减少内燃机no的制作方法

文档序号:5216891阅读:216来源:国知局
专利名称:减少内燃机no的制作方法
技术领域
本发明涉及用于在气态燃料压缩点燃的内燃机中使用废气循环的方法和装置。
背景技术
废气循环(“EGR”)用在柴油燃料压缩引燃发动机中以协助减少氧化氮(NOX)排放。EGR可以将进入燃烧环境的一种吸入进气中的氧浓度降低到大气氧浓度以下的水平。在EGR中,出自一次燃烧循环的一定量的废气在随后的一次燃烧循环中被保持在燃烧室之中或被送回到燃烧室内,废气可稀释吸入进气中的氧气。
利用EGR的发动机典型地开始于一种吸入进气,由于它几乎完全是从空气吸取的而具有大气氧浓度。在燃料燃烧期间氧气被消耗。经过燃烧的废气将氧气耗尽。因此,在由于这种燃烧而得出的废气与一种空气吸入进气混合的情况下,此进气内的氧气浓度减小了。
为人所熟知的是,在柴油燃料压缩引燃发动机中采用EGR可使发动机产生其它污染物。燃烧效率是在一种燃烧过程中能量被转换为机械能时所具有的效率。随着燃烧环境之内氧气浓度的下降,趋向于必需较高的喷射流率是保持燃烧效率。这些唯一可行的增大喷射流率的办法趋于导致颗粒物排放的增多。因此在减少当前柴油发动机中的NOX排放的实用性上,EGR受到限制。
可以通过增大燃料喷射压力或通过增大喷射器喷嘴孔口的尺寸或数量而增大喷射流率。因为柴油燃料是在很高压力下送入的,燃料喷射压力难以增大。柴油燃料喷射压力可能高至30000psi,并且喷射器和泵通常会受到在技术上的限制。压力方面即使增大2000至3000psi也会不足以显著地影响喷射流率。
可以通过增大喷射器孔口尺寸来实现较高的喷射流率。不过,增大了的喷射器孔口尺寸趋向于降低柴油燃料的雾化,这样可能导致比不这样做的情况要多的颗粒物的形成。由于邻近的各燃料射流可能彼此干扰,增大喷射器孔口的数量也可能导致增加颗粒物的形成。
虽然存在许多用于在废气被排入周围环境之前降低废气中颗粒物的浓度的后续处理方法,但颗粒物后续处理的实施特别困难而昂贵。
除了在柴油燃料发动机中利用EGR的整体排放协调之外,由较高EGR水平导致的增大了的颗粒物的水平可能损害或干扰EGR系统中各部件的正当操作。
某些压缩一引燃发动机燃烧诸如天然气这样的气态燃料。虽然这种发动机生成颗粒物的趋势减少,但在这种发动机中利用EGR存在其它障碍。由于天然气在远高于柴油燃料所需的温度下自引燃,所以往往采用一种引燃燃料来起始燃烧。当天然气在燃烧室内的某处被引燃时,这些天然气燃料的发动机就依靠从引燃源沿着燃烧室的火焰向前推行的传播以燃烧燃料/空气混合物。
高EGR水平可以造成无效燃烧或点火不良。由于效率缘故,保持高的火焰速度很重要。由于进气与燃料的比值增大,火焰速度趋于下降而导致效率损失。在极端的情况下,在燃料被充分燃烧之前火焰速度下降到零而出现局部的点火不良。
需要提供减少排放的内燃机。

发明内容
本发明提供了方法和装置,将EGR应用在燃烧直接喷射的气态燃料的压缩引燃发动机之中。在本发明的各具体实施例中,各发动机操作参数允许较高的EGR水平及对点火不良降低的敏感性。可以改变喷射压力以在较高EGR比率下保持燃烧效率。在本发明的实施例中,EGR用以使吸入进气升温。这样有助于为天然气创造一个比较有利的引燃环境。
因此,本发明的一个方面提供一种操作气态燃料内燃机的方法,此方法包括将吸入进气从吸入管线引入内燃机的燃烧室;压缩燃烧室内的吸入进气;将一种气态燃料直接喷入燃烧室内的经过压缩的吸入进气;引燃气态燃料;燃烧气态燃料;将燃烧气态燃料期间所产生的废气从燃烧室引入排气管线;以及,将一定量的废气从排气管线经由EGR管线送向吸入管线,其中随后的吸入进气包括所述数量的废气。
本发明的另一方面提供了一种操作气态燃料内燃机的方法。此方法包括将吸入进气引入内燃机的燃烧室;压缩燃烧室内的吸入进气;将一种气态燃料直接引入燃烧室;引燃气态燃料;燃烧气态燃料;确定一所需的EGR质量,以及一所需的总的进气质量;将由于燃烧气态燃料而生成的一定量的废气引出燃烧室;防止剩余数量的废气逸出燃烧室,剩余数量由所需的EGR质量确定;以及,将随后的吸入进气引入燃烧室,基于所需的总的进气质量的随后的吸入进气具有的质量,小于所需的EGR质量。
本发明的又一方面提供了一种操作内燃机的方法。此方法包括将吸入进气从吸入管线引入内燃机的燃烧室;压缩吸入进气;将一种燃料引入燃烧室内的吸入进气;引燃燃料;燃烧燃料;将由于燃烧燃料所生成的废气从燃烧室引入排气管线;确定废气内的排放浓度,此排放浓度是以下之一的浓度;i.一氧化碳,ii.烃类,iii.一氧化碳和烃类的结合,iv.一氧化碳和颗粒物的结合,v.烃类和颗粒物的结合,或者vi.一氧化碳、烃类和颗粒物的结合;确定一EGR水平设定点,在该点处排放浓度等于或超过某一最大排放浓度;确定某一预定量的废气送过一EGR管线,废气的数量提供一低于设定点的EGR水平;以及,基于对于EGR管线预定量的废气,将一定量的废气引入吸入管线,其中随后的吸入进气包括所述量的废气。
本发明的另一方面提供了一种气态燃料内燃机。所述内燃机包括至少一个带有活塞的气缸,气缸和活塞部分地限定燃烧室。当内燃机正在运行时活塞在气缸内的上死点与下死点之间往复运动。所述内燃机具有控制器,能够处理操作数据以建立一发动机的设置,以及一气态燃料喷射器,能够将一种气态燃料直接喷入内燃机。喷射器由控制器予以操纵。所述内燃机具有吸入管线,用于经由一吸入阀将进气引入燃烧室;排气管线,用于将由于燃烧气态燃料而得出的废气从燃烧室经由排气阀引出;以及,EGR管线,通过该管线,控制器能够从排气管线到吸入管线供给一定量的废气。
本发明的又一方面提供了一种内燃机。所述内燃机包括至少一个带有活塞的气缸,其中气缸和活塞部分地限定燃烧室,当发动机正在运行时活塞在气缸之内上死点与下死点之间往复运动。所述内燃机还包括控制器,能够处理操作数据以建立一发动机的设置。还包括一燃料喷射器,能够将一种燃料直接喷入燃烧室,其中燃料喷射器由控制器予以操纵,以及喷射器限定各喷射器喷嘴孔眼的直径在0.6与1.0mm之间。喷射器由控制器予以操纵。还包括吸入管线,用于通过吸入阀将进气引入燃烧室;排气管线,用于将由于燃烧燃料而得出的废气从燃烧室经由排气阀引出;以及一EGR管线,通过该管线,控制器能够从排气管线到吸入管线供给一定量的废气。
