复合支撑剂、复合过滤介质、其制备方法以及用途的制作方法

文档序号:5015023阅读:451来源:国知局
专利名称:复合支撑剂、复合过滤介质、其制备方法以及用途的制作方法
背景技术
发明领域本发明涉及过滤时使用的复合介质和在石油和气体生产中用以“支持/支撑”井身附近的液压裂缝的复合支撑剂。所述支撑剂使液压裂缝保持敞开,以便石油和/或天然气流入,并能大大改善每口井的收率。更准确地说,本发明涉及复合支撑剂,以及复合过滤介质,它们由与有机和/或无机三维交联剂/粘结剂粘结在一起的适宜的填料组成。另外,本发明还涉及这些过滤介质和支撑剂的制备方法和用途。
背景技术
说明一般来说,为保持通过对地下层,例如地下油层或地下气层进行液压破碎所造成的裂缝敞开,支撑剂是极其有用的。通常,在地下层中的裂缝是希望的,以便增加油或气的产量。破裂是通过在高压下将为形成裂缝的粘性破裂液或泡沫注入井中所造成的。当形成裂缝时,将称之为“支撑剂”的颗粒料装入该地层中,以便当释放注射压力时使裂缝保持被支撑状态。形成裂缝后,当压力释放时,支撑剂形成了一个用于支撑裂缝敞开的填充料。通过将支撑剂悬浮于辅助液体或泡沫中而将其引入井中,以便利用于液体或泡沫中的支撑剂浆液来填充裂缝。使用支撑剂的目的是通过在地层中提供敞通的通道而增加油和/或气的生产。另外,选择支撑剂也是增产措施成功的关键。
因此,加撑的裂缝在地层中提供了高度传导的通道。通过液压破碎处理提供的增产措施的程度主要取决于地层参数、裂缝的渗透性以及裂缝的支撑宽度。如果支撑剂是未涂布物质,例如砂,并且经受气/油井中存在的高应力的话,那么,所述物质可能会破碎,从而形成破碎支撑剂的碎屑。随后,碎屑将降低支撑剂填充料内的传导性。然而,树脂涂层将使涂布颗粒的耐破性比单独使用支撑剂的耐破性有所增强。
业已将玻璃珠用作支撑材料(参见US4,068,718,在此作为现有技术将其引入作为参考)。其缺点包括如前所述的能量和生产的成本,以及由于其在井下条件下过度的破碎,在高压(约35MPa以上)下其渗透性的严重下降。因此,目前玻璃珠不受欢迎。
目前使用三种不同的支撑材料,即支撑剂。
第一种支撑剂是烧结的陶瓷颗粒,通常是氧化铝、硅石或铝土矿,常常含有粘土状粘结剂或掺有硬物质如碳化硅(参见在此引入作为参考的Rumpf等人的US4,977,116,;EP0087852,0102761或0207668)。陶瓷颗粒有这样的缺点烧结必须在高温下进行,这将造成高的能量成本。此外,还将使用昂贵的原料。它们具有相当高的堆积密度,并且常常具有类似于金刚砂研磨材料的性能,这将对用来将其引入钻孔中的泵和管线造成很大的磨损。
第二种支撑剂由大量已知的支撑材料(天然的、相对粗糙的砂)制成,其颗粒约为圆球形,因此,它们能产生明显的流动(英语“压裂砂”)(参见现有技术US5,188,175)。
第三种支撑剂包括可以用一层合成树脂涂布的第一种和第二种样品(授权于Deprawshad等人的US5,420,174;授权于Johnson等人的US 5,218,038和授权于Johnson等人的US5,639,806(在此将这三份专利的公开引入作为参考);EP0542397)。
在树脂涂布的支撑剂中使用的已知树脂包括环氧树脂、呋喃树脂、酚醛树脂以及这些树脂的混合物。所述树脂占涂布颗粒总重量的约1-8重量%。用于树脂涂布的支撑剂的颗粒物质可以是砂、陶瓷或其它颗粒,并且具有在USA标准测试筛孔数目约8-100的范围内(即约0.0937英寸至约0.0059英寸的筛孔)的颗粒大小。
树脂涂布的支撑剂有两种预固化的和可固化的。预固化树脂涂布的支撑剂包含涂布有已明显交联树脂的底物。所述预固化支撑剂的树脂涂层将对所述底物提供耐破性。由于在引入井中之前树脂涂层已固化,因此,即使在高压和高温条件下,该支撑剂不会聚集。所述预固化树脂涂布的支撑剂通常通过在其周围的应力而固定在井中。在某些液压破碎的情况下,在井中预固化的支撑剂会由裂缝回流,尤其是在油井和气井的清理或生产期间。有些支撑剂将通过井所产生的液体迁移出裂缝区并进入井身中。这种迁移称之为回流。
从裂缝处支撑剂的回流是不希望的,并且通过使用涂有可固化树脂的支撑剂在某些场合已得到一定程度的控制,所述可固化树脂将在地下固结和固化。酚醛树脂涂布的支撑剂已出售了一段时间并用于所述用途。因此,树脂涂布的可固化支撑剂可以用来“覆盖”裂缝,从而防止所述的回流。在注入油井或气井之前,可固化支撑剂的树脂涂层不会明显地发生交联或固化。更确切地说,将涂层设计成在井结构层中存在的应力和温度条件下可发生交联。这将使支撑剂颗粒粘结在一起,形成三维基体并防止支撑剂的回流。
这些可固化酚醛树脂涂布的支撑剂在高至能够固结并固化酚醛树脂的温度环境中使用最佳。然而,地质结构层的状态千变万化。在某些气/油井中,高温(>180°F)和高压(>6,000psi)存在于井下。在这些条件下,绝大多数可固化的支撑剂将发生有效固化。此外,在这些井中使用的支撑剂必需是热和物理稳定的,即在这些温度和压力条件下不会明显破碎。
可固化树脂包括(I)在地下结构层中完全固化的树脂和(II)在注入地下结构层中之前部分固化,剩余部分在地下结构层中固化的树脂。
许多浅井的井下温度常常低于130°F,甚至低于100°F。在这些温度下,常规可固化支撑剂将不会适当地固化。有时,可使用活化剂来促进在低温下的固化。另一种方法是在后冲洗工艺中,利用酸性催化剂使支撑剂进行低温催化固化。这种可固化支撑剂体系披露于Armbruster的US4,785,884中,在此将其全文引入作为参考。在后冲洗工艺中,在可固化支撑剂装入裂缝之后,将酸性催化剂体系泵送通过该支撑剂填充料,并且甚至可以在低至约70°F的温度下引发固化。这将使支撑剂颗粒发生粘结。
由于不同油井和气井地质特性的种种变化,没有一种支撑剂拥有能满足在各种条件下所有操作要求的所有性能。选择预固化支撑剂还是可固化支撑剂或者两者全选,这些是本领域普通技术人员已知的经验和知识。
