属软管58连接在一起(0.5”Swagelok,长900mm 316SS)。该泵可产生高达680KPa(1000psi)的压力,但在实验过程中产生的压力则比这小得多,不超过270KPa。由于泵的最小流量为104ml/min,仍高于我们实验所需要的流量,也由于该泵在低流量下操作不平稳,所以装上一个带有针型阀62(Swagelok公司,纽约,型号SS-3NRS4)的旁通管线60使泵经常在800ml/min下操作(即在控制器标度的40%)。用温度计64(热电偶)在管线66上刚好在脉动缓冲器出口不远处测量物料的温度。
在旁通管线之后,物料流被分成平行的两股截面一样的管线67和68,各供应一个组件。也可以闭合装在每根管线开口处的球阀69和70(Swagelok公司,纽约,型号SS-42S4)分别操作一个组件。用压力表72(McMaster Carr公司,型号4088K999,蒙乃尔合金表体内装甘油(glycerine))测量组件入口压力、穿过膜的压力和通过组件的压降。压力表装在每个组件的入口和出口处。用装在每个组件下游的调节(背压)阀73、74(Swagelok公司,型号SS-MS4-VH)来控制通过组件的物料流量及出口压力。透过物物流通过流量计75和76(Gilmont公司,型号GF1200)进行计量,浓缩液和透过液物在充分混合以后再进入槽52。另外,无需将浓缩液加到透过液的流量上就很容易得到原料的流量。在系统的物料流之前用两个流量计77和78(Gilmont公司,型号GF2360)测量原料流量,可使流量计的费用大幅度下降。为了对每个组件的透过液浓缩液物流取样,在每一物流上加上取样管线80和82,分别用阀门84和85封闭。在这两个阀门上游的所有连接件和管件都是由1/2”和1/4”316不锈钢管和不锈钢管件(Swagelok公司)制成。在调节阀73和74下游使用3/16”的塑料管和塑料管件。为了使在储槽内的原料溶液保持均匀,装有一个混合器90,并在实验过程中大约每5分钟开动3分钟。
为了检验迪安涡流防止浓度极化和膜堵塞的潜力,用不同的盐溶液和含盐的二氧化硅悬浮液同时测试了螺旋管组件和线型管组件。
对所有实验所要求的液体都是超净水。将自来水通过碳过滤器、RO组件(明尼苏达州,明尼那波利斯市的Filmtech公司生产,型号FT30)、离子交换器和紫外线灭菌器就得到这种水。用一台电导仪连续检测超净水的电导率,使之保持在18-19Meg Ω/cm之间。虽然电导率只是一个无机杂质的指标,因为有了碳过滤器、RO组件和紫外灭菌器,可以认为有机杂质含量是很低的。
对于盐溶液,使用了MgSO4,用20μm的二氧化硅颗粒(德国Degussa公司生产,牌号Sipernat 22)来制备二氧化硅悬浮液。
测试了四种不同的悬浮液,它们的二氧化硅含量分别为0、20、40和80ppm,(分别被标为1-4)。每一种悬浮液都与不同的盐溶液一起测试(称作各种物料类型)(1)与1000ppm、1500ppm和2000ppmMgSO4;(2)和(3)是与1000ppm和2000ppm MgSO4;而(4)是与1000 ppmMgSO4。下面给出对于不同摩尔MgSO4溶液的渗透压。
对于每种物料类型,至少测试四种不同的流量,其中每种又有四种不同的入口压力。这些流量是50、80、110、130、150和170ml/min。从167KPa(245psi)、190KPa(280psi)、211KPa(310psi)、231KPa(340psi)和252KPa(370psi)中选择入口压力。由于螺旋管组件的压降大于在此情况下的入口压力,所以对于高流量(等于或大于130ml/min)不能得到低的入口压力。需要至少10KPa(15psi)的出口压力读数以得到可靠的结果。
