自预热生物质气化炉的制作方法

文档序号:8661912阅读:302来源:国知局
自预热生物质气化炉的制作方法
【技术领域】
[0001]本实用新型涉及一种燃料生产系统,特别涉及一种生物质燃料生产系统。
【背景技术】
[0002]众所周知,煤、石油、天然气等化石能源都是不可再生资源,在人类大规模的开采下已逐渐枯竭。另外,这些燃料在燃烧时会向空气中排放大量的有毒有害气体,造成大气严重污染。为此,能源领域专家正努力寻找可再生的清洁燃料来代替化石能源。
[0003]生物质燃料(简称BMF,比如农林废弃物,如秸杆、锯末、甘蔗渣、稻糠等)具有以下几个特点:1、BMF的能量来自于其生长时对自然界0)2的吸收,因此BMF具有CO 2生态“零”排放的特点;2、BMF的燃烧以挥发份为主,其固定碳的含量为15%左右,是典型的低碳燃料;3、BMF的含硫量比柴油还低,仅为0.05%,不需设置脱硫装置就可实现SO2的排放;4、BMF的灰份仅为1.8%,是煤基燃料的1/10左右,设置简单的除尘装置就能实现粉尘排放达标;5、BMF含氮量低,氧含量高,燃烧时生成较少的NOx;6、BMF来源于农林废弃物,原料分布广泛多样,成本低,循环生长,取之不尽用之不竭,是典型的循环经济项目。
[0004]生物质燃料技术的研宄与开发己成为世界重大热门课题之一,受到世界各国政府与科学家的关注。生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径。生物质的直接燃烧在相当长的历史时期是我国生物质能利用的主要方式。生物质的热化学转换是指在一定的温度和条件下,使生物质气化、炭化、热解和液化,以生产气态燃料、液态燃料和化学物质的技术。生物质的生物化学转换包括有生物质一沼气转换和生物质一乙醇转换等。
[0005]生物质气化是以生物质为原料,在气化剂作用下,通常以氧气(空气、富氧或纯氧)、水蒸气或氢气等作为气化剂(也称为气化质),在高温条件下通过热化学反应,将生物质中可燃的部分转化为可燃气的过程。生物质气化时产生的气体成分主要包括h2、014和CO等,通常将这种可燃气体称为生物质燃气。
[0006]在生物质的气化过程中,气化效果与燃烧过程有着密不可分的关系,这是因为燃烧过程是生物质气化的基础,而气化则是部分燃烧或缺氧燃烧,生物质中碳的氧化燃烧过程为气化过程提供了热量。在气化反应中,其他过程的进行情况取决于碳燃烧阶段的放热情况。因此,从根本上说,生物质气化过程是为了增加可燃气的产量而在高温条件下发生的热裂解过程。
[0007]相对于其它的生物质利用技术而言,生物质气化技术是一种广泛使用的生物质能量转化方式。其特点主要包括能量转化效率高,设备简单,投资少,运行操作容易,不受地区、燃料种类和气候的限制。经过生物质气化炉产生的生物燃气可用于坎事、采暖和烘干谷物、木材等,还可作内燃机、热气机等动力装置的燃料,将其转化为电力或动力,提高生物质能源品位及其使用效率。
[0008]生物质的气化过程主要在气化炉中进行,由于气化炉的类型、气化反应条件、工艺流程、气化剂的种类、原料的性质和粉碎粒度等条件的不同,其气化反应过程也不尽相同。但生物质气化过程在不同条件下的基本包括:C+02= C02;C0 2+C = 2C0 ;H20+C = CO+H2等。
[0009]一般而言,生物质的实际反应过程主要包括四个部分:(1)、干燥层,其中生物质从气化炉顶部进入气化器,被加热至大约200?300°C左右后,生物质原料中的水分首先受热蒸发,最终产物为干物料;(2)、热解层,其中生物质干物料从干燥层向下移动进入热解层,在高温作用下,生物质中挥发分将会大量地析出,其作用温度在500?600°C左右,挥发分析出后,生物质只剩下残余的木炭,其中热分解反应析出的挥发分主要包括氢气、一氧化碳、二氧化碳、甲烷、焦油和其它碳氢化合物等;(3)、氧化层(也叫燃烧层),其中生物质经热解层后仅剩下木炭,此时在氧化层中与被引入的空气发生剧烈反应,同时释放出大量的热量,为其它区域的反应提供热量,在氧化层中,其特点是反应速率快,层高较低,温度可以高达1000?1200°C左右,同时挥发分参与燃烧后进一步降解;(4)、还原层,还原层中没有氧气存在,氧化层中的燃烧产物及水蒸气与还原层中木炭发生还原反应,生物氢气和一氧化碳,这些气体与挥发分等形成了可燃气体,完成固体生物质向气体燃料的转化过程,由于还原反应是吸热反应,此时的温度降低到700?900°C左右,而其所需热量主要来源于氧化层O