使用时,将支撑剂悬浮于破裂液中。因此,支撑剂和破裂液的相互作用将明显地影响其中悬浮支撑剂的液体的稳定性。所述破裂液需要保持粘性并能将支撑剂带至裂缝中并使支撑剂沉积在适当的位置以供使用。然而,如果破裂液过早地丧失其携带能力,支撑剂可能会沉积在裂缝或井身不适当的位置。这可能要求对井身进行彻底清理并除去错位的支撑剂。
另外也重量的是,在适当安置支撑剂之后的适当时间,液体发生分离(粘度下降)。在将支撑剂置于裂缝中之后,由于存在于液体中破乳剂(粘度下降剂)的作用,液体的粘性将下降。这将使释放的、可固化的支撑剂颗粒聚集到一起,使颗粒间紧密地接触,从而在固化之后形成固体支撑剂填充料。没有这样的接触将使得支撑剂填充料变得很弱。
除粘性液体以外,可以使用泡沫将支撑剂带至裂缝处并使支撑剂沉积在适当的使用位置。所述泡沫是能悬浮支撑剂直至它被置于裂缝中为止的稳定泡沫,在处于裂缝中时,泡沫将破裂。除泡沫或粘性液体以外还可以使用其他制剂,将支撑剂带入适当的裂缝中。
另外,树脂涂布的颗粒材料,例如砂,可以用于井身中进行“含砂量控制”。在这种用途中,用支撑剂,例如树脂涂布的颗粒材料填充圆柱结构,并插入井身中用作过滤剂或筛,以便控制或消除砂、其它支撑剂、或地下层颗粒的回流。通常,圆柱结构为网状物制成的带有内壁和外壁由圆管形结构。网状物的筛孔大小足以将树脂涂布的颗粒材料包含在圆柱结构内,并让地层中的液体从其通过。
尽管有用的支撑剂是已知的,但提供如下的支撑剂是有益的该支撑剂在存在于地层中高闭合应力下,具有改善的特性如良好的回流,良好的压缩强度,以及良好的长期传导性,即渗透性。如上所述,回流涉及将支撑剂保持在地层中。压缩强度涉及使支撑剂能经受地层中的力。高传导性直接影响井将来的生产率。能用相对低和中等成本获得并进行加工的原料提供所述支撑剂,以及提供生产该支撑剂的方法将是特别有益的,结果是,由于支撑剂低的堆积密度以及光滑的表面,所形成的颗粒在用来将支撑剂引入钻孔的设备中产生更少的磨损。
建议使用的一个独立的领域是水过滤。在许多工业和非工业情况下,需要能从水流中分离固体。有大量设计用于满足这些需求的过滤体系。所述这些体系的绝大多数使用固体颗粒,以便形成让包含固体的水流通过的过滤填充料。颗粒(过滤介质)将固体留着在填充料的孔隙中并允许水通过(以更低的固含量)。过滤剂必须定期地进行反冲以除去捕获的固体,从而使过滤处理能继续进行。过滤介质应当具有下列的特征高的颗粒表面积,以便有许多机会捕获固体。
尽可能低的密度,以便填充过滤剂所需的重量以及反冲(使过滤填充料的体积膨胀的过程)所需的流速均可以最小。
具有耐酸/碱/溶剂性,以便介质的完整性不受这些材料的存在的影响。
无毒性,以便不希望的化学物质不会渗入已经过滤的水流中。
可以被制成各种大小(20/40,16/30等)和密度,以便过滤填充料可设计用于分离各种颗粒。
目前所使用的过滤介质的例子是砂、陶瓷、活性炭以及核桃壳。
发明目的本发明的一个目的是提供支撑剂,所述支撑剂包含通过粘结剂粘结的细碎矿物填料或细碎矿物和纤维的填料。
本发明的另一目的是提供一种从水流中分离固体的过滤介质,所述过滤介质包含用聚合物粘结的细碎矿物填料或细碎矿物和纤维的填料。
本发明的又一目的是提供支撑剂或过滤介质的使用方法,所述支撑剂或过滤介质包含用聚合物粘结的细碎矿物或细碎矿物填料和纤维的填料。
从下面的详细说明,本发明的这些目的和其它目的是显而易见。
附图概述下面将简要地描述本发明的附图,其中相同的元件用相同的数字来标注。


图1表示了本发明颗粒制备方法的第一实施方案的流程图。
图2表示了本发明颗粒制备方法的第二实施方案的流程图。
图3表示了本发明颗粒制备方法的第三实施方案的流程图。
图4表示了包括颗粒循环的改进的图3方法的流程图。
图5表示了本发明支撑剂颗粒或过滤介质颗粒的第一实施方案。
图6表示了本发明支撑剂颗粒或过滤介质颗粒的第二实施方案。
发明概要本发明提供一种用于支撑剂或过滤介质的复合颗粒,它包含填料颗粒,例如用合适的有机或无机粘结剂粘结的细碎矿物或细碎矿物和纤维。一种典型的有机粘结剂是可熔酚醛树脂或酚醛清漆树脂。典型的无机粘结剂包括硅酸盐,例如硅酸钠、磷酸盐,例如聚磷酸盐玻璃、硼酸盐或它们的混合物,例如硅酸盐和磷酸盐的混合物。
填料颗粒可以是各种市售细碎矿物或细碎矿物和短纤维的任何一种。所述细碎矿物包括至少一种选自下列的物质二氧化硅(石英砂)、氧化铝、云母、偏硅酸盐、硅酸钙、烧石灰、高岭土、滑石、氧化锆、硼砂和玻璃。所述的纤维包括至少一种选自下列的物质磨碎的玻璃纤维、磨碎的陶瓷纤维、磨碎的碳纤维和合成纤维,其软化点在约200°F以上,以便在生产和使用期间不降解、软化或聚集。
本发明的复合颗粒基本上呈圆球形。当根据API方法RP56第5章(API Method RP56 Section 5)测量时,该复合颗粒的球形度至少为0.7,优选至少0.85,最优选至少0.9。
通过将选自细碎矿物和可有可无的合适短纤维的至少一种的填料颗粒与至少一种粘结剂混合,而制备复合颗粒。特别地,通过将填料颗粒与第一部分粘结剂混合,从而形成包含填料颗粒和第一部分粘结剂的基本均匀的颗粒状产物的颗粒核,来制备复合颗粒。“基本上均匀的”指的是颗粒核通常没有大的底物颗粒,例如用于涂布砂的支撑剂的颗粒。为增强该复合颗粒,可以将第二部分粘结剂涂布至颗粒产物的颗粒核上。所述核粘结剂优选是预固化的。外涂层树脂是可固化或预固化的。
就这种应用的目的而言,术语“固化的”和“交联的”对于发生在有机粘结剂中的硬化来说可以交替使用。然而,术语“固化”还有更宽的意义,其中通常包括任何有机或无机粘结剂的硬化,以便形成稳定的材料。例如,其交联、离子粘结和/或除去溶剂而形成的最终硬化形式的粘结材料,可以认为是固化。因此,在交联之前从有机粘结剂中只除去溶剂能否发生固化,取决于干燥的有机粘结剂是否是最终的固化形式。
对未涂布的复合颗粒或涂布的支撑剂颗粒可以选择地进行或不进行干燥,但不固化(例如交联),然后对表面进行机械精制以使之光滑,从而使之基本呈圆球形。
在本发明中所述的复合颗粒具有独特的性能,如可控的塑性和弹性。由于这些独特的性能,所述复合颗粒能够以100%支撑剂填充料的形式(在液压破碎中)用作唯一的支撑剂,或用作现有市售陶瓷和/或砂基支撑剂(树脂涂布的和/或末涂布的)的部分替代物,或用作这些支撑剂之间的掺混物。另外,所述复合颗粒还能够以100%过滤填充料的形式用作唯一的过滤介质,或与其它过滤介质掺混。