本发明的又一方面提供了一种操作内燃机的方法。此方法包括将吸入进气从吸入管线引入内燃机的燃烧室;压缩燃烧室内的吸入进气;将一种气态燃料在某一参数范围之内直接喷入燃烧室内的经过压缩的吸入进气,此范围至少是12MPa与30MPa之间的一个压力,以及一火板以下10与20度之间的某一角度,其中火板部分地限定所述燃烧室;引燃气态燃料;燃烧气态燃料;将燃烧气态燃料期间所产生的废气从燃烧室引入排气管线;以及,将一定量的废气从排气管线经由一EGR管线送向吸入管线,其中随后的吸入进气包括所述量的废气。
本发明的又一方面提供了一种操作内燃机的方法。此方法包括将吸入进气从吸入管线引入内燃机的燃烧室;压缩燃烧室内的吸入进气;将一种气态燃料在某一参数范围之内直接喷入燃烧室内的经过压缩的吸入进气,此范围至少是12MPa与30MPa之间的一个压力,以及一火板以下10与20度之间的某一角度,其中火板部分地限定燃烧室,以一种分层燃烧模式或一种扩散燃烧模式燃烧气态燃料,将燃烧气态燃料期间产生的废气引入排气管线;以及,将一定量的废气从排气管线经由一EGR管线送向吸入管线,其中随后的吸入进气包括所述量的废气。
本发明的其它各方面和本发明的各具体实施例的细节在下面予以说明。


在本发明的各非限制性实施例的附图中图1是一种柴油喷嘴的喷射速率与喷射压力的关系曲线图;
图2是对于柴油和天然气两个燃料方案下的为保持燃烧效率的水平所需的喷射压力与O2含量的关系曲线图;图3是对于柴油机燃料喷射的O2含量和颗粒物排放与喷嘴孔径的关系曲线图;图4A到图4D分别是活塞的吸气、压缩、做功和排气各冲程期间一个运行中的气体燃料式内燃机燃烧室的截面图;图5A是根据本发明一项实施例的一种利用EGR于分层式气体内燃机的设备的示意图;图5B是根据图5A实施例的一种改型的设备的示意图;图6是根据本发明第二项实施例的一种利用EGR于分层式气体内燃机的设备的示意图;图7是根据本发明第三项实施例的一种利用EGR于分层式气体内燃机的设备的示意图;图8是根据本发明第四项实施例的一种利用EGR于分层式气体内燃机的设备的示意图;图9是根据本发明第五项实施例的一种利用EGR于分层式气体内燃机的设备的示意图;图10是根据本发明第六项实施例的一种利用EGR于分层式气体内燃机集成式设备的示意图;图11A到11F分别是一燃烧室的各截面,显示在一个运行循环的各不同阶段上用在一个分层式气体内燃机中的内部EGR。
图12和13是表示EGR控制系统操作的流程图,。
具体实施例方式
本发明提供了用于在其中直接喷射燃料的发动机。在本公开文本中,“分层进气燃烧”包括扩散燃烧和部分混合或分层进气的燃烧,但不包括均匀进气的燃烧。同样,“分层燃烧模式”是一种由分层替代的并包括扩散燃烧的非均匀燃料燃烧模式。
图1中,曲线20、22、24、26全都显示作为喷射压力的函数的柴油燃料喷射速率。这些曲线针对的是不同的各喷嘴直径,后者沿箭头28的方向不断增大。
图2显示针对柴油燃料发动机(曲线36)和天然气燃料发动机(曲线38)二者的作为吸入空气的氧含量之函数的为保持燃烧效率所需的喷射压力。
图3显示针对保持燃烧效率的柴油燃料发动机绘制的关于氧含量44和颗粒物浓度46与喷射孔眼尺寸关系曲线。
图1至图3图示了试图使用EGR来减退NOX形成在柴油燃料发动机之中时所出现的各种问题。图1显示,对于某一给定的喷射孔眼尺寸,压力增大相对小地增加输送到柴油燃料发动机燃烧室的燃料。因而增大喷射压力不能有效地用在这些发动机之中以抗衡燃烧室内氧气耗尽环境的效应。
如箭头28所示,增大的喷嘴孔眼尺寸可以用以增大喷射速率。不过,如图3之中所示,当柴油燃料由大喷嘴孔眼送入时,颗粒物排放增大了。
图4A到4D显示根据本发明配备EGR系统的一个发动机燃烧室50。活塞52在典型的4冲程循环期间在上死点与下死点之间往复运动。吸入阀54和吸入管线56连同排气阀58和排气管线60一起设置。也同样显示了喷射器62。如气体燃料68的状况设置吸入空气64和排出气体66。燃料68可以是天然气。
在图4A中,活塞52正在方向57上移动,在图4B中,活塞52正在方向61上移动。在图4C中,活塞正在方向65上移动,在图4D中,活塞52正在方向67上移动。
在活塞52在燃烧室50中即将从上死点向下移动时,一定量的吸入空气64经由吸入管线56通过开启的吸入阀54被吸进燃烧室,在活塞52的压缩冲程期间,如图4B中所示,在燃烧室50之内吸入空气被压缩。当活塞已经抵达或接近上死点并在做功冲程开始之前或在开始之时,一定量的气体燃料68经由喷射器62被喷入燃烧室50。
燃料68在燃烧室中燃起。这样作,燃料就释放出在做功冲程期间驱动活塞52的能量,燃料一般是通过确保燃烧室内的引燃环境而被引燃的。可以通过送入少量可自动引燃的燃料,诸如柴油,到燃烧室里面而促进引燃。一般比较容易自动引燃的燃料或将燃烧室内的条件提升到主燃料的自动引燃条件,或点燃主燃料。根据在做功冲程开始期间燃烧室中所涉及的条件和主燃料的自动引燃性质,也可以采用其它更多的可自动引燃的燃料。
也可以通过在燃烧室内设置炽热表面来促进引燃和燃烧。在燃烧室压力下,炽热表面使气体燃料引燃并沿着燃烧室传播火焰。
一旦完成做功冲程,排气阀58被开启而允许由于气体燃料68燃烧而生成的废气经由排气阀58被排除到排气管线60里去。
然后一定量的废气被抽出排气管线60并被沿路送至吸入阀56。随着原有吸入空气中存在的氧气数量在燃烧后被耗尽-氧气被用在燃烧过程之中-经由吸入管线被引入的新鲜空气中的氧气在这些废气被引入吸入管线之后受到稀释。如此,随后的吸入循环将把具有的氧浓度低于不是这种情况下的氧浓度的吸入空气吸进燃烧室。这种经过稀释的氧浓度由操作者监测以确保燃烧效率被保持或符合发动机所需的要求。