在开始实验之前,在水槽中加入0-15升的超净水。用Satorius精密天平(德国产,型号K#4030)称量MgSO4和二氧化硅的重量。在混合物料溶液时,先加入盐,再加入二氧化硅颗粒。大致混合溶液10分钟。在开始泵送后设置第一组入口压力与物料流量的组合。进行大约80分钟以达到第一组压力/流量组合的稳态,因为开始时膜组件被超净水所充满。在30分钟后可以取下一组压力/流量组合读数,与稳态的偏差值小于5%。
为了确定所希望的入口压力和希望的流量,关闭旁通阀,直到入口压力达到所需数值为止,然后用调节阀调节物料流量。由于调节阀的转动会造成入口压力的变化,还必需在旁通阀和调节阀之间反复进行几次调节,以确立稳态压力和稳态流量。
一旦设定了一组新的入口压力和物料流量,则每3-5分钟从压力表和流量计上读取一次读数。每5-10分钟取一次透过物流的试样,并测量其电导率(用Cole Parmer电导仪)。每10-15分钟取一次浓缩物流的试样,也测量其电导率。此后,将该样品回倾至槽中。也定期地检测原料溶液的电导率。
制造厂标定的压力表精度为±0.15%。用跑表和称量试管的方法来标定流量计。透过流流量计的精度为±1%,原料流流量计的精度为±2%。用Cole Parmer公司提供的718μS和2070μS两种标准测试液来标定电导仪。
在每天的实验之后,用超净水漂洗该系统和膜30分钟,以从膜上洗掉盐分子、二氧化硅和其它颗粒。然后用0.05%的柠檬酸溶液通过系统冲洗30分钟,以从膜上溶下金属离子。再后用pH 10.5的NaOH溶液实施30分钟的洗涤步骤。增大pH值会增大二氧化硅颗粒的溶解度。最后再用超净水漂洗系统4-6小时。在用二氧化硅悬浮液进行实验后,必须重复第三步和第四步4-10次,以从膜上除去凝聚的二氧化硅粒子。在每步之后检测膜的水透过率。工作一周后拆开膜组件、管道和管件用加压超净水漂洗。
当用二氧化硅悬浮液进行实验时,在调节阀下游的塑料管路中会沉积二氧化硅颗。用3/16”的管道代替3/8”的管道可以解决这个问题,因此会使管中的平均速度增大约4倍的因子。
用下面的近似式计算镁溶液稀溶液的渗透压π=RTMηVAv·m·φ---(11)]]>
式中R是气体常数,T是绝对温度,MA是溶剂的分子量,VA是溶剂的部分摩尔体积,V是由1摩尔电解质形成离子的摩尔数,φ是摩尔渗透压系数,m是溶质的体积摩尔浓度。
对线型和螺旋形中空纤维组件都测试水的透过率。无论迪安比如何,两种组件的透过率都是约0.09l/(m2-hr-KPa)。
测量两种组件的轴向压降,将其作为迪安比的函数。结果画在图7上。对于线型组件适用哈根-泊肃叶(Hagen-Poiseuille)方程,因此得到一条直线。注意到扩展至螺旋流的纳维-斯托克斯(Navier-Stokes)方程,可以看到轴向压降是流动速度的一个复杂函数。在这个用于轴向压降的方程中,至少有一项含有两个速度分量的乘积。再有,迪安涡流是一种离心效应,离心力正比于速度的平方。基于这样一些考虑,螺旋组件的轴向压降数据是符合二次方程的。十分良好的拟合提示我们,对这些观察有一定的正确性。这个结果类似于原先在曲线狭缝流道中得到的结果。
对于MgSO4盐溶液的纳米级过滤,测量了两种组件的性能特征。在低浓度时(1000ppm MgSO4),观察到几种效果(i)随着迪安涡流性能有明显改进;(ii)对于一定的迪安数,随着推动力增大,流量改善增加;以及(iii)显然在此浓度下还不能清晰地看到,但随着迪安数加大流量改善增加。
用1500ppm MgSO4进行纳米级过滤的结果显示出同样的效果。可以更清楚地看到,随着迪安数增大,流量改善也加大。随着浓度增大到2000ppm,这个效果甚至更显著。另外,也可看到随着浓度加大,流量的净改善也加大,尽管绝对流量是下降了。