当使用时,用作支撑剂的本发明的复合颗粒改善填充料的回流控制,并且当以100%填充裂缝或用于与其它市售支撑剂相结合的复合填充料中时,将减少碎屑的形成和产生。当使用时,所述复合颗粒还将大大减少灌封的有害作用,以及随后碎屑的产生(这是由于灌封作用所造成的),该碎屑通常是伴随着市售支撑剂的使用而来。灌封的减少将有利于复合颗粒的弹性以及其更好分布井下应力的能力。复合颗粒所有这些性能的结合将使填充料的传导性/渗透性增加。
选择下述特定细碎矿物和合成粘结剂的体积比例将得到令人惊奇的优良的抗弯强度,抗弯强度也是钢球冲击(pointed)强度和硬度(布氏强度)的量度。对于本材料作为支撑剂的使用,这是一个十分重要的因素。通常,当将石英砂用作矿物时,其抗弯强度要高于利用氧化铝时的抗弯强度。
根据本发明的支撑剂,与某些陶瓷支撑剂相比具有更高的抗压缩性,因此颗粒破碎更少。这将降低点应力,并且产生比先前试验更少的碎屑(碎屑将破坏裂缝的传导性),而且还将产生期望的耐破强度绝对值。具体地说,由于使用了合适的后处理措施,因此优选的球形度φ大于0.9。
另外,本发明还提供了将上述颗粒用作水过滤介质或用作处理地层的可固化和/或预固化支撑剂的改进的方法。
优选实施方案详述本发明的填料颗粒可以与任何常规的支撑剂树脂一起使用。制备支撑剂的树脂和填料的种类将取决于许多因素,包括可能的闭合应力,地层温度,以及地层液体的种类。
术语“树脂”包括很宽范围的高分子合成物质。树脂包括热塑性材料和热固性材料。如Gibb等人所公开的US4,923,714,具体的热固性树脂包括环氧树脂、酚醛树脂,例如可熔酚醛树脂(真正的热固性树脂)或酚醛清漆(通过固化剂使之成为热固性的热塑性树脂)、聚酯树脂以及环氧-改性的酚醛清漆树脂,在此引入该专利作为参考。酚醛树脂包含任何酚醛清漆聚合物、可熔酚醛聚合物、酚醛清漆聚合物和可熔酚醛聚合物的混合物、酚醛树脂/呋喃树脂或形成预固化树脂的呋喃树脂的固化混合物(如Armbruster的US4,694,905中所公开的,在此引入作为参考);或在强酸存在下可固化形成可固化树脂的可固化呋喃树脂/酚醛树脂体系(如Armbruster的US4,785,884)。上述酚醛清漆或可熔酚醛聚合物中的酚类可以是苯酚部分或双酚部分。优选可熔酚醛树脂。具体的热塑性树脂包括聚乙烯、丙烯腈-丁二烯-苯乙烯、聚苯乙烯、聚氯乙烯、氟塑料、多硫化物、聚丙烯、苯乙烯丙烯腈、尼龙和亚苯基氧化物。另一类典型的树脂是胶乳。
A.填料颗粒填料颗粒应当对地层中的组分例如井处理液是惰性的,并且能经受住井中的例如温度和压力的各种条件。可以一起使用这样的填料颗粒,例如不同尺寸和/或材料的细碎矿物或细碎矿物和纤维的混合物。所述填料颗粒优选为单晶的,以便更为耐磨,并因此能使复合颗粒经受气动输送。重要的是,选择填料颗粒的尺寸和用量,以及树脂的种类和用量,以致使填料颗粒保持在支撑剂的树脂内,而不是与支撑剂颗粒疏松地混合。掺杂填料颗粒将防止疏松颗粒堵塞部件,例如油井或气井的筛网。此外,粘结将防止疏松颗粒降低油井或气井中的渗透性。
1.细碎的矿物细碎的矿物包括至少一种选自下列的物质二氧化硅(石英砂)、氧化铝、云母、偏硅酸盐、硅酸钙、烧石灰、高岭土、滑石、氧化锆、硼砂和玻璃。特别优选的是微晶二氧化硅。
细碎矿物颗粒的粒径从约2-约60微米。该矿物颗粒的d50通常为约4-约45微米,优选约4-约6微米。参数d50定义为50重量%的颗粒具有特定颗粒直径。为使成形颗粒基体中的锐边最少,优选的填料应当呈圆形,而不是角形或近似角形的。所述优选材料的一个例子是IMSIL微晶二氧化硅,得自Unimim Specialty Minerals(Elco,Illinois)。
IMSIL微晶二氧化硅填料是由一种葡萄形态的惰性的、天然形成的α-石英生产的。该种填料可以湿润并分散在溶剂或水基体系中。表A列出了该填料的性能。

对于某些条件,也可将通常含有40-60重量%的二氧化硅和20-40重量%的氧化铝的飘尘用作矿物,以便节省材料成本。这种材料通常的颗粒大小(d50)高达35微米,因此,仍需要将其研磨至优选值4-6微米。飘尘应有最少含量的碳,碳的存在将减弱支撑剂颗粒。
2.纤维所述纤维可以是任何一种市售的短纤维。所述纤维包括至少一种选自下列的物质磨碎的玻璃纤维、磨碎的陶瓷纤维、磨碎的碳纤维、天然纤维、以及合成纤维,例如交联的酚醛清漆纤维,其软化点在与树脂混合的常用起始温度之上,例如至少约200°F,以便不降解,软化或聚集。
用于纤维的常用玻璃包括E-玻璃、S-玻璃和AR-玻璃。E-玻璃是在电学应用中常用的市售玻璃纤维。S-玻璃由于其强度而被使用。AR-玻璃由于其耐碱性而被使用。碳纤维是石墨碳。陶瓷纤维通常是氧化铝,瓷料,或其它玻璃状材料。
纤维长度从约6微米至约3200微米(约1/8英寸)。优选的纤维长度从约10微米至约1600微米。更优选的纤维长度从约10微米至约800微米。通常的纤维长度范围在约0.001至约1/16英寸。优选地,纤维长度比底物最长长度短。合适的市售纤维包括长度从0.1-约1/32英寸的磨碎玻璃纤维;25微米长磨碎的陶瓷纤维;250-350微米长磨碎的碳纤维;以及12微米长的KEVLAR芳族聚酰胺纤维。纤维直径(或者,对于非圆形截面的纤维,假设其尺寸等于与所述纤维有相同的横截面积的假设圆的直径)从约1至约20微米。长宽比(长径比)可以从约5至约175。所述纤维可以是圆形的、椭圆形的、正方形的、长方形的或其它合适形状的横截面。一种长方形横截面的纤维源可以是切碎的片材,所述切短片材应具有一定的长度和长方形横截面。长方形横截面有一对较短的边和一对相对较长的边。较短边与较长边的长度比通常约为1∶2-10。所述纤维可以是直的、皱缩的、卷曲的或其组合。