氧气浓度可以基于装设在吸入和/或排气系统中,直接或间接监测通过吸气、排气、EGR和燃料各系统的流动的各传感器的数据进行计算来确定。
当燃料68在高压下被直接喷射时,按照直接喷射燃料与吸入进气之间界面的性质在燃烧室内燃烧。可以通过调整诸如燃料68的喷射压力这样的参数而保持燃烧效率。增大喷射压力使得燃料68更快地被送入燃烧室并允许喷射的燃料量增大。可以通过如增大喷嘴62孔眼尺寸或改变孔眼个数来控制送入的燃料量。较高的压力也可以增大湍流混合,其可有助于在较低氧气环境中所需场合的燃烧。
较高的速度、负荷和EGR速度将要求较高的压力以保持效率。在较低速度、负荷和EGR下确实相反。
一般,采用一组适于高压直接喷射的参数来实施高压直接喷射。亦即,燃料是在某些条件下被送入燃烧室的并采用设计允许使用气体燃料的硬件,以提供适于高层次EGR的废气条件并提供HPDI的性能优点。以下表明这些范围参数 优先/实例范围1.喷射压力 12MPa至30MPa2.气体喷射速率 燃烧室条件下的声速3.气体喷射器喷嘴孔眼个数 5至104.气体喷射始点 -20至+5ATDC5.采用Pilot燃料场合下气体前10至5曲柄角度用于Pilot的喷射始点6.压缩比 16至207.气体喷射持续时间 5至30曲柄角度
8.常规气体温度30℃至80℃9.喷射角 火板(fire deck)下10至20度10.喷射孔眼尺寸 0.15至1mm其中ATDC是“上死点之后”,并且是上死点之后活塞曲柄角度数的量度图5至10是若干外部EGR系统的示意图,这些系统可以用于根据本发明的高压直接喷射发动机。
图5a是第一EGR系统15的示意图。在系统15中,来自发动机机组69中多个气缸的排气管线将废气排送到共用主管线70。一个EGR管线74由在排气管线70的EGR交合点71分出,并且连接到吸入管线80的交合点78处。EGR阀72位于EGR管线74之内。EGR阀72可以位于EGR交合点71附近或位于沿着EGR管线74的下游更加朝向交合点78处。EGR冷却器76设置在EGR交合点78之前EGR管线74之内。
引入管线80经由涡轮增压器82从吸入空气源运送空气,一般是大气空气。涡轮增压器82可以是一种固定或可变几何形状的涡轮增压器。变几何形状的涡轮增压器可以具有一变几何形状的压缩机。涡轮增压器82可以配有一废气门。
吸入空气冷却器82设置在涡轮增压器82下游和交合点78的上游的吸入管线80之内。吸入空气从交合点78被向下游送入多个燃烧室的吸入管线。EGR流动方向86,废气流动方向88和空气流动方向90也被示出。
图5B显示EGR系统15A,是图5A EGR系统的改型。系统15A具有附加的分流管线89,分流阀91和吸入阀93。
在图5A和5B的两项实施例中,出自多个燃烧室之中任何一个的废气被收集在排气管线70之中。排气管线70输送废气经过EGR交合处71并穿过涡轮增压器82的涡轮。阀72可调节在方向86上行经EGR管线74并进入吸入管线80的废气量。阀72是限定性的,足以保持经过涡轮增压器82的所需最小废气流量。
在送入吸入管线80之前,通过EGR管线74的废气量被输送经过EGR冷却器76。这使得废气密度增大并反过来使得更多的被循环的废气被送入吸入空气。
吸入空气,最初是一定量的新鲜空气,经由吸入管线80被引入。吸入空气由涡轮增压器82予以压缩并在吸入流动方向90上被输送通过冷却器84。在交合点78处,来自EGR管线74的废气与吸入气流相合并,由于废气已经通过冷却器76和吸入空气已经通过冷却器84,所以各自都增大了密度而有助于保持发动机效率。
在图5B的实施例中,进气冷却器旁路89在阀91被开启时允许吸入进气绕过进料冷却器84。这一点可以用以在低负荷运行期间操控燃烧。使混合的进气比不是这样情况下的更热,可促使燃烧室条件更加适于引燃和完全燃烧。在低负荷条件下,由冷却器76和84所提供的进气密度可以不需要了。
图6显示根据本发明第二实施例的EGR系统15B。在图6的实施例中,被循环的废气与吸入冷却器108上游的吸入空气混合在一起。
来自发动机机组92中多个燃烧室之中每一个的废气被输送到排气管线94里面。在EGR交合点96处,EGR管线98会合排气管线94。EGR阀100设置在EGR管线98之内。EGR冷却器102设置在EGR管线98之内EGR阀100的下游。EGR管线98在交合点106处连接于吸入管线104。吸入管线104经过吸入交合点106继续到吸入进气冷却器108。固定或变几何形状涡轮增压器110压缩吸入交合点106上游的吸入空气。在吸入进气冷却器108以上,吸入管线104将吸入空气引进前往发动机机组92每一燃烧室的吸入管线(未画出)。
EGR流动方向112、废气流动方向114和吸入空气流动方向116都被示出。
在图6的实施例中,出自发动机机组92中多个燃烧室之中任何一个的废气被引进到排气管线94里面。在交合点96处,一定量的废气被引导通过EGR阀100而进入EGR管线98。这些量的废气然后在到达交合点106之前当通过冷却102时被冷却。在交合点106处,经过循环的那些量的废气与已经由涡轮增压器110予以压缩的一定量的新鲜吸入空气相合并。经过重新循环的气体与新鲜空气的最终混合物在被引向发动机机组92和前往每一气缸的各吸入管线之前当它们通过冷却器108而被冷却。该设置优选地允许EGR从所述冷却器108旁路。如此,如果需要,可以除去冷却器102而减少系统的部件和花费。由于出自直接喷射式气体燃烧的EGR相对地说没有颗粒物,所以在冷却器108的上游不需要过滤器,这又进一步减少了系统的复杂性和花费。
图5和6的系统每个在EGR交合点71和96下游以及吸入交合处78和106上游各自装有一固定或变几何形状涡轮增压器。
图7显示根据本发明第三实施例的EGR系统15C,被循环的废气在一涡轮增压器压缩机上游与的新鲜空气混合在一起。
