费托催化剂的制作方法

文档序号:5130594阅读:211来源:国知局
专利名称:费托催化剂的制作方法
技术领域
本发明涉及一种含有钴和锌的Fischer-Tropsch催化剂,而且涉及一种制备制该催化剂的方法。
用于合成C1-C3脂肪族烃的包含氧化钴和氧化锌的催化剂熟知于US4,039,302中。
USP4,826,800描述了一种制备含有氧化钴和氧化锌的催化剂的方法,该催化剂在还原活化后用作从合成气转化为碳氢化合物的催化剂。所述的催化剂通过混合可溶性可溶的锌盐和可溶钴盐的溶液与沉淀剂比如氢氧化铵或者碳酸铵,然后回收该沉淀而进行制备。在描述的方法中碳酸盐与金属的比例很高,已经发现其损害催化剂的强度。
USP5,345,005涉及氧化铝上的铜-锌催化剂,用于通过氢化例如酮制备醇。在对比例子中,描述了氧化铝上的铜-锌-Co催产剂的制备,其中利用了纯碱。然而,发现利用纯碱可能损害催化剂的强度.描述在USP5,345,005中的其中90%体积的铜-锌-钴催产剂在内的粒度分布没有具体描述。但是,预计制备催化剂中利用纯碱会导致粒度分布的宽化。
US5,945,458和US5,811,365描述了在负载于氧化锌载体上的VIII族金属如钴的催化剂组合物存在下的Fischer-Tropsch方法。这样的催化剂是通过如下方法制备的,首先制备载体,其通过将锌盐及其他成分加入到碱性的重碳酸盐溶液中制备。其次,通过过滤从重碳酸盐溶液中分离出沉淀以形成滤饼,滤饼之后可被干燥、焙烧并负载VIII族金属。催化剂材料然后被成形为小片,所述的小片被压碎形成大小250-500微米的颗粒,可用于Fischer-Tropsch工艺中。需要另外的后处理例如压碎以得到具有良好强度性能的催化剂。然而,如上所指出,获得的平均粒度仍相对较大。而且,压碎导致宽的粒度分布,具有大粒子尺寸的催化剂和宽粒度分布的催化剂往往不适于含有鼓泡塔、淤浆反应器或者环路式反应器的工艺。
WO-A-01-01/38269描述了用于进行Fischer-Tropsch工艺的三相体系,其中在液体介质中的催化剂悬浮体在高剪切混合区与气态反应物进行混合,之后所述的混合物被排出到后混合区。作为适当的催化剂,尤其提到无机载体上的钴催化剂,比如氧化锌。用来制备这些的知道的催化剂载体的表面面积小于100g/m2。这些现有技术的钴基催化剂可通过浸渍工艺将钴沉积在适当的载体比如氧化锌载体上来制备。其它的常规的制备方法包括沉淀方法,其通常包括将由催化剂准备过程得到的催化剂材料硬的滤饼压碎为微粒。
然而已经发现这些的常规的催化剂当用于催化过程中啜不能总满足传质和/或传热的要求。
而且,已经发现由于催化剂粒子往往会聚集,因此当用于淤浆相工艺时这些的常规的催化剂的分散行为不是特别的好。
市场上可买到的适于负载钴的形成催化剂的氧化锌载体的其它问题包括粒度分布不适当(特别是通过沉淀得到的载体)、表面积低,这通常使它们们更难以浸渍;因此,一旦施加钴,就需要几种浸渍步骤以在载体上得到合理的钴负载量和低均一性分布分布。
本发明的目的是提供一种新颖的适合用于Fischer-Tropsch合成的催化剂,其可用作熟知催化剂的替代。
已经发现含有氧化钴和氧化锌而且具有特定粒子大小和粒度分布特定的催化剂具有非常有利的性能作为Fischer-Tropsch催化剂。
因此,本发明涉及一种含有钴和锌共沉淀粒子的催化剂,所述催化剂的体积平均粒度小于150μm,其中至少90%体积的催化剂粒子的粒径分布的大小为0.4-2.5倍于平均粒度。
本发明使用的体积平均粒度和粒度分布通过激光衍射设备,用Malvern Master筛分器MS20装置确定(程序包含3分钟,25%(最高功率)超声波处理,之后进行粒度分布测量;计算模型模型线性无关;显示1907;参见例子)。
已经发现根据本发明的催化剂具有非常有利的性能用于催化过程中。根据本发明的催化剂当用于催化过程时具有特别良好的传质和/或传热性能。