B.树脂1.可熔酚醛树脂可熔酚醛树脂中酚-醛的摩尔比从约1∶1至约1∶3,典型地是从约1∶1至约1∶1.95。可熔酚醛树脂优选的制备方法是在碱性催化剂存在下,将苯酚与醛源如甲醛、乙醛、糠醛、苯甲醛或仲甲醛混合。在这样的反应中,醛以过量的摩尔量存在。优选的是,可熔酚醛树脂中苯酚与甲醛的摩尔比从约1∶1.1至1∶1.6。所述可熔酚醛树脂可以是常规的可熔酚醛树脂或改性的可熔酚醛树脂。改性的可熔酚醛树脂公开于US5,218,038中,在此全文引入作为参考。所述改性的可熔酚醛树脂通过醛与未取代苯酚和至少一种选自芳基苯酚、烷基苯酚、烷氧基苯酚以及芳氧基苯酚的酚类物质的混合物的反应而制备。
改性的可熔酚醛树脂包括烷氧基改性的可熔酚醛树脂。在烷氧基改性的可熔酚醛树脂中,优选甲氧基改性的可熔酚醛树脂。然而,最优选的可熔酚醛树脂是改性的含有邻苄基醚的可熔酚醛树脂,它是在每分子包含两个或多个羟基基团的脂族羟基化合物存在下,通过苯酚与醛的反应而制备的。在该方法的一个优选的改进中,反应还可以在一元醇存在下进行。
用于生产改性的可熔酚醛树脂的金属离子催化剂包括Mn、Zn、Cd、Mg、Co、Ni、Fe、Pb、Ca和Ba的二价离子的盐。式Ti(OR)4的四价烷氧基钛化合物也可用于该反应的催化剂,式中R为包含3-8个碳原子的烷基基团。优选的催化剂是乙酸锌。这些催化剂将给出这样的可熔酚醛树脂,其中连接酚醛核的桥接优势部分是通式-CH2(OCH2)n-的邻苄基醚桥,式中n为较小的正整数。
2.包含酚醛清漆聚合物的树脂本发明的一个实施方案采用包含酚醛清漆聚合物的树脂。酚醛清漆可以是与支撑剂一起使用的任何酚醛清漆。所述酚醛清漆可在强酸性pH范围内,通过苯酚化合物与醛的反应而得到。合适的酸性催化剂包括强无机酸,如硫酸、磷酸和盐酸以及有机酸催化剂,如草酸或对甲苯磺酸。制备酚醛清漆的另一种方法是在二价无机盐如乙酸锌、硼酸锌、锰盐、钴盐等存在下,使苯酚与醛进行反应。对于直接生产在苯酚环上有不同比例的由醛生成的邻或对位的取代基的酚醛清漆,对催化剂的选择是重要的,例如乙酸锌有利于邻位取代。由于在聚合物的进一步交联中具有更大的活性,因此,富含邻位取代基的酚醛清漆,即高比例邻位酚醛清漆是优选的。Knop和Pilato在酚醛树脂(第50-51(1985,Springer-Verlag))中论述了高比例邻位酚醛清漆,在此引入作为参考。高邻位酚醛清漆被定义为这样的酚醛清漆,其中树脂的邻位和对位取代基总数的至少60%是邻位取代基,优选取代基总数的至少70%是邻位取代基。
酚醛清漆聚合物通常包含摩尔比从约1∶0.85至约1∶0.4的苯酚和醛。任何合适的醛均可以用于此用途。所述醛可以是甲醛水溶液、仲甲醛、甲醛、乙醛、糠醛、苯甲醛或其它醛。其中优选甲醛。
用于本发明的酚醛清漆通常为固体,如呈薄片状,粉末状等。根据酚醛清漆的预定用途,其分子量从约500至10,000,优选从1,000-5,000。在本发明说明书中,酚醛清漆的分子量以重均分子量计。尤其优选的是高比例邻位酚醛清漆树脂。
树脂组合物通常包含至少10重量%的酚醛清漆聚合物,优选至少20重量%的酚醛清漆聚合物,最优选的是约50至约70重量%的酚醛清漆聚合物。树脂组合物的剩余部分可包括交联剂,改性剂或其它合适的配料。
酚醛清漆聚合物的酚部分分别选自式I的酚或式II的双酚

R和R1独立地为烷基,芳基,芳烷基或H。在结构式II中,R和R1相对于各芳香环上的各个羟基优选为间位。除非另有定义,烷基定义为1-6碳原子的烷基,而芳基定义为在其环中有6个碳原子。在结构式II中,X是一连接键,磺酰基,被卤素取代或未取代的亚烷基,环亚烷基,或卤代环亚烷基。亚烷基是结构式III的二价有机基团

当X为亚烷基时,R2和R3独立地选自H,烷基,芳基,芳烷基,卤代烷基,卤代芳基和卤代芳烷基。当X为卤代亚烷基时结构式II的亚烷基部分的一个或多个氢原子被卤原子取代。优选卤素为氟或氯。另外卤代环亚烷基优选在其环亚烷基部分上被氯或氟取代。
结构式I的常用的酚是苯酚本身。
结构式II的常用的双酚包括双酚A、双酚C、双酚E、双酚F、双酚S或双酚Z。
本发明包括酚醛清漆聚合物,该聚合物包含结构式I的酚类、结构式II的双酚类的任何一种,或结构式I的一种或多种酚类和/或结构式II的一种或多种双酚类的组合物。所述酚醛清漆聚合物还可以通过添加VINSOL、环氧树脂、双酚、蜡或其它已知的树脂添加剂而进行选择性的进一步的改性。制备烷基苯酚改性的可溶可熔酚醛聚合物的一种方法是以0.05∶1以上的摩尔比使烷基苯酚和苯酚结合。这种结合是在酸性催化剂,或二价金属催化剂(例如Zn、Mn)存在下与甲醛源的反应。在所述反应期间,烷基苯酚和苯酚的组合物相对于存在的甲醛而言摩尔数过量。在酸性条件下,羟甲基化苯酚的聚合是比从甲醛开始的羟甲基化作用更快的反应。因此,聚合物结构是由通过亚甲基桥连接的酚和烷基酚核所组成的,并且其中基本不含游离羟甲基基团。在金属离子催化的情况下,聚合将形成羟甲基和苄基醚,它们随后将分解成亚甲基桥,因此最终产物基本不含羟甲基基团。
C.交联剂和其它添加剂就实际应用而言,可溶可熔酚醛树脂在加热时不固化,除非存在固化剂(交联剂),它将保持可溶和可熔。因此,在酚醛清漆树脂固化时,使用交联剂来克服亚烷基桥基团将树脂转换成不可溶不可熔状态的缺陷。
合适的交联剂包括六亚甲基四胺(HEXA)、仲甲醛、噁唑啉,蜜胺树脂或其它醛给体和/或上述可熔酚醛树脂聚合物。这些交联剂的每一种本身可以单独使用或与其它交联剂结合使用。可熔酚醛树脂聚合物可以包含取代或未取代的苯酚。
以涂布组合物总重量计,本发明的树脂组合物通常包含约25重量%的HEXA和/或高达90重量%的可熔酚醛树脂聚合物。当HEXA为唯一的交联剂时,HEXA占树脂重量的约5%至约25重量%。当可熔酚醛树脂聚合物为唯一的交联剂时,所述树脂包含约20重量%至约90重量%的可熔酚醛树脂聚合物。另外,所述组合物还可以包含这些交联剂的混合物。
添加剂用于特定要求的特定场合。本发明的树脂体系可以包括多种添加剂。该树脂也可以包括一种或多种其它的添加剂,如偶联剂,如促进涂层与底物粘结的硅烷、聚硅氧烷润滑剂、润湿剂、表面活性剂、染料、流动改性剂(如流动控制剂和流动增强剂)和/或抗静电剂。表面活性剂可以是阴离子、非离子、阳离子、两性的或它们的混合物。某些表面活性剂还可以用作流动控制剂。其它的添加剂包括耐湿性添加剂或热强度添加剂。当然,这些添加剂可以以混合物或单独的形式添加。