连接排气管线130以将废气从发动机机组131中的各燃烧室处带走。EGR管线132在EGR交合点134处离开排气管线130形成分支。EGR阀136和EGR冷却器138二者都设置在EGR管线132之内。EGR管线132在固定或变几何形状涡轮增压器142的上游的吸入交合点144处接合到吸入管线140里面。吸入进气冷却器146位于涡轮增压器142压缩机下游的吸入管线140之内。在吸入进气冷却器146的下游,连接吸入管线140以将吸入空气输送到设置在发动机机组131之内的每一燃烧室内。
EGR流动方向145,废气流动方向147和吸入空气流动方向148都被示出。
在图7的实施例中,来自设置在发动机机组131之中的多个燃烧室中任何一个的废气被引导通过排气管线130。阀136引导一定量的废气通过EGR管线132和冷却器138。被循环的废气然后在交合点144处被送回到吸入管线140里面。气体然后由涡轮增压器142予以压缩。由于受到涡轮增压器142的压缩吸入进气出现的过分加热可以在将吸入进气送入发动机机组131之前通过使吸入进气流过冷却器146来予以控制,吸入进气在发动机机组处通向多个燃烧室之中的任何一个。
由于EGR流过进气冷却器146,冷却器138可以不再必需,可能减小了此系统的复杂性和成本。其次,可以使用涡轮增压器142来同时压缩吸入空气和EGR,以提供了增大EGR浓度的手段。如果涡轮增压器是在交合点144的上游,就像前两项实施例的情况那样,则比起吸入空气业已经过压缩的情况来,相对来说更加难以强迫EGR进入经过压缩的吸入进气。根据所用燃料和产生的废气相对没有什么颗粒物,可能不用颗粒物过滤器,这就减小了复杂性和成本。
图8显示根据本发明另一实施例的EGR系统15D。在图8的实施例中,在固定或变几何形状涡轮增压器164的涡轮的下流168处,废气被收集起来用于循环。排气管线160从发动机机组162带走废气并通过涡轮增压器164,而后在交合点168处会合EGR管线166。EGR阀170设置在EGR管线166之内。EGR冷却器172设置在EGR管线166之内。
EGR管线166在涡轮增压器164的上游的吸入交合点176处会合吸入管线174。吸入进气冷却器177设置在发动机机组162上游的吸入管线174上。
EGR流动方向178、废气流动方向180和吸入空气流动方向182都被示出。
在图8的实施例中,废气被引导通过涡轮增压器164,之后,如果阀170是开启的,使废气经由EGR管线178作循环。这种设计可使所有从发动机机组排出的废气被用以驱动涡轮增压器164,导致废气能量的较大回收。此外,由于在穿过涡轮增压器164的涡轮时废气膨胀并因此冷却,所以对冷却器172和/或冷却器177的冷却要求较低。
图9显示根据本发明第五实施例的EGR系统15E。图9的实施例中包括在涡轮增压器198下游废气管线194之中的动力涡轮210。EGR管线192在EGR交合点190处连接于排气管线194。设置了EGR冷却器200,吸入交合点202和吸入管线204。EGR阀208调节经由EGR管线192的废气流量。
吸入进气冷却器206连接在吸入管线204之中涡轮增压器198压缩机部分的下游。另外,在此实施例中设置了动力涡轮210。
EGR流动方向212,废气流动方向214和吸入空气流动方向216都被示出。
动力涡轮210保证在交合点190处为EGR提取废气之后提供补充的涡轮能量。动力涡轮210引起交合点190处的背压。这有助于推动废气通过EGR管线192。一部动力涡轮也可设置在本发明的其它各项实施例中。比如,一部动力涡轮可以装入任一图5A至8之中的实施例。
图10显示根据本发明另一实施例的集成式EGR系统15F。系统15F综合了以上所述各项实施例的特点。图10的实施例中具有两个EGR交合交合点220、222,将EGR副管线224和EGR主管线226连接于排气管线228。排气管线228从发动机机组230中的各燃烧室带走废气。涡轮增压器232的涡轮部分设在EGR交合点220与222之间的排气管线228之中。设置了EGR冷却器232、EGR分路交合点234、吸入交合点236、238、240、241和吸入管线242。冷却器旁路管线244和涡轮增压器旁路管线246也被示出。贯穿整个系统还设置了副管线阀248、EGR阀250、EGR引导阀252和EGR冷却器阀254。另外,显示出了进气冷却器旁路阀256、冷却器阀258,以及涡轮增压器阀260、262。在吸入管线240之中设置了吸气冷却器264。在排气管线228中设置了动力涡轮266。EGR引导管线268也被示出。
图10的EGR系统可以设计得通过开启和关闭阀248、250、252、254、256、258、260和262的各种不同组合而按照多种EGR方案来运行。从而EGR系统的运行可予以调节以适合发动机230时而运行所处的各种条件。
阀248和250引导EGR从排气管线228进入EGR副管线224或主管线226。通过调节阀248和250,废气可以在作涡轮增压器232涡轮的上游、或是下游、或是上下游同时抽出用作EGR。可以通过关闭阀248和250二者而关断EGE。一个控制器可以对应于包括涡轮增压器232或动力涡轮266的各自需求在内的多种参数而控制阀248和250。
系统15F可以在以下任一处或所有处引入被循环的废气通过阀252和EGR引导管线268在吸入进气冷却器264上游;通过阀254、EGR主管线226和阀260在吸入进气冷却器264上游但在涡轮232压缩机下游;或通过阀254、EGR主管线226和阀262在涡轮增压器232压缩机上游。
一个控制器可控制阀252、254、260和262以在适于发动机230各种运行需求的位置引入被循环的废气。
另外,在任何情况下,发现出现在本实施例中的各种阀门,它们可以用于在同时通过任何数量的阀门产生变动的流动以根据发动机的需求提供一种如关于在图5至9之中展示的每一实施例所述的作为一个整体的EGR系统。其次,可以取消任何可替换的EGR或吸入管线,而减少性能上的选择,其中对于有争议的应用这样的选择可能在采纳上价值有限的或者比较困难。比如,在空间有限的应用场合,能够采纳较少的可供选择项。在静止地产生的动力的情况下可能不是这样。