[0010]生物质气化反应主要在气化炉中进行,因此气化炉是生物质气化的主要的设备,根据气化炉的运行方式不同可以分为流化床气化炉和固定床气化炉。其中,在流化床气化炉中,粉碎的生物质原料被投入气化炉中,气化剂由鼓风机从炉栅底部向上吹入气化炉内,燃料的气化反应是在“沸腾”状态完成的。其中,固定床气化炉是将切碎的生物质原料由炉子顶部加料口投入到固定床气化炉中,物料在炉内基本上按层次地进行气化反应,反应产生的气体在炉内的流动要靠动力装备风机来实现。
[0011]在上吸式固定床气化炉中,生物质原料从气化炉顶部送入,气化剂由炉体底部的进气口进入炉内参与反应,反应产生的气体自下向上流动,最后由气化炉上部的燃气出口排出。其中,生物质的反应过程从上到下依次包括干燥层、热解层、还原层、氧化层。其优点主要是:燃气在经过热分解区和干燥区时,将其本身所携带的热量传给生物质原料,用于原料的干燥和热分解,同时降低燃气的温度,提高气化炉的热效率;由于生物质原料从炉子上部加入,因此生物燃气由上部出来时经过物料层,对燃气有一定的过滤作用,减少生物燃气中的灰分含量。
[0012]如中国专利申请公开第101737795A号所揭示的一种以空气水蒸汽为气化剂的生物质气化锅炉,包括炉体、炉排、燃料均分器和预热管,炉体由内炉壁和套在内炉壁上的外炉壁构成,炉体的上部空腔的外形呈圆柱形,炉体的上部空腔为气化燃烧室,炉体的下部空腔的外形呈倒锥形,炉体的下部空腔为落灰室,炉排位于落灰室的上方且设置在气化燃烧室的下端内,预热管设置气化燃烧室内的上端且与安装在炉体的上端壁的燃料均分器连通;生物质气化锅炉还包括进水管、雾化喷嘴、空气进入管、隔板、热空气水蒸汽混合管路、喉管、二次风管组和连接管;热空气水蒸汽混合管路设置在炉排的下方,炉排由多个水平设置的炉排管纵横交织在一起构成,每个炉排管的下半部管壁开有多个一次风通孔;位于炉排上方的圆柱形炉体的外侧壁上设有密闭环形雾化腔,密闭环形雾化腔直接通过内炉壁与气化燃烧室进行热交换,隔板设置在密闭的环形雾化腔内,空气进入管与隔板一侧的密闭环形雾化腔连通,进水管通过雾化喷嘴与隔板另一侧的密闭环形雾化腔连通,热空气水蒸汽混合管路的出口和隔板与雾化喷嘴之间的密闭环形雾化腔连通,各个炉排管通过热空气水蒸汽混合管路与密闭环形雾化腔连通。然而,该以空气水蒸汽为气化剂的生物质气化锅炉存在以下缺点或不足:(I)、直接制得的生物质燃气中焦油含量较大,如果不进行过滤处理将严重影响燃气的后续使用性能,而该生物质气化锅炉专利申请中未揭示或建议如何有效降低生物质燃气中焦油含量;(2)、该生物质气化锅炉的中上部的炉壁未采取余热回收构造,浪费了一部分热能,如果能将这部分热能用于预热空气或水将会更加节能环保;(3)、该生物质气化锅炉的生物质进料通道与生物质燃气排出通道未进行物理上的分隔,这不利于分别控制加料和排气;(4)、该生物质气化锅炉的水蒸汽制备方式是通过雾化喷嘴直接将水管中的冷水喷向高温炉壁而加热成水蒸汽直接供应给气化炉内,这样制成的水蒸汽中必然含有一定量的雾化水滴,这不利于后续在气化炉中进行的还原反应;(5)、该生物质气化锅炉的一次风制备方式是将冷空气直接送入密闭环形雾化腔中与水蒸汽混合制成热空气水蒸汽混合气后供应给气化炉内,这样会使得水蒸汽中雾化水滴的含量进一步增加。
[0013]又如中国专利申请公开第102643676A号所揭示的一种燃气回流燃烧自供热生物质热解气化方法,生物质在热解气化炉内,以空气和水蒸气为气化剂进行热解气化反应,利用产出燃气的余热将由蒸发器产出的水蒸汽制备成过热水蒸汽给炉内补热,并回流部分产出的燃气入炉燃烧为气化反应提供热量,采用高温裂解去除焦油,确保气化炉整体处于高温氛围,使生物热解碳的气化过程和焦油的裂解过程趋于完全。然而,该燃气回流燃烧自供热生物质热解气化方法存在以下缺点或不足:(I)、其未揭示或建议如何有效降低生物质燃气中焦油含量;(2)、其使用的空气未利用锅炉余热进行预热;(3)、其需要采用专门的蒸发器制得水蒸汽;(4)、其炉壁未采取余热回收构造,浪费了一部分热能。
[0014]因此,提供一种能够充分提高能源利用率的自预
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1