D.可熔酚醛树脂的制备制备可熔酚醛树脂的常用方法是将酚投放至反应器中,添加碱性催化剂如氢氧化钠或氢氧化钙,和醛,如50重量%的甲醛溶液,并在高温条件下使各配料反应,直至取得游离甲醛或所希望的粘度。通过蒸馏调节水含量。另外,也可以加入弹性剂或增塑剂,如双酚或槚如坚果油,以增强粘结剂的弹性或塑性。其它已知的添加剂也可以加入。
E.酚醛清漆聚合物的制备方法为制备含有结构式I的一种或多种酚类的酚醛清漆聚合物,将所述的酚类与酸性催化剂混合并加热。然后,将醛,如50重量%的甲醛水溶液,添加至处于高温的热的酚和催化剂中。通过蒸馏除去由反应产生的水,以便得到熔融的酚醛清漆。然后,使熔融的酚醛清漆冷却并压成薄片。
为了用结构式II的双酚制备酚醛清漆聚合物,在高温下,将双酚与溶剂如乙酸正丁酯混合。然后添加酸性催化剂如草酸或甲磺酸,并与双酚混合,然后添加醛,通常是甲醛。然后使反应物回流。应指出的是,可在酸性催化剂或二价金属催化剂(例如Zn、Mn)存在下制备酚醛清漆树脂,其中双酚以大于醛源摩尔量的量存在。在回流之后,通过用乙酸正丁酯的共沸蒸馏收集水份。在除去水和乙酸正丁酯之后,将树脂压成薄片,得到树脂产物。另外,还可以将水用作溶剂来制取聚合物。
F.醛与酚醛清漆或双酚-醛清漆的反应酚醛清漆或双酚-醛清漆可以通过使用碱性催化剂,使这些清漆与额外量的醛反应而改性。常用的催化剂是氢氧化钠、氢氧化钾、氢氧化钡、氢氧化钙(或石灰)、氢氧化铵和胺。
在酚-醛聚合物或双酚-醛聚合物的情况下,以酚醛清漆中酚部分的单体单元计,所添加的醛与酚部分的摩尔比从0.4∶1至3∶1,优选从0.8∶1至2∶1。这将取得具有不同化学结构并且通常高于通过一步法得到的可熔酚醛树脂聚合物的分子量的可交联(活性)聚合物;其中所述的一步法包括一开始就以组合的醛和双酚相同的摩尔比,将双酚单体和醛与碱性催化剂混合。此外,在聚合物制备的不同阶段,可以使用不同的醛。
作为交联剂或交联剂的组分,这些聚合物可以单独使用,或与其它聚合物如酚-醛清漆、双酚-醛清漆或它们的混合物一起使用。当将醛改性的聚合物用作交联剂时,它们可以与其它常用的交联剂如用于酚醛聚合物的上述的那些交联剂一起使用。
G.支撑剂或过滤介质的制备方法在制备树脂之后,在提供所希望的预固化或可固化树脂组合物的条件下,将交联剂、树脂和填料颗粒进行混合。树脂组合物是预固化的还是固化的取决于许多因素。所述的因素包括酚醛清漆树脂与固化剂的比例;酚醛清漆树脂的酸度;可熔酚醛树脂的pH;交联剂的用量;树脂组合物和填料颗粒的混合时间;混合期间树脂组合物和填料颗粒的温度;在混合期间使用的催化剂(如果有的话)以及本领域普通技术人员已知的其它处理参数。通常,在有或没有酚醛清漆树脂下,预固化的或可固化的支撑剂可以包含可熔酚醛树脂。
图1表示了本发明支撑剂或过滤介质制备方法的第一实施方案的简单流程图。在该方法中,将粘结剂料流12和填料颗粒料流14加入高强度混合器9中,以制备均匀的浆流5。将浆流5加入造粒机10中,以便生产成粒的产物流16。所述粘结剂料流12包含树脂,水和常规的添加剂。通常,该树脂为可熔酚醛树脂,并可以用作其自身的交联剂。偶联剂也是常用的添加剂。常用的造粒机10为Eirich R02混合机(由Eirich Machines,Inc.制造,Gurnee,Illinois)。
通常,造粒机10以间歇法进行操作,并且按照在此将其引入作为参考的通常在EP308257和US.Re.34,371中所述的方法进行操作。例如,EP308257公开了用US3,690,622中描述的Eirich造粒机来制备陶瓷颗粒。所述造粒机包含可旋转的圆柱容器、与水平成一定角度的中心轴、一块或多块偏转板以及至少一个可旋转的、通常安装在圆柱容器旋转通道顶点以下的冲击叶轮。可旋转的冲击叶轮使准备混合的材料加入(engage),并且能够以比旋转圆柱容器更高的角速度进行旋转。
下列步骤将在混合造粒机(造粒机10)中进行(1)在冲击叶轮附近添加浆液时成核或接种;(2)球形体的增长,在此期间,冲击叶轮以低于成核步骤期间的旋转速度旋转;和(3)通过关闭冲击叶轮并使圆柱容器进行旋转而使球形体表面抛光或光滑。
粘结剂(树脂)的用量通常为添加至造粒机10中总干物质(树脂、填料等)重量的约10%至约30%,优选约10%至约25%。不含水的粘结剂的用量值被定义为树脂的用量,例如除水以外的酚醛清漆和/或可熔酚醛树脂,以及添加剂的用量。通常,在偶联剂如γ/氨基丙基三乙氧基硅烷存在下进行混合。偶联剂可以先行加入混合机9中,或与粘结剂料流12预混合后再添加。通常,总粘结剂料流12的0-50%为水。在旋转速度为50-80转/分,切碎速度为1400-1600转/分时,混合时间通常从1-5分钟。利用25-45转/分的容器转速和1400-1600转/分的切碎速度时,造粒时间(成核时间)从约2分至约10分钟。另外还将光滑化作用称之为“切碎”。在上述步骤期间造粒机10的温度在10-40℃。
然后将造粒料流16输送至固化装置50中。通常固化装置50为一个干燥炉,其在造粒料流的停留时间从约0.5至约2小时,温度从约90℃至约200℃,优选约150℃至约190℃的条件下进行操作。这将产生固化的粒状产物流52,将产物流52送至筛选装置80,以便分离预定产物大小的支撑剂产物流82。常用的筛选装置80是一个筛子,如振动筛。通常希望的,支撑剂颗粒的d50是从0.4-0.8毫米,或粒径为20-40目(0.425-0.85毫米)或30-40rpm。
图2表示了本发明支撑剂或过滤介质制备方法的第二实施方案。该实施方案类似图1的方法,所不同的是,将造粒料流16以干燥但不固化的方式输送至一精制装置15中,以便使造粒料的球形度机械增加至至少约0.8,优选至少约0.85,更优选至少约0.9,并产生所述机械处理材料的料流17。