根据本发明的催化剂认为是特别有利的用于搅拌淤浆相反应器、鼓泡塔反应器、环路式反应器或者流化床反应器。
根据本发明的催化剂在干燥的形式和/或用于搅拌淤浆反应器显示出非常良好的流动性质,反应混合物中的反应物具有良好的分散性能。
本发明的催化剂,例如所观察到的,当催化剂保持于存储玻璃瓶时,具有如干燥催化剂的自由流动性表示的非常适当的粒度分布。
根据本发明的催化剂显示出非常有益的分离性能,例如非常适当的经过过滤从反应混合物中分离。
根据本发明的催化剂具有极其良好的活度活性和分离性之间的平衡。
根据本发明的催化剂尤其可通过包含Co和Zn前体溶液的共沉淀制备。得到的Co沉淀(固体)可被后处理,最后被还原得到负载于氧化锌上的Co催化剂。共沉淀的非常适当的例子包括Co/Zn氧化物和Co和/Zn碳酸盐的共沉淀,Co/Zn氢氧化物和Co/Zn羟基碳酸盐的共沉淀及其组合。
优选所述催化剂的体积平均粒度小于100μm,更优选小于50μm,下限不是特别关键的。为实际的目的,最好尺寸至少是这样的要使粒子仍能从液体反应混合物中分离出来。特别适当的例子是催化剂的平均粒度为2μm或以上。对于体积平均粒度在5-50μm范围内的催化剂已经取得了很好的结果。
对于粒度分布,优选大小为小于平均粒度0.4倍的粒子的量比大小为超过平均粒度2.5倍粒子的量更少(如至少低5倍)。更优选基本上没有催化剂的粒子的尺寸小于平均粒度的0.4倍。
对于其中90%体积的催化剂粒子的大小在平均粒度的0.5~2.2倍之间、更优选为平均粒度的0.6~2倍之间的粒径分布的催化剂已经得到了很好的结果。
优选孔容催化剂的孔容至少主要由直径在5-100nm的孔形成,所述的孔容由氮吸附确定(N2-BET),在Ankersmit QuantachromeAutosorb-6装置上测定,样品在180℃脱气到压力为3.3Pa(25mTorr)。更优选其中基本上的没有直径小于5nm的孔(特别是小于5%的孔容由直径小于5nm的孔形成)。已经发现这样的催化剂对于反应物和产物具有特别良好的扩散特性。这样的催化剂也发现对于Fischer-Tropsch反应具有高度选择性。
对于孔容小于0.5ml/g的催化剂已经取得了很好的结果。孔容优选至少0.05ml/g。特别适当的是催化剂的孔容小于0.45ml/g。
已经发现这样的催化剂具有特别良好的机械强度性能,其在各种型式的反应器包括淤浆相反应器、环路式反应器、鼓泡塔反应器和流化床反应器的应用中是有利的。
同样,取决于所需的目的,由Ankersmit Quantachrome Autosorb-6装置,在180℃脱气后降低至压力为3.3Pa(25mTorr)确定的表面积可选择在宽的范围内。对于Fischer-Tropsch工艺,该参数例如可能选择为1-120m2/g。优选催化剂的表面积为5-100m2/g。对于表面积为5-80m2/g的催化剂已经取得了很好的结果。
本发明优选的催化剂是其中粒子具有或多或少球面几何学形状的颗粒材料。已经发现这样的催化剂具有很好的强度和分离性能,及具有相对高的在使用过程中的耐磨性。
非常适当的是或多或少为圆球形的催化剂,其中至少大多数的粒子具有多个凸起的球面几何形状。具有多个凸起球面几何的形状例子的粒子示意于

图1中。对于其中至少大多数的粒子为多个凸起的粒子的催化剂而言,已经取得了特别良好的结果例如传热和/或传质性能,所述的催化剂的表面积是所谓的等同的圆形物表面积的至少为1.05倍、优选至少1.1倍、更优选至少1.2倍。本发明使用的术语“等同的圆形物”描述正好适合粒子轮廓的最大周长的圆形物,当粒子在平面上被突出时(例如通过显微照片),这样以致于在视野中的取向可表现出在任何角度都能看见的最大可能的外表面区域(参见图2,是示意于图1的等同的圆形物的效果图)。
催化剂的组成可在很大程度上改变,取决于预定的目的本领领的普通技术人员知道如何确定所述的组成。