其次,在发动机性能不断变化的情况下,亦即常见的瞬变状态,可能需要在EGR系统的结构方面提供更大的灵活性。在这种应用场合下,对各瞬变状态的反应时间可以按照EGR水平、燃烧效率和涡轮增压器控制之间的相互关系而通过多种多样的EGR结构进行控制。
注意,在图5至10中考虑的各EGR线路实施例中可能需要另外的部件。亦即,取决于应用场合和所用的各特定部件,遍及系统的各部件可能存在显著的压力和温度差别,而可能需要另外的泵送或文丘里装置以引导气流通过在所考虑的各实施例中出现的多个交合点。作为实例,在图6的实施例中,可能需要引入文丘里管或泵具以迫使被循环的废气从EGR管线98绕过交合点106而与在涡轮增压器110之前吸进吸入管线104的吸入空气相混合。亦即,在冷却器102上游的EGR管线98与交合点106之前涡轮增压器110之后的吸入管线104之间存在压差。同样,对图10中所打算的EGR系统的控制,在假如存在控制气流越过任何一个交合点220、222、234、236、238、240和241的需要时,在所必需的地方打算采用泵具或文丘里管。再次,作为实例,假如有需要分别在交合点220和220处使全部EGR的某一百分数在涡轮增压器232之前和涡轮增压器232之后从废气中被抽出,则如本领域中的普通人员所能了解的那样,这可能是一种需要引入系统的混合方法。亦即,根据设置在每一交合点之间的涡轮增压器232,在交合点222处废气的压力而可能会小于在交合处220处的压力,从而导致通过涡轮增压器而膨胀。因此,这样一种压差可能需要予以控制以便使各个气流相混。
在EGR通过任何一个显示在或出现在前述各实施例之中的冷却器或涡轮增压器被引入的场合下,一般不需要任何种类的过滤以控制EGR气流之内的颗粒物质,由于预期的气态燃料燃烧产生不出什么颗粒物质。如此,与同等的燃用柴油的情况相比,可为控制EGR提供较大的灵活性。如以上提及,在极少或没有颗粒物处理的情况下在压缩机以前和或是出现在吸入管线中的各主要冷却器或是出现在EGR管线中的EGR冷却器以前、涡轮之后的废气中提出EGR气流的性能会更好。其次,可以结合这些系统的燃烧以有助于使EGR系统适应于在燃烧室中所采用的燃烧方案。对于燃用柴油的压缩引燃发动机,由于在其吸入管线内的颗粒物几乎总是令人关注的,一般无法获得这种不带颗粒过滤器的灵活性。
在某些应用中,可以提供氧化催化剂以减少废气中可挥发化合物的浓度,从而避免在EGR和吸入系统之内聚积粘稠的沉淀。
在示于图5至10的各实施例中,冷却器76、102、138和172设置在EGR管线74之中,不过,此冷却器可以去掉,使得EGR气流的冷却可以是被引导经过冷却器108、146和177时的直接实现,或是当EGR气流被混以吸入空气时的间接实现。
图11A至11F显示本发明的另一个实施例。图11A显示燃烧室300带有的活塞302在方向304上运动。被示出的吸入阀306与吸入空气308一起通过吸入管线309。图11B显示活塞302在方向31a上运动,提供了气态燃料312和喷射器314。在图11C中,活塞302正在方向315上移动。废气316出现在燃烧室300之内。图11d显示活塞302在方向318上运动,如原来一样由排气阀320和排气管线322提供废气316。图11E显示当活塞302在方向324上运动时燃烧室300之内的废气。最后,图11F显示活塞302在方向326上运动。
图11显示了内部EGR的利用,其中直接喷射的气态燃料用以驱动活塞。图11A显示初始的吸入冲程,其中活塞302在方向304上运动,抽吸吸入空气308经过吸入阀306进入燃烧室300。
当吸入冲程完成后,就开始了压缩冲程,其中,参见图11b,在方向310上运动的活塞302压缩吸入空气。接近完成吸入冲程时,气态燃料312被射进燃烧300。这也可以出现在压缩冲程完成时或正当做功冲程开始时。气态燃烧312然后燃烧而在方向315上驱动活塞,见图11C。当气态燃料的燃烧完成后,废气316就留在燃烧室300之内。
在做功冲程之后,开始排气冲程,其中活塞302在方向318上运动而排气阀320被开启见图11D。废气316从燃烧室300被逐出而进入排气管线322。不过,在所述的实施例中,排气阀320在完成排气冲程以前被关闭,而活塞302仍然正行进在方向324上见图11E。如此,废气316被滞留在燃烧室300之中。
参见图11F,随后开始吸入冲程,其中活塞302在方向326上运动。不过,在此循环期间,吸入阀306在吸入冲程开始时关闭。再次参见图11A,随后继续循环,其中吸入阀306开启而允许吸入空气308进入燃烧室。一般,在吸入冲程期间,吸入阀关闭一段时间,这段时间可以根据在排气冲程期间滞留在燃烧室之中的废气数量予以确定。亦即,所需的进气是通过排气冲程结束时留在燃烧室中的初始废气的量加上为补足全部进气所需的补充空气的数量而予以确定的。
注意,只要阀门在吸入和排气两冲程期间关闭一段时间,则必要的各种内部EGR需求应当得到满足。这些阀不必像图11A至11F中所考查的实施例之中所示那样,在吸入冲程开始和排气冲程结束时予以开启或关闭。
大多数柴油发动机依赖于由吸入过程形成的进气运动(作为实例,涡流和挤进(squish))来促进燃烧过程期间柴油燃料与进气空气和燃料产物的混合。这样作的主要原因在于控制颗粒物质。由于在气态燃料发动机中颗粒物质并非值得关注的重大事项,所以在吸入过程中生成的进气运动的控制并非主要的关注所在。图11A至11F中概述的内部EGR过程会导致作为EGR比率的副产物的可变的空气运动。在采用高EGR比率时,较少的进气将经由吸入阀306被吸进气缸并将生成较少的进气运动。相应地,在采用较低的EGR比率时,生成较多的进气运动。在柴油燃料发动机中,当EGR比率被改变时,由于进气运动的改变颗粒物排放会受到不利影响,因此这方面需要予以控制。对于气态燃料发动机中相同范围,由于没有空气运动的要求,从而形成了更大的灵活性。一般,采用直接喷射式气态燃料燃烧的内部EGR可以容许比柴油燃料燃烧较高的EGR水平。由于采用内部EGR不大生成颗粒物质,所以关于燃烧室内可变的进气运动的关注是有限的。虽然可以使用颗粒过滤器以减少出自尾管的颗粒物,但燃烧期间生成的颗粒物必须予以控制以防止过早的发动机磨损、油污染(导致很高的换油次数)和很高的颗粒过滤器负荷(由于背压或过度强制性再生次数造成的效率损失)。