所述的步骤对造粒料的表面进行机械精制,以使之约为球形。例如,该机械精制步骤通常是这样进行的(1)将图2的在40℃干燥但未固化的颗粒放在高斜角度和高旋转速度的造粒容器中井下处理;或(2)在SPHERONIZER装置(由Calvera Process Solutions Limited制造,Dorset,England)中,以400-1000rpm对所述颗粒料处理约3至约30分钟。通过清除法(研磨法)造成光滑化作用,在清除法中,于成型(profiled)旋转容器中的颗粒被抛向圆柱壁,然后滚回至容器的底板上。
另外,通过固化前的滚动,可以使颗粒光滑和压缩。
图3表示了本发明支撑剂或过滤介质制备方法第三实施方案的流程图。
该方法类似于图2的方法,所不同的是,将固化的粒状产物流52输送到涂布装置60。涂布装置60用来自第二粘结剂料流61的另外的树脂对物流52的固化的粒状材料进行涂布/浸渍。这将产生具有树脂和填料核的支撑剂颗粒,其中所述核用树脂涂布。特别地,颗粒核的固化(或部分固化的)料流52从固化装置50排出,然后输送至涂布装置60中。涂布装置60通常是成型旋转筒或某种形式的间歇混合机。该旋转筒装置60的旋转速度为16-20转/分。通常将第二树脂料流61预热至50-60℃,并通过雾化喷嘴喷入旋转筒装置(包含成形颗粒)内。该旋转筒装置以间歇法操作,操作时间约5-20分钟。
如果将Eirch混合机R02用作涂布装置,那么,它将在如下条件下操作20-40转/分,优选30-35转/分的容器旋转速度,700-1100转/分,优选800-1000转/分的切碎速度,和2-10分钟,优选2-5分钟的处理时间。
第二粘结剂料流61通常包含树脂溶液、水和常规的树脂添加剂。粘结剂料流12与第二粘结剂料流61的干重量比约为70-60∶30-40。优选将第二料流61和料流52输送至涂布装置60中,以便提供第二料流树脂对未涂布支撑剂颗粒的重量比(以不含水计)约1-10份树脂∶95份未涂布支撑剂颗粒。在第一粘结剂料流12中的树脂可以与第二粘结剂料流61中的树脂相同或不同。另外,当需要在其核中有可固化树脂的支撑剂时,干燥炉50可以只对涂布的支撑剂进行干燥。
优选地,在装置50中进行固化/干燥之前,将料流16添加至精制装置(未示出),如图2的精制装置15中。
涂布的支撑剂以涂布支撑剂料流62的形式从涂布装置50中排出然后输送至固化装置70中。
固化装置70通常是在平板上将支撑剂从约20℃加热至约180℃的分室干燥器(或可以是旋转式干燥器)。固化装置70在合适的固化温度,例如约120℃至约180℃将涂布的支撑剂保持一合适的固化时间,例如约0.5至约2小时或更长的时间。如果需要带有可固化涂层的支撑剂的话,那么,固化装置70对涂层进行干燥或部分固化。
固化的支撑剂从固化装置70中以固化支撑剂颗粒料流72的形式排出,所述颗粒粒流在筛选装置80中进行筛选,以便分离预定粒径范围的支撑剂产物流82。通常的预定粒径范围从约20至约40目。通常的筛选装置80是振动筛。超出预定粒径的颗粒以料流84排出。
图4总体地示出了带有循环步骤的图3的方法。粒料以料流16的形式从造粒机10中排出,并输送至干燥器20中。干燥器20通常是分室干燥器,该干燥器在约30℃-40℃下运行足够的时间以除去水分,使颗粒干燥而不粘结在一起。通常的干燥时间约0.5-2小时。当利用图3的方法时,还可以对料流16采用精制步骤。
然后,将干燥的粒状流22输送至筛30。通常的筛30是振动筛。以筛选过的料流32的形式,排出预定粒径范围的筛选过的颗粒。粒径大于预定筛目范围的颗粒作为第一循环料流34排出,该料流被送至破碎机40然后循环至造粒机10中。一种典型的预定核颗粒的大小为约8-20目。另一通常希望的大小范围是20-40目。粒径小于预定大小的颗粒作为第二循环料流36被循环至造粒机10中。
将筛过的料流32送至固化装置50中。固化装置50可以是分室干燥器,该干燥器在120℃至200℃,优选从150℃至190℃的温度下运行一段时间,在平板上固化物料以产生希望的固化程度。通常的固化时间范围是0.5-2小时。然而,如果筛过料流32的颗粒具有足够程度(或不需要)固化的话,该固化步骤可以省略,并且颗粒只被干燥。
支撑剂颗粒的固化(或部分固化的)料流52从固化装置50中排出并输送至涂布装置60中。
如表1所示,对用于图4方法的通常的原料进行概述

如表2所示对图4方法的通常操作进行概述。

<p>另外,还可以通过在挤出机中挤出粒料然后机械地使粒料制成圆球形(而不是在Eirich混合机中粒化成圆球形粒料)对上述方法进行改进而制备支撑剂。
H.支撑剂颗粒图5表示了包含填料颗粒20,和树脂15的支撑剂颗粒10。
图6表示了涂布的支撑剂颗粒110,所述颗粒有被第二树脂涂层25涂布的树脂15和填料颗粒24的核112。
I.复合颗粒的参数当表征本发明的复合支撑剂颗粒和复合过滤介质颗粒时,下列参数是有用的。
本发明的复合颗粒通常具有比常规砂更轻的密度。优选的是,支撑剂颗粒的堆积密度为70-95lbs/ft3。它们的圆球度大于0.7,优选大于0.85,更优选大于0.9。在复合支撑剂中填料颗粒的体积百分比为60-85%,优选约60-75体积%,更优选约65-75体积%。在复合颗粒中填料颗粒的重量百分比约为70%至约90%。在涂布支撑剂颗粒的核中填料颗粒的重量百分比通常约为80%至约90%。复合颗粒的d50从约0.4至约0.8mm。对于涂布的支撑剂,第一部分粘结剂与第二部分粘结剂的干重量比为70-60∶30-40。以US标准系列筛计,复合颗粒的粒径在约4至约100目的范围内,优选的是,以API Method RP56 Section 4计粒径大小为20/40的材料(0.425-0.85mm)。
在4000psi闭合应力下预固化支撑剂的破碎材料少于4%是根据下列步骤,即American Petroleum Institute Method RP 56 procedure Section8测量的。
通过API Method RP 56 Section 7,以浊度测量粉尘量。
通过API Method 56 Section 5测量球形度。