优选锌与钴原子比为40∶0.1,更优选为20∶0.3。
所述的催化剂基本上由氧化钴和氧化锌组成。然而同样可能的是催化剂可包含一种或多种其它的组分,比如通常用于Fischer-Tropsch催化剂中的组分。例如该催化剂可包含一种或多种助催化剂,比如钌、铪、铂、锆、钯、铼、铈、镧或者它们的组合。当存在时,这样的助催化剂通常使用的钴∶助催化剂原子比高达为10∶1。
已经发现本发明的含有至少一种IIIa族元素,优选基于该催化剂总重量浓度为0.1-10wt%的催化剂具有非常有利的结构稳定性。优选的IIIa族元素包括铝(Al)、镓(Ga)和硼(B),其中铝是特别优选的。
本发明的基本上无钠的的催化剂得到了很好的结果。已经发现包含相对高钠含量的催化剂强度降低了。而且钠的存在发现使该催化剂中毒,减少Fischer-Tropsch的活性。因此,钠含量小于催化剂重量的0.5wt.%、更特别为0~0.15wt.%、甚至更特别为0~0.1wt%的催化剂是优选的。
根据本发明的具有低铜含量的或者基本上没有铜的催化剂取得了很好的结果。铜可引发副反应,比如经过氢化酮、醛或者羧酸而形成醇,这些通常的优选要避免或者抑制,特别是对于Fischer-Tropsch工艺。该含铜量优选小于2wt.%、更优选为0~0.5wt%、甚至更优选为0~0.2wt.%,所述的含量基于该催化剂的重量。
本发明进一步涉及通过共沉淀钴和锌离子制备含有氧化钴和氧化锌催化剂的方法,其中含有锌离子和钴离子的酸性溶液和碱性溶液提供到含有水性介质、优选用水或者水溶液的反应器中,其中该酸性溶液和碱性溶液在该水性介质中接触,形成含有钴和锌的沉淀。该沉淀其后从该水性介质中分离出来(其和该沉淀一起形成淤浆)。该分离的含有钴和锌的沉淀然后干燥,进行后处理,例如焙烧等等以形成所述的催化剂。
该酸性溶液和碱性溶液的组合物优选这样选择以使该酸性溶液和该碱性溶液的组分可溶于该水性介质中,但当它们与该碱性溶液接触时该钴和锌沉淀,而该锌和钴的反离子基本上留在溶液中。本领领的普通技术人员知道如何选择适当的合理的条件,比如反离子的类型和该组分的浓度。
该方法被认为是特别适于制备如上所述的催化剂。
已经发现本发明的方法可直接制备颗粒状沉淀,所述的沉淀可干燥后直接作为自由流动的催化剂前体,即,其可制备沉淀,无须打碎或者另外的机械处理以形成颗粒材料。
同样本发明的方法可制备具有或多或少为圆球形的、为任选多个凸起的几何形态的粒子。
优选该粒子的沉淀在基本上恒定的pH、特别是pH值在固定点值附近最多改变大约±0.2pH单位下进行。因此,已经发现可能制备一种具有非常有利的自由流动特点的催化剂前体。
优选,该碱性溶液和该酸性溶液同时(从独立的导管)提供给反应器。
任选,在该分离干燥的沉淀或者煅烧产物中的钴被还原为金属钴。
适当的离子锌相应的离子钴的源包括其以充分的浓度可溶于酸性溶液和水中的盐。优选的这样的盐的例子包括硝酸锌相应的硝酸钴,乙酸锌相应的醋酸钴,及其他在该酸性溶液中具有相似溶解度的钴相应的锌的无机的或者有机盐。
在存在该钴离子和锌离子的情况下,用于共沉淀的适当的组分是可以充分浓度溶于碱性水溶液中的无机盐和有机盐,比如氢氧化物、碳酸盐、碳酰胺、异氰酸酯和任何其它的可用作碱源,而且可被水溶解为碱性溶液的盐。这样的盐的优选的例子包括碳酸铵、碳酸氢铵及其他在碱性溶液中具有相似溶解度的无机的或者的碳酸盐。
优选,在该水介质中的锌和钴离子的总浓度选择为0.1~5摩尔/升。该浓度优选在该整个沉淀步骤中限制在该范围之内。
该酸性溶液的pH优选是1-5。该碱性溶液的pH优选是6-14。在该水介质中(其中发生共沉淀)的pH优选是4-9,这取决于用作钴、锌和碱性组分源的前体盐的类型。
选择非常适当的搅拌频率以得到粉末进料量为1-300kW/1水介质。在粉末进料量为10-100kW/1水介质的情况下取得了很好的结果。
在该共沉淀过程中的温度优选选择为5-98℃、更优选为15-75℃。