一般,各EGR操作方案在直接喷射气态燃料的情况下是很灵活的。由于可以根据吸入进气来调整喷射定时设置,所以这一变数可以利用来控制各种EGR水平。定时设置,在本文中,可包含这样的各种操作方案,即设置多次喷射并因此在每一循环期间设置喷射时间的多次开始。其次,按照各种发动机操作条件,喷射持续时间可以用以协助使燃烧效率适合于所用的各个EGR水平。一般,很短的喷射持续时间可保证较快的热释放以及随后以较低排气温度被引入任何一项上述实施例的排气管线。另外,喷射持续时间以及随之而来的热释放可被延长。这样可按需要形成较热的废气。喷射脉冲的比率形状(rate shaping)可导致同样数量燃料的持续时间上的多种变动。为了在打算使持续时间变化符合在一系列发动机操作条件下的EGR水平时的此种应用的目的,这种控制EGR的适配方案也包含在内。喷射持续时间适应需要的能力和定时设置提供了两个变量以使得某一给定的燃烧过程根据多种多样可能的进气条件而予以控制。这样可允许一个控制器适应于在整个多种多样发动机应用场合以及各种暂态状况下变化EGR的水平,以便控制燃烧效率。
对于上面讨论的各实施例来说,涉及用在气态燃料内燃机的EGR的各种控制不会由于各种颗粒物控制方案而复杂化。
作为实例,取决于发动机各操作参数和容许的排放,为天然气高压直接喷射所容许的EGR水平范围可达70%。亦即,EGR可以是高达70%的吸进气。
在此说明和所附权利要求中,“近上死点”一点是活塞处在当测量曲柄轴的转动在死点的30度以内的任何一点。
图12和13是绘制了所述逻辑的控制逻辑图,一部电子控制单元(“ECU”)可为可编程的,以遵循其来指导根据本发明的EGR系统。可以采用这种类型的一部ECU,其用于控制一种由于引燃进气而有益于帮助点燃气态燃料的气态燃料发动机。不过,热表面和其它引燃方案可以采纳用于控制各种EGR操作方案,如本领域的普通技术人员应该理解的。
一般,本发明中的ECU能够,在其它参数中,根据等于发动机所容许的最大排放的一域值来设定EGR水平。由于是高压直接喷射式气态燃料燃烧操作方案的情况,所述排放限度由以下因素支配CO浓度,诸烃类浓度,或者CO、烃类和颗粒物之中任何两种或所有三种的结合。
因此,这些排放水平可被监测并且EGR可被调节以确保EGR被使用以满足高达论及的各排放水平的发动机各项要求。
ECU,在图12和13中所考虑的各实施例中,利用一系列输入参数,包括节流状况、发动机速度、吸入集管的温度、EGR压力和流量、气体压力,以及估计的或直接测定的排放数据(ED)。这些输入数据用以,在其它数据中,确定以下各控制参数-所需燃料喷射速率(FQr)、燃料量(Ft)、引燃燃料量(Fp)和气体燃料量(Fg)。引燃燃料和气体燃料的压力、定时设置和喷射持续时间然后,连同发动机各参数,予以确定和利用,以确定排放限制(Emax)。Emax然后用以为各操作参数和燃料供给方案确定一个最大EGR水平(EGRmax)。这本身又用以设定EGR比率(EGRr)和进气流率(Cr)以及综合吸入流量(Ir=EGRmax+Cr),它们为确定用于随后各循环的操作参数的EGRr提供了基础。
另外,在图13中,图中EGR操作方案仅多出包括调节以示例方式描述在图10中的采用了EGR流动线路(EGRfr)的实施例的各种流率和量。
一般,燃料需求最初被设定以符合所需的速度和负荷需求。出自这种需求的获得的各操作参数,如图示,被用以设定引燃和主要燃料喷射定时设置、压力和持续时间,这些所需要的参数被用以形成实际的引燃和主要燃料喷射方案,后者本身又被ECU所用,考虑到发动机各操作参数,为一给定发动机各操作条件确定一个Emax,Emax是以下各因素之一或它们的某一组合CO浓度,烃类(HC)浓度,CO加HC浓度CO加颗粒物浓度,HC加颗粒物浓度,以及CO加HC加颗粒物浓度。Emax然后与发动机各操作参数一起用以确定EGRmax,即一个对给定操作条件的设定点。此设定点应近似地等于针对各操作参数的测定或估计的EGR比率,各操作参数被用于产生一估计或测定的Emax。然后设定点被用以控制在某一等于或小于设定点EGRmax的水平上的EGRr。所述设定点通过对在一系列操作条件下得出的某一给定Emax的检验台测试或查阅表格获得。这基于对于一个给定EGRr所收集的ED数据。虽然在给定各操作条件下的这种数据,即对于一个给定EGRr的ED,可以收集和编程到ECU里面,但它也可以在操作期间予以直接测定或估计以导出EGRmax。直接测定或估计的水平相关于由ECU考虑的排放。
同样,在针对一个给定系列的操作参数确定一个Emax之后,EGRr可以通过以下方式予以调节,即对比排放浓度于ED,并在此浓度超过Emax的地方,减小从一个预定的、初始的或先前的循环水平EGRr,直至所述水平能产生可接受的排放为止。再次,所关注的排放是CO浓度,烃类(HC)浓度,CO加HC浓度,CO加颗粒物浓度,
HC加颗粒物浓度,以及CO加HC加颗粒物浓度。
虽然ECU利用流率限制排放(基于CO和HC),它一般控制EGR的水平,由于CO和HC相对容易地进行控制,也可以装入后处理的系统以允许在燃烧室外的相对较高的CO和HC浓度。在这种具有CO和HC后处理的情况下,最大的EGR水平可以按照燃烧稳定性进行设定。已知的确保燃烧稳定的技术,诸如监测变异系数(COV)等,可以结合这种后处理的系统用以设定最大EGR水平。
EGRr对于操作方案可能具有一个开口环路部分而达到这样的程度即EGRr要用作一个操作参数来协助确定各种燃料供给方案。
参照图13,基于发动机各参数,例如以示例的方式,负荷要求、发动机速度和环境状况,来确定最初的EGRfr。当确定和选定流动路线,如上述那样,ECU将继续确定一项燃料供给方案和EGR,其中各补充步骤与图12之中所示实施例具有同样的所述逻辑。