在低溶质浓度时,预期由于迪安涡流造成的流量改善并不大,这是基于水流量的结果。在很高浓度时,由于体积粘度效应,迪安涡流的效果减小了。最大的流量改善将发生在中间浓度时。
在图8和图9上显示的是试样的溶质流量图。对于螺旋组件来说,较高的溶质流量意味着比较低的障碍(rejection)。至少有两个竞争的效果对此做出贡献(i)由于涡流使边界层的浓度去极化而造成较低的溶质流量;和(ii)由于增大了透过的流量而使溶质流量增大。比较图8和图9可以看出,迪安数和溶质浓度增大在减小的溶质流量方面加大了涡流去极化的效果。换句话说,在较高的浓度和横向流流量的情况下,由于涡流的存在,改善了对溶质的障碍(rejection)状况。
为了对这两种组件进行真实的性能进行比较所做的关键性考虑是流量改善与能耗或者说轴向压降之间的关系。从图7可以得到应该进行两种组件的流量结果比较时的雷诺数(或者用于比较目的的相应的迪安数比)。比如,在相当迪安比为10、没有涡流时,得到的流量应当与在迪安比为5.7、具有涡流时进行比较。在迪安比为10、推动力1900KPa的流量与在同样推动力下,迪安比为3.84(而不是5.7)的流量进行比较,对可以实现的流量改善做出了保守的估计(大约35%)。这清楚地显示出,对于相同的能量输入,具有迪安涡流的性能优于线型组件的性能。随着溶质浓度增大,这种效果会给人以更深刻的印象。可以达到约55%的改善。
图10、11、12和13显示了本发明的优越结果。下表列出了这些结果以进一步表明了本发明的优点。
表1.有迪安涡流和无迪安涡流的流动数据汇总a)流 迪安比条件 透过率系数b)对盐的障碍b)量 斜率(R2)×108RMgSO4[Si] wdv wodvwdvwodvppm ppm (dm3/cm2-min-kPa) %全 1.9-6.50 0 20.6(.912) 7.1(.901)部慢 1.9-4.21000 0 4.25(.823) 1.84(.901) 86-90 90-96快 5.0-6.51000 0 5.90(.990) 2.02(.712)85 89-92慢 1.9-4.21500 0 3.23(.913) 1.53(.610) 86-90 85-94快 5.0-6.51500 0 5.31(.877) 2.63(.958) 86-89 89-91慢 1.9-4.25 2000 0 2.73(.703) 1.80(.442) 88-90 88-91快 5.0-6.52000 0 4.25(.832) 1.96(.974) 87-90 89-92慢 1.4-2.01000 20 3.19(.747) 1.62(8.30) 85-90 75-81快 4.2-5.81000 20 4.91(.936) 2.02(.825) 84-89 80-83慢 1.9-3.02000 20 3.88(.887) 1.85(.958) 89-92 82-85快 4.2-5.82000 20 4.40(.998) 1.96(.947) 89-92 82-88慢 1.9-3.01000 40 3.88(.945) 1.56(.901) 88-90 75-82快 4.2-5.81000 40 4.86(.977) 1.79(.949) 88-90 79-84慢 1.9-3.02000 40 3.53(.958) 1.17(.864) 89-91 81-85快 4.2-5.82000 40′4.28(.991) 1.56(.809) 90-92 84-86a)透过率系数和障碍数据源于图10-13的最佳线性拟合的相关关系。
b)wdv表示有迪安涡流;wodv表示没有迪安涡流图14显示本发明的一种实施方案,这时缠绕的螺旋状膜管在轴向和径向两方面依次缠绕着,就好像在线轴上缠着绳子一样。
图15显示本发明的另一种实施方案,这时膜管只在径向进行缠绕,在径向上每一圈都缠在前一圈上。