本发明也涉及在淤浆反应器、环路式反应器、鼓泡塔反应器或者流化床反应器中本发明的催化剂的用途。本发明还涉及根据本发明的催化剂在Fischer-Tropsch工艺,或者腈氢化生成胺的官能团加氢过程中的用途。
本发明进一步通过以下例子说明。
实施例1催化剂制备通过将329g Zn(NO3)2·9H2O和49.4g Co(NO3)2·6H2O溶解在1000ml脱盐水中制备包含10.0g/l钴和72.3g/l锌的金属溶液(1000ml)。通过将154g(NH4)2CO3溶解在1000ml脱盐水中制备碱溶液。将该金属和碱溶液以相同流速(1000ml/hr)同时注射到充分搅拌的包含1750ml脱盐水的挡板沉淀容器中。在持续沉淀的过程中温度保持为60℃。输入功率(N)是0.5Watt/l。利用如下公式计算N=(k×p×n3×d5)/V其中N=叶轮转子叶片的输入功率(Watt);k=叶轮转子叶片的系数6;p=液体密度(kg/m3);N=搅动转速(s-1);d=搅拌器直径(m);V=沉淀槽体积(3.5L);该pH经过以相同的加入速度提供酸性溶液和碱性溶液保持pH为常数5.8。
得到的沉淀用脱盐水洗涤并在110℃干燥过夜。将该干燥催化剂从室温以150℃/hr加热到500℃,在500℃下焙烧5小时。该焙烧催化剂的性能总结在表1中。
实施例2(对比)(如USP4,826,800中所描述)通过将292g Zn(NO3)2·6H2O和98.7Co(NO3)2·6H2O溶解在2.6L脱盐水中以形成酸性溶液从而制备包含20.0g/l Co和64.3g/l Zn的金属溶液。在该沉淀槽中,通过将675g(NH4)2CO3溶解在5.2升脱盐水中制备碱溶液。将该酸性溶液以12ml/min注射入该包含碱溶液的沉淀槽,同时在室温下搅拌(300RPM)。在持续的加入过程中,该pH从9.2(初始的)降低到8.4(最终的)。
该得到的沉淀用脱盐水洗涤并在110℃下干燥过夜。需要一些机械处理以从干燥的滤饼中得到粉末。该粉末粉末显示出没有自由流动行为。该干燥催化剂粉末在500℃下焙烧5小时(升温速率为150℃/h)。
实施例3-与常规的催化剂对比的催化剂特征数据表1描述根据本发明的催化剂性能与对应的常规的催化剂性能的对比。
表1
Ad 1从Malvern粒度分布测量中计算取值范围,给出该粒度分布宽度的示值,如下所定义取值范围={D[v,0.9]-D[v,0.1]}/D[v,0.5]其中D[v,0.9]=粒子大小(μm),在该粒度下有90%的粒子存在于Malvern体积粒度分布中。D[v,0.5]=粒子大小(μm),在该粒度下有50%的粒子存在于Malvern体积粒度分布中。D[v,0.1]=粒子大小(μm),在该粒度下有10%的粒子存在于Malvern体积粒度分布中。
Ad 2如表1报道,Co3O4微晶大小是由XRD谱、特别是从XRD图样中的d=2.03线计算的(CuKα-辐射)。本发明的钴含量是通过X-光荧光色谱图测量得到的。
实施例4粒度分布的测量本发明的催化剂粒度分布是在Malvern Mastersizer MS20上测定的。
装置的样品容器填充满软化水,确定填充有水的测量池的衍射用于本底校正。然后,适当的量的催化剂粉末被加到样品容器中,其在超声波浴中处理3分钟(25%的最大值输出额u.s.功率),并搅拌(50%的最大值搅拌的速度),之后进行测量。上述处理后,测定样品并对于本底测量校正测定的衍射信号。
利用以下的参数模型模型线性无关的;显示1907;粒度分布体积分布计算粒度分布。
实施例5-在Fischer-Tropsch中的催化剂的催化性能制备钴含量为20wt%的催化剂。除了钴含量不同外,该制备条件与实施例1相同。