如上面指出,ECU利用各操作参数来控制EGR水平,包括EGR的最高水平,EGR的水平基于或直接查阅查阅表格,贮存起来的检验台测试结果,利用多个发动机操作参数的任何一个的数字模型或直接测定。
EGRr以及因而Ir而需要按照Ft予以控制以符合如上面指出的操作人员各项要求。不过,如上面指出,限制以及因此有助于指定Er的各主要考虑各项之一为出自所述各燃烧过程的某些排放。对于直接喷射的天然气来说,取决于所用的各种后处理解决办法,CO和HC排放而会限制EGR水平或进入吸入管线的废气浓度。最大EGR水平可以,以示例的方式,通过或部分地通过查阅表格或贮存起来的检验台测试结果予以设定,这样使各种操作条件下关联某一给定EGR水平以增大在废气之内的可容许排放的浓度。这些查阅表格或检验台测试结果对于某一组给定的操作参数确定最大EGR水平并确保按照操作人员要求不超过在相应的检验基准数据中出现的最大值或被调节到符合那些排放水平而采用的EGR水平。
通过示例的方式,3800ppm的CO水平是在多种负荷条件下卡车运输应用的典型的CO排放上限。这仅是一项实例。事实上,排放限度也可以随各负荷条件的变化而变化,如在上述ECU的实施例中所指出。
同样,如上面指出,废气中的排放可以直接进行测定而最大EGR水平可以根据在测定的排放之前某一初始的EGR水平或由多个所用的和被平均的水平来进行设定。如果发现排放水平超过所确定的一个在最大排放浓度以上的范围,则最大EGR水平可以最终予以降低而使水平达到此排放范围以下的数值。然后为该发动机操作条件确定设定点。另外,按照燃烧期间产生的CO或HC排放来考虑排放,由于这些排放对于采用本发明时EGR水平的增高是比较敏感的。
同样的控制机理用于内部EGR,其中排气阀基于所需数量的废气被保留之后被关闭。不过此时ECU将改变排气阀和吸入阀的定时设置,其中的最大EGR水平是按照以上指出的排放考虑事项予以确定的。
一般,以上所考虑的各项实施例以外的另外的控制方案应当基于最大CO和/或HC排放水平和EGR比率限定因子来限制EGR水平。
虽然以上各实施例是在四冲程发动机的范围内进行讨论的,但此实施例可以适合于二冲程发动机。亦即,当按照每一循环之间保留在燃烧室内的附加的废气,二冲程各实施例会获得一个现有的EGR水平,但这一数量在确定所需EGR数量只需要由ECU予以考虑。除此之外,以上所述的各个方案是同等适用的。
虽然在此公开中一般讨论了天然气,但其它气态燃料具有同等地可适应于本发明的各种优点,其中这些燃料与柴油燃料相比时不易于产生颗粒物。作为实例,氢,以及诸如丙烷和甲烷这样的气态烃类,均在考虑之列并可适宜使用。另外,与燃料添加剂掺混在一起以改进引燃和燃烧特性的气态燃料(比如甲烷)可适于使用而在考虑之列,其中的气态燃料为通常所讨论的。
虽然本发明的具体原理、实施例和应用情况已予以图示和说明,但因该理解本发明并不局限于此,由于本领域的普通技术人员在不偏离本披露内容的范畴的情况下,特别是按照前述各项指导,可以做出各种改进。
权利要求
1.一种操作气态燃料内燃机的方法,所述方法包括a.从吸入管线将吸入进气引导进入所述内燃机的燃烧室,b.压缩所述燃烧室内的所述吸入进气,c.将一种气态燃料直接喷入所述燃烧室内的所述经过压缩的吸入进气,d.引燃所述气态燃料,e.燃烧所述气态燃料,f.将所述气态燃料燃烧期间产生的废气从所述燃烧室送入排气管线,g.将一定量的所述废气从所述排气管线经由一EGR管线引导到所述吸入管线,其中一种随后的吸入进气包括所述废气的所述量。
2.按照权利要求1所述的方法,其中所述气态燃料在一预定压力下被喷射,而且所述方法包括对应于所述废气的所述量而改变所述预定压力。
3.按照权利要求1所述的方法,包括喷射所述气态燃料达到一预定的持续时间并对应于所述废气的所述量而改变所述预定的持续时间。
4.按照权利要求1所述的方法,包括在一预定的定时设置下喷射所述气态燃料,并对应于所述废气的所述量而改变所述预定的定时设置。
5.按照权利要求1所述的方法,包括在-20与5度的ATDC之间开始喷射所述气态燃料。
6.按照权利要求1所述的方法,包括a.确定自所述燃烧室被引入的所述废气之内的一排放浓度,所述排放是以下各项之一的浓度i.一氧化碳,ii.烃类,iii.一氧化碳和烃类的结合,iv.一氧化碳和颗粒物的结合,v.烃类和颗粒物的结合,vi.一氧化碳、烃类和颗粒物的结合,b.确定一EGR比率设定点,在此处所述排放浓度超过最大排放浓度,c.调节所述废气的所述量以当所述排放浓度超过所述最大排放浓度时提供一低于所述设定点的EGR水平。
7.按照权利要求1所述的方法,包括在将所述量的所述气态燃料从所述吸入管线引入所述燃烧室之前冷却所述量的所述废气。
8.按照权利要求1所述的方法,包括在将所述量的所述气态燃料从所述吸入管线引入所述燃烧室之前压缩所述量的所述废气。
9.按照权利要求7和8中任何一项所述的方法,包括在所述量的所述废气被送入所述EGR管线之后将剩余数量的所述废气引导通过涡轮增压器的涡轮。
10.按照权利要求7和8中任何一项所述的方法,包括在所述量的所述废气被送入所述EGR管线之前将所述量的所述废气引导通过涡轮增压器的涡轮。
11.一种操作气态燃料内燃机的方法,所述方法包括a.将吸入进气引入所述内燃机的燃烧室。b.压缩所述燃烧室内的所述吸入进气,c.将一种气态燃料直接喷入所述燃烧室,d.引燃所述气态燃料,e.燃烧所述气态燃料,f.确定一所需的EGR质量,以及一所需的总进气质量,g.将一定量的由于燃烧所述气态燃料而生成的废气引出所述燃烧室,h.防止剩余的所述废气逸出所述燃烧室,所述剩余的数量依据所述需要的EGR质量予以确定,i.将一种随后的吸入进气引入所述燃烧室,所述随后的吸入进气具有基于所述需要的总进气质量的质量,小于所述需要的EGR质量。