就在pH12时的耐烃和氢氧化钠溶液而言,化学惰性应当可与Jordan硅砂(20/40目)相比。耐酸性是通过API Method RP 56 Section 6测量的。耐碱性以pH12和200°F对氢氧化钠48小时的忍耐性来测量。如果需要,通过添加氢氧化钠将pH保持在12。当在200°F暴露于的脂族或芳族烃中96小时,所述支撑剂的性能和外观应当不会改变。在试验期间烃不会变色。
J.复合颗粒的应用在本发明中所述的复合颗粒具有独特的性能,如可控的塑性和弹性。由于这些独特的性能,所述复合颗粒能在100%支撑剂填充料中(在液压裂缝中)用作唯一的支撑剂,或用作现存市售的树脂涂布的和/或未涂布的陶瓷和/或砂基支撑剂的部分替代物,或在这些材料之间用作掺混物。复合颗粒还能在100%过滤填充料中用作唯一的介质,或与其它过滤介质掺混使用。
当本发明的方法使用具有预固化树脂组分时,在地层内无需另外固化的情况下,将支撑剂投放入地层中。
当该方法使用具有预固化树脂组分的支撑剂时,该方法另外还包括通过使树脂组分暴露至地层中足够的热和压力中而使可固化树脂组分发生固化,从而使树脂发生交联并使支撑剂发生固化。在某些情况下,活化剂可以用来促进可固化支撑剂的固化。在支撑剂上使用可固化树脂组分的另一实施方案中,该方法还包括在低至70°F的温度下的低温酸催化固化。低温酸催化固化的一个例子公开于在此全文引入作为参考的US4,785,884中。
另外,可以通过用含树脂的颗粒料即支撑剂填充圆柱结构,并插入井身中来使用含树脂的颗粒料。一旦放置好以后,由于支撑剂将固化并起过滤器和筛网的作用以消除砂,其它支撑剂,或地层颗粒的回流,本发明改进的性能是有益的。消除颗粒回流入上述地面设备中是一个突出的优点。
由于其圆形,本发明的复合颗粒是尤其有益的。不管颗粒是单独作为支撑剂使用,还是与其它支撑剂一起在多层填充料中使用,圆形将增加其传导性。按照定义,多层填充料不是US3,659,651中使用的部分单层。在部分单层中,在井中的颗粒将接触裂缝壁,但不相互接触。相反,在多层填充料中,支撑剂填充裂缝,并且生产是通过支撑剂的孔隙而进行。
实施例1-12下面将利用十二个组合物作为举例实施方案,利用图1-3的上述方法的改进详细地解释本发明。如上所述,附图表示图1本发明复合颗粒制备方法的第一实施方案。
图2本发明复合颗粒制备方法的第二实施方案。
图3本发明复合颗粒制备方法的第三实施方案。
制备具有表3列出组分的十二个组合物。体积比例指的是最终固化的“复合支撑剂”,而重量指的是在造粒之前的组合物。石英砂(“Q”表示石英)中二氧化硅的含量大于98.3%,研磨细度d50=6μm,密度为2.63g/cm3。氧化铝(用“A”表示)中Al2O3含量大于99%,研磨细度d50=7.5um,并且密度为3.96g/cm3。将液体可熔酚醛树脂(由“P”表示)和粘性可熔酚醛树脂(由“F”表示)用作合成树脂,其中水作为溶剂。在本方法中使用的可熔酚醛树脂中,其酚∶甲醛的比例为1∶1.1至1∶1.9。常用的比例约为1∶1.2-1.5。另外也可以使用细度D50=3-45μm的石英砂和其它的填料

>以与实施例1-6相同的比例使用可熔酚醛树脂F,分别给出了实施例7-12的组合物。
首先,在53Mpa下,将这些组合物压制成5×5×56mm的试验条,然后放入160至240℃的烘箱中并固化10分钟。从造粒能力看,优选根据图1的方法,将通常具有最高抗弯性、含65体积%矿物的组合物加工成的支撑剂颗粒,其粒径从约0.4毫米至约0.8毫米,(20/40目)。
实施例13-18根据图2的方法,在80℃干燥,但不固化的颗粒经受表面机械精制,以便使表面平滑并使之成为近似圆球形。该机械精制步骤是这样进行的在高斜角度和高旋转速度的造粒容器中对所述颗粒进行处理;或在SPHERONIZER装置中,以400-1000rpm对所述颗粒料处理约3至约30分钟。通过清除法(研磨法)造成光滑化作用,在清除法中,于成型(profiled)旋转容器中的颗粒被抛向圆柱壁,然后滚回至容器的底板上。
根据图3的方法,利用其最终合成树脂含量的约70重量%制成最终的固化颗粒,然后在旋转盘上,用最终合成树脂含量剩余的30重量%进行表面涂布。
生产列于表4中的顺序编号的各种颗粒,并检测确定其基本参数,如密度,圆形度和布氏硬度。
实施例13、实施例1的组合物是根据图1的方法制备的。
实施例14、实施例1的组合物是根据图2的方法制备的,其中在SPHERONIZER装置中进行随后的光滑化。
实施例15、实施例1的组合物是根据图3的方法制备的,其中在烘箱中进行第二固化。
实施例16、实施例1的组合物是根据图3的方法制备的,其中在回转炉中进行第二固化。
实施例17、实施例7的组合物是根据图1的方法制备的。
实施例18、实施例10的组合物是根据图1的方法制备的。

实施例中,发现对于预定的用途,实施例15是特别有希望的,并且对其特征进行了详细的讨论。表5的下列数据是利用30分钟的固化时间,固化温度对实施例15试验片抗弯强度的影响。它们还能总结其它强度特征


/>对于同一试样,也可以测量表7和8的下列值<


根据API RP 56/60,实施例15的酸溶解度为4.4重量%。
实施例19-21表9和10表示了通过图3的方法制得的实施例19-21的推荐参数值和实际参数值。


>**芳香溶剂的作用200°F(93℃),96小时,芳香溶剂未检出。
表11表示了传导性和渗透性数据。表12列出了不同实施例的支撑剂所列出的性能的试验步骤。


尽管已经列出并描述了本发明组合物和方法方面的特定实施方案,但应理解的是,在不脱离本发明的精神和范围下,仍能对本发明做出许多改进。因此,本发明并不被所述的说明所限定,本发明的范围只被所附的权利要求的范围所限定。
权利要求
1.一种复合颗粒,包含基本均匀的成形颗粒,该颗粒包含第一部分粘结剂和在整个所述第一部分粘结剂中分布的填料颗粒,其中所述的第一部分粘结剂至少是部分固化的;所述填料颗粒的粒径从约0.5微米至约60微米,所述复合颗粒的球形度至少约0.7;和可有可无的用于涂布成形颗粒的第二部分粘结剂;后述复合颗粒的60-85体积%为所述的填料颗粒。
2.根据权利要求1的复合颗粒,其中球形度至少约0.85。