基于这些结果得出如下的结论(i)螺旋管状纳米级过滤组件的发明设计和结构在产生使膜去极化和清洗膜的迪安涡流方面是有效的。
(ii)与没有迪安涡流的横向流相比,迪安涡流的存在明显地改善了膜的性能。
(iii)随着推动力增大以及随着溶质(MgSO4)浓度增大(对于低浓度),性能的改善也增大。
(iv)对于螺旋组件,随着迪安数和溶质浓度增大,对溶质的障碍(rejection)也增大。
(v)对于同样的能耗,对于比较低的盐浓度,螺旋组件的性能优于线型组件达35-55%的程度。对于在具有迪安涡流的螺旋设备中进行成功地操作,这是一种关键性的要求。
虽然已经显示和详细叙述了本发明的特定实施方案,藉以说明本发明原理的应用,但应理解,只要不超出这样的原理,本发明可以按另外的样子加以实施。
权利要求
1.一种从膜表面除去悬浮的或溶解的溶质形成的堵塞并使悬浮的或溶解的溶质去极化的方法,该方法包括在与该膜表面相邻的流体溶液中提供溶质;以及在流体溶液中产生沿着膜表面运动的迪安涡流,从膜上除去溶质的堵塞并去极化。
2.按照权利要求1的方法,包括把膜表面成形为缠绕膜管。
3.按照权利要求2的方法,包括将膜管沿轴向缠绕成螺旋状。
4.按照权利要求3的方法,包括按如下方法将螺旋管成形,使其沿轴向缠绕时相邻的螺旋管之间几乎没有或没有间隔。
5.按照权利要求2的方法,其中螺旋管同时在轴向和径向上进行缠绕。
6.按照权利要求2的方法,其中螺旋管按径向缠绕。
7.按照权利要求1的方法,其中的膜表面包括一膜管和迪安涡流,该涡流由确立为约34.55的临界迪安数来提供,在此情况下膜管的直径约0.270mm,壁厚约0.175mm,其缠绕半径约为3mm。
8.按照权利要求1的方法,其中的膜表面是一种缠绕的膜管,该方法包括使用足够高的迪安数产生迪安涡流,用来清洗膜和使膜的浓度极化去极化,而同时又不在管中造成过大的压降,还包括使是足够高的迪安数与临界迪安数之间的比值最大化,该临界迪安数是管径、膜厚度及管的缠绕半径的函数。
9.按照权利要求8的方法,这包括按照方程vc=ReCμ/dρ以临界速度使流体溶液流径膜的表面,式中Rec是流体的临界雷诺数,μ是流体粘度,d是管直径,而ρ是流体的密度。
10.一种用来进行反渗透、微过滤、纳米级过滤和超过滤方法的设备,包括一种缠绕的膜管;以及用来向管内供应流体,使该流体中至少一个组分通过该膜管进行反渗透、微过滤、纳米级过滤或超过过滤的装置。
11.按照权利要求10的设备,其中缠绕膜管是螺旋状盘管。
12.按照权利要求11的设备,其中的螺旋盘管沿轴向依次序缠绕。
13.按照权利要求10的设备,包括在膜管中形成迪安涡流的装置。
14.按照权利要求13的设备,其中缠绕膜管是一种螺旋状盘管。
15.按照权利要求14的设备,其中的螺旋状盘管沿轴向依次序缠绕。
16.按照权利要求13的设备,其中的膜表面包括膜管和迪安涡流,该涡流由形成为大约34.55的临界迪安数来提供,在此情况下该膜管的直径约为0.270mm,壁厚约为0.175mm,以半径约为3mm缠绕。
17.按照权利要求16的设备,包括按照方程vc=Recμ/dρ,在高于临界速度的流量下让流体溶液流经膜表面;这里Rec是该流体的临界雷诺数,μ是该流体的粘度,d是管的直径而ρ为该流体的密度。
全文摘要
一种用来进行反渗透、微过渡、纳米级过滤和超过滤的方法和设备,对膜表面产生迪安涡流,该膜表面最好呈缠绕的螺旋状膜管(34)的形式。
文档编号B01D65/08GK1166792SQ96190886
公开日1997年12月3日 申请日期1996年8月2日 优先权日1995年8月8日
发明者乔治·贝尔福特 申请人:伦塞勒高聚技术研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1