催化剂锌华(20g)在3.5cm OD的管式反应器中进行还原。该反应器用氮在大气压力下以空间速度(GHSV)1000h-1吹扫。将温度以2℃/min升高到60℃。然后气体原料以1000GHSV被切换到空气。然后温度以1℃/min升高到250℃并保持3小时。气体流以1000GHSV然后改变为氮并保持6分钟,然后进气以1000GHSV切换到一氧化碳保持3.5小时。
然后该进气改变回到氮,以4℃/min温度升高到280℃。一旦达到280℃,该进气于是以2500GHSV切换到氢保持10小时。然后该反应器被冷却到室温并用氮吹扫,之后转入反应器。
将催化剂在氮气吹洗下转移到600ml连续搅拌釜式反应器中(CSTR),所述的连续搅拌釜式反应器已经填充有三十烷(300ml;Aldrich).该反应器被密封并在氮气流250ml/min下被加热到125℃。进入该反应器的进气然后以8000GHSV切换到合成气,搅拌速度增加到700rpm,以2℃/min温度升高到130℃。然后该反应器以30bar/hr加压到20bar。然后温度以60℃/h升高到160℃,以5℃/h直到175℃,以1℃/h直到185℃,以0.5℃/h直到205℃,和以0.3℃/h直到212℃。然后使用自动温度控制以使一氧化碳转换保持为60%。
在226℃温度下连续操作40小时后得到C5+608g/升催化剂/hr的生产率。
权利要求
1.一种含有钴和锌共沉淀粒子的催化剂,所述粒子的体积平均粒度小于150μm,而且具有这样的粒径分布,其中至少90%体积的催化剂粒子的尺寸为平均粒度的0.4~2.5倍。
2.根据权利要求1的催化剂,其中该体积平均粒度小于100μm,优选为2~50μm。
3.根据权利要求1或2的催化剂,其中孔体积主要由直径为5-100nm的孔形成。
4.根据前述权利要求任一项的催化剂,其中孔体积小于0.5ml/g,优选小于0.45ml/g。
5.根据前述权利要求任一项的催化剂,其中表面积小于120m2/g,优选为5-100m2/g。
6.根据前述权利要求任一项的催化剂,其中锌与钴原子比为40∶0.1。
7.根据前述权利要求任一项的催化剂,主要含有具有多个凸起的球面几何学形状的粒子。
8.根据权利要求7的催化剂,其中该多个凸起粒子的表面积至少是等同圆形物表面积的1.05倍、优选至少为1.1倍,其中该等同圆形物定义为可正好适合粒子轮廓的最大周长的圆形物,当该粒子在平面上突起时,因此在视野中的取向显示出可从任何角度都可见的最大可能的外表面区域。
9.根据前述权利要求任一项的催化剂,其中铜含量小于该催化剂总重量的2wt.%,优选小于0.5wt%。
10.一种制备前述权利要求任一项催化剂的方法,其中将含有锌离子和钴离子的酸性溶液,和碱性溶液提供给含有水介质的反应器,其中该酸性溶液和碱性溶液在该水介质中接触,其中形成含有钴和锌的沉淀,之后该沉淀从该水介质中分离出来,干燥并进行后处理以形成所述的催化剂。
11.根据权利要求10的方法,其中包含一种或多种阴离子的酸性溶液选自硝酸盐和乙酸盐。
12.根据权利要求10或11任一的方法,其中该碱性溶液包含铵。
13.权利要求1-9任一项的催化剂在Fischer-Tropsch工艺或者官能团氢化中的用途。
14.权利要求1-9任一项的催化剂在淤浆反应器、环路式反应器、鼓泡塔或者流化床反应器中的用途。
全文摘要
本发明涉及一种含有钴和锌共沉淀粒子的催化剂,所述催化剂的体积平均粒度小于150μm。本发明的另一方面涉及这样的催化剂在Fischer-Tropsch工艺中的用途。本发明还涉及制备含有氧化钴和氧化锌催化剂的方法,其中含有锌离子和钴离子的酸性溶液和碱性溶液接触,然后分离出沉淀。
文档编号C10G2/00GK1649670SQ03809213
公开日2005年8月3日 申请日期2003年4月22日 优先权日2002年4月25日
发明者科内利斯·罗兰德·拜杰斯, 贾令·雷克尔 申请人:英格哈得公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1