3.根据权利要求1的复合颗粒,其中球形度至少约0.9。
4.根据权利要求1的复合颗粒,另外还包含选自如下的物质磨碎的玻璃纤维、磨碎的陶瓷纤维、磨碎的碳纤维、天然纤维和合成纤维,其软化点至少约200°F。
5.根据权利要求1的复合颗粒,其中复合颗粒的堆积密度从约70lbs/ft3至约95lbs/ft3。
6.根据权利要求1的复合颗粒,其中粘结剂主要由至少一种选自如下的物质组成无机粘结剂、环氧树脂、酚醛清漆树脂和可熔酚醛树脂;并且另外主要还由可有可无的交联剂和常规的添加剂组成。
7.根据权利要求1的复合颗粒,其中粘结剂包含高比例邻位的树脂、六亚甲基四胺、硅烷粘结促进剂、聚硅氧烷润滑剂、润湿剂和表面活性剂。
8.根据根据权利要求1的复合颗粒,其中该复合颗粒的粒径在20和40目之间,并且包含合成树脂的涂层。
9.根据权利要求1的复合颗粒,其中该复合颗粒的粒径在30和40目之间,并且包含合成树脂的涂层。
10.根据权利要求1的复合颗粒,其中该复合颗粒的粒径在8和20目之间,并且包含合成树脂的涂层。
11.根据权利要求1的复合颗粒,其中填料颗粒为细碎的矿物。
12.根据权利要求1的复合颗粒,其中填料颗粒的体积含量为复合颗粒的约60%至约75%。
13.根据权利要求1的复合颗粒,其中填料颗粒的体积含量为复合颗粒的约65%至约75%。
14.根据权利要求1的复合颗粒,其中粘结剂包含选自如下的一种物质苯酚/呋喃树脂、呋喃树脂和其混合物。
15.根据权利要求1的复合颗粒,其中粘结剂包含双酚-醛清漆聚合物。
16.根据权利要求1的复合颗粒,其中第一部分粘结剂包含可熔酚醛树脂。
17.根据根据权利要求1的复合颗粒,其中第一部分粘结剂包含用γ-氨基丙基三乙氧基硅烷改性的可熔酚醛树脂,其中所述硅烷在填料和合成树脂之间起偶联剂的作用。
18.根据权利要求1的复合颗粒,其中第一部分粘结剂包含苯酚∶甲醛比例为1∶1.1至1∶1.95的可熔酚醛树脂。
19.根据权利要求1的复合颗粒,其中第一部分粘结剂包含苯酚∶甲醛比例为1∶1.2至1∶1.6的可熔酚醛树脂。
20.根据权利要求1的复合颗粒,其中第一部分粘结剂包含固化的粘结剂。
21.根据权利要求1的复合颗粒,其中第一部分粘结剂包含固化的粘结剂,而第二部分粘结剂包含可固化的粘结剂。
22.根据权利要求1的复合颗粒,其中填料颗粒为至少一种选自如下的矿物质二氧化硅(石英砂)、氧化铝、云母、偏硅酸盐、硅酸钙、烧石灰、高岭土、滑石、氧化锆、硼砂和玻璃。
23.根据权利要求1的复合颗粒,其中填料颗粒为至少一种选自石英砂和氧化铝的矿物质。
24.根据权利要求1的复合颗粒,其中填料颗粒包含飘尘。
25.根据权利要求1的复合颗粒,其中填料颗粒为矿物,其粒径d50为4-6微米。
26.根据权利要求1的复合颗粒,其中填料颗粒为矿物,其粒径d50为4-10微米。
27.根据权利要求1的复合颗粒,其中填料颗粒为矿物质,并且其含量为复合颗粒重量的约70%-90%。
28.一种根据权利要求1的复合颗粒的制备方法,包含将填料颗粒、一部分粘结剂、至少一种选自水和有机溶剂的物质以及可有可无的添加剂混合,以便形成一混合物并调节填料颗粒的聚集特性;使该混合物聚集造粒;然后使第一部分粘结剂固化。
29.根据权利要求28的方法,其中混合物的聚集造粒是通过将混合物与旋转盘接触而进行的。
30.根据权利要求28的方法,其中混合物的聚集造粒是通过对混合物进行喷雾而进行的。
31.根据权利要求28的方法,其中将填料颗粒、第一部分粘结剂、至少一种选自水和有机溶剂的物质以及可有可无的添加剂混合,以便形成一混合物并调节该混合物的塑性;在塑性状态下对混合物进行造粒,以便形成成形的颗粒;并且使成形颗粒的第一部分粘结剂固化。
32.根据权利要求28的方法,其中通过挤出股料,将股料切成碎片,并在离心力的作用下使碎片成形为球形颗粒,而进行聚集造粒。
33.根据权利要求31的方法,其中在粘结剂交联之前,通过滚动而使成形颗粒光滑化和对其进行压缩。
34.根据权利要求31的方法,其中在第一部分粘结剂固化之后,用第二部分粘结剂涂布成形颗粒然后再进行固化。
35.根据权利要求31的方法,其中在造粒之后干燥掉溶剂,在干燥之后但在第一部分粘结剂固化之前,用树脂涂布成形颗粒。
36.一种在井身周围地层中对液压诱导的裂缝的处理方法,包括将权利要求1的复合颗粒引入裂缝中。
37.根据权利要求36的方法,其中在地层中形成包含所述的复合颗粒的多层填充料。
38.根据权利要求36的方法,其中第一部分粘结剂主要由可熔酚醛树脂组成。
39.根据权利要求36的方法,其中支撑剂还包含至少一种选自下列物质的引入颗粒砂粒、烧结陶瓷颗粒和玻璃珠。
40.根据权利要求36的方法,其中砂粒包含树脂涂布的砂粒。
41.根据权利要求36的方法,其中复合颗粒的球形度至少约0.85。
42.根据权利要求36的方法,其中复合颗粒的粒径在20和40目之间,并且包含合成树脂的涂层。
43.根据权利要求36的方法,其中复合颗粒的粒径在8和20目之间,并且包含合成树脂的涂层。
44.根据权利要求36的方法,其中填料颗粒为细碎的矿物。
45.根据权利要求36的方法,其中填料颗粒物质的体积比例为复合颗粒体积的约65%至约75%。
46.根据权利要求36的方法,其中填料颗粒包含飘尘。
47.根据权利要求36的方法,其中填料颗粒为矿物,其粒径d50为4-10微米。
48.一种过滤水的方法,包括使水通过包含权利要求1的复合颗粒的过滤填充料。
全文摘要
本发明公开了一种由树脂和填料制得的复合颗粒,所述复合颗粒用于地下层。填料为细碎的矿物和可有可无的纤维。所述颗粒是用来支撑打开的地下层裂缝的支撑剂。所述颗粒还可用于过滤水。另外本发明还公开了所述复合颗粒的制备方法。
文档编号B01J2/20GK1274376SQ99801199
公开日2000年11月22日 申请日期1999年7月22日 优先权日1998年7月22日
发明者罗伯特·R·麦克丹尼尔, 约翰尼斯·A·杰雷德茨 申请人:博登化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1