12.一种操作内燃机的方法,所述方法包括a.将吸入进气从吸入管线引入所述内燃机的燃烧室,b.压缩所述吸入进气,c.将一种燃料引入所述燃烧室的所述吸入进气,d.引燃所述燃料,e.燃烧所述燃料,f.将由于燃烧所述燃料所产生的废气从所述燃烧室送入排气管线;g.确定所述废气之内的某一排放浓度,所述排放浓度是以下各项之一的浓度i.一氧化碳,ii.烃类,iii.一氧化碳和烃类的结合,iv.一氧化碳和颗粒物的结合,v.烃类和颗粒物的结合,vi.一氧化碳、烃类和颗粒物的结合,h.确定一EGR水平设定点,在此处所述排放浓度等于超过一最大排放浓度,i.确定预定量的所述废气以引导通过一EGR管线,所述量的所述废气形成一低于所述设定点的EGR水平。j.基于对于EGR管线的所述预定量的所述废气,引导一定量的所述废气到所述吸入管线,其中一种随后的吸入进气包括所述量的所述废气。
13.按照权利要求12所述的方法,其中基于一组发动机操作参数的查阅表格确定所述排放浓度。
14.按照权利要求12所述的方法,其中按照一个基于一组发动机操作参数的数字模型确定所述排放浓度。
15.按照权利要求12所述的方法,其中通过参考检验台测试确定所述排放浓度。
16.按照权利要求12所述的方法,其中直接测定所述排放浓度。
17.按照权利要求12所述的方法,包括将所述燃料直接喷入所述燃烧室。
18.按照权利要求17所述的方法,包括将所述燃料在一预定压力下喷射并对应于所述量的所述废气而改变所述预定压力。
19.按照权利要求17所述的方法,包括将所述燃料喷射达到一预定持续时间并对应于所述量的所述废气而改变所述预定持续时间。
20.按照权利要求17所述的方法,包括在一预定定时设置上喷射所述燃料并对应于所述量的所述废气而改变所述预定定时设置。
21.按照权利要求17所述的方法,包括当设置在所述内燃机内气缸中的活塞处在接近上死点位置时将所述燃料喷入所述燃烧室。
22.按照权利要求12或17中任何一项所述的方法,其中所述燃料是一种气态燃料。
23.按照权利要求1至22中任何一项所述的方法,其中所述燃料在一种分层的燃烧模式中燃烧。
24.按照权利要求1至23中任何一项所述的方法,其中所述燃料包括天然气。
25.一种用于气态燃料直接喷射式内燃机之中的废气循环装置,包括吸入管线、排气管线和用于将一定量的废气从所述排气管线送向所述吸入管线的EGR管线。
26.一种气态燃料内燃机,包括a.至少一个带有一活塞的气缸,所述气缸和所述活塞部分地形成一燃烧室,当所述内燃机运行时所述活塞在所述气缸的上死点与下死点之间往复移动,b.一控制器,能够处理运行数据以建立一发动机的设置,c.一气态燃料喷射器,能够将一种气态燃料直接喷入所述燃烧室,所述喷射器由所述控制器操纵,d.一吸入管线,用于将一种进气经由一吸入阀引入所述燃烧室,e.一排气管线,用于将由于燃烧气态燃料而得的废气经由一排气阀从所述燃烧室引出,以及f.一EGR管线,通过它,所述控制器能够向吸入管线从所述排气管线提供一定量的所述废气。
27.一种气态燃料内燃机,包括a.至少一个带有一活塞的气缸,所述气缸和所述活塞部分地形成一燃烧室,当所述内燃机正在运行时所述活塞在所述气缸的上死点与下死点之间往复移动,b.一控制器,能够处理运行数据以建立一发动机的设置,c.一气态燃料喷射器,能够将一种气态燃料直接喷入所述燃烧室,所述喷射器由所述控制器操纵,d.一吸入管线,用于将一种进气经由一吸入阀引入所述燃烧室,e.一排气管线,用于将由于燃烧气态燃料而得的废气经由一排气阀从所述燃烧室引出,以及f.一EGR管线,通过它,所述控制器能够向吸入管线从所述排气管线提供一定量的所述废气。
28.一种内燃机,包括a.至少一个带有一活塞的气缸,所述气缸和所述活塞部分地形成一燃烧室,当所述内燃机正在运行时所述活塞在所述气缸的上死点与下死点之间往复移动,b.一控制器,能够处理动作数据以建立一发动机的设置,c.燃料喷射器,能够将一种燃料直接喷入所述燃烧室,所述喷射器限定出直径在0.6与1.0mm之间的各喷射器喷嘴孔眼,所述喷射器由所述控制器操纵,d.一吸入管线,用于将一种进气经由一吸入阀引入所述燃烧室,e.一排气管线,用于将由于燃烧燃料而得的废气经由一排气阀从所述燃烧室引出,以及f.一EGR管线,通过它,所述控制器能够从所述排气管线向吸入管线提供一定量的所述废气。
29.一种操作内燃机的方法,所述方法包括a.将吸入进气从吸入管线引入所述内燃机的燃烧室,b.压缩所述燃烧室内的所述吸入进气,c.在一参数范围内将一种燃料直接喷入到所述燃烧室内的所述经过压缩的吸入进气中,所述范围至少为以下之一i.12MPa与30MPa之间的压力,以及ii.在一火板以下的10与20度之间的角度,所述火板部分地限定所述燃烧室。d.引燃所述燃料,e.燃烧所述燃料,f.将燃烧所述燃料期间产生的废气从所述燃烧室送入排气管线,g.将一定量的所述废气从所述排气管线经由一EGR管线送向所述吸入管线,其中一种随后的吸入进气包括所述量的所述废气。
30.一种操作气态燃料内燃机的方法,所述方法包括a.将吸入进气从吸入管线送入所述内燃机的燃烧室,b.压缩所述燃烧室内的所述吸入进气,c.将一种气态燃料引入在所述燃烧室内的所述经过压缩吸入进气,d.以分层燃烧模式燃烧所述气态燃料,e.将燃烧所述气态燃料期间产生的废气从所述燃烧室送入排气管线,f.将一定量的所述废气从所述排气管线经由一EGR管线引入到所述吸入管线,其中一种随后的吸入进气包括所述量的所述废气。
31.按照权利要求30所述的一种方法,包括促进所述气态燃料的扩散燃烧。
全文摘要
本发明公开一种操作内燃机的方法,采用废气循环(EGR)结合直接喷射在发动机之内以分层燃烧模式被燃烧的气态燃料。公开了一种带有EGR的发动机,包括一个喷射器,适于在一个给定压力范围、在一个给定角度范围及一喷嘴孔眼尺寸范围之内将高压燃料供入一燃烧室以帮助提供EGR容许值,以及因此减少排放。
文档编号F02M25/07GK1711411SQ200380103295
公开日2005年12月21日 申请日期2003年10月2日 优先权日2002年10月2日
发明者菲利普·G·希尔, 马克·E·邓恩, 桑迪普·芒什 申请人:韦斯特波特研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1