颗粒过滤器的再生的制作方法

文档序号:5228897阅读:178来源:国知局
专利名称:颗粒过滤器的再生的制作方法
技术领域
本发明涉及一种发动机废气净化装置,更具体而言,涉及对过滤器的再生技术的改进,该过滤器捕集发动机废气中的颗粒物质(PM)。
背景技术
日本专利局于1994年公布的特开平6-58137公开了一种废气净化装置,该装置用于净化从发动机排出的颗粒物质。所述装置包括发动机废气系统内的过滤器,并以固定的时间间隔通过氧化或燃烧捕集的颗粒物质来再生该过滤器。

发明内容
为了燃烧被过滤器收集的颗粒物质,过滤器的温度可以借助发动机控制,通过升高废气温度而提高。特别的,废气温度可以通过延迟燃料喷射定时或者实行燃料的后喷射来提高。但是,由于发动机空载时燃料的经济性较差,所以过滤器的再生是被禁止的。这是因为当发动机空载时,发动机温度低,所以需要废气温度大幅度上升。因此,如果发动机持续空载运行很长时间,那么太多的颗粒物质会聚积在过滤器内。
因此本发明的目的是提供一种再生装置,该装置即使在发动机空载运行期间也能适当的再生过滤器。
为了达到上述目的,本发明提供了一种过滤器的再生装置,该过滤器捕集发动机废气中的颗粒物质,该再生装置包括一个传感器,该传感器探测包含发动机负载的发动机运行点,该再生装置还包括一个控制器,该控制器包含一张曲线图,该曲线图确定一个与发动机运行点相关的低负载区域。该控制器被编程为基于探测的发动机运行点计算过滤器中颗粒物质的沉积量,并在颗粒物质的沉积量高于第一参考量时参照曲线图确定探测的发动机运行点是否处于低负载区域。该控制器更进一步被编程为当探测的发动机运行点不处于低负载区域时立即通过升高废气温度启动第一过滤器再生控制,并且当探测的发动机运行点处于低负载区域时,于颗粒物质的沉积量超过第二参考量后,通过升高废气温度启动第二过滤器再生控制。此处,第二参考量大于第一参考量。
本发明还提供一种再生过滤器的再生方法,该过滤器捕集发动机废气中的颗粒物质。该方法包括存储曲线图的步骤,该曲线图定义一个与发动机运行点相关的低负载区域;探测发动机运行点的步骤,该发动机运行点包括发动机负载,于探测的发动机运行点计算过滤器中颗粒物质沉积量的步骤;当颗粒物质的沉积量大于第一参考量时通过参照曲线图确定探测的发动机运行点是否处于低负载区域。该方法还包括当探测的发动机运行点不处于低负载区域时立即升高废气温度的步骤,和当探测的发动机运行点处于低负载区域时,于颗粒物质的沉积量超过第二参考量后升高废气温度的步骤。
本发明的细节以及其它特征和优点在说明书的余下部分阐明,并在附图中示出。


图1是应用了本发明的废气净化装置的发动机系统示意图。
图2是由本发明的控制器执行的过滤器再生控制流程图。
图3是用于过滤器再生控制的计算PM沉积量的曲线图。
图4是确定发动机运行范围的图。
图5是描述沉积量参考值和沉积量瞬时变化的曲线图。
具体实施例方式
图1示出了应用本发明的发动机系统的一个实施例。发动机系统1包括发动机1(特别是柴油机)、进气通道2和排气通道3。燃料喷射器4和燃料喷射泵5被提供给发动机1。空气净化器6、空气流量计7、废气涡轮增压器8的压缩机9、中间冷却器10和节流阀11从进气通道2内的上游侧依次排列。废气涡轮增压器8的涡轮12和过滤器13(特别是柴油机颗粒过滤器)从排气通道3内的上游侧依次排列。过滤器13收集颗粒物质(PM)。废气净化装置安装有过滤器13和探测过滤器13的入口温度的温度传感器14、探测过滤器13的出口温度的温度传感器15、探测通过过滤器13的压差ΔP的压力传感器16、控制器22、探测发动机负载的发动机负载探测传感器、和探测发动机1的转速的发动机速度传感器。该发动机负载探测传感器可以是一个加速器踏板行程传感器25,该传感器25探测作为发动机负载Q的加速器踏板(未示出)的行程量,该发动机速度传感器可以是一个曲柄角传感器21,该传感器21探测发动机1的转速和曲柄位置。
发动机系统还包括一个废气再循环(EGR)通道17,该通道17连结着进气通道2和排气通道3。废气再循环阀18和EGR冷却器19放置在EGR通道17中间。废气涡轮增压器8安装有一个可变喷嘴20,该喷嘴20可以增加/降低流入涡轮12的废气的流率。
控制器22包括一个安装有执行程序的CPU的微处理器、一个存储程序和数据的只读存储器(ROM)、一个临时存储CPU的运行结果和所需数据的随机存取存储器(RAM)、一个测量时间的计时器和一个输入/输出接口(I/O接口)。
控制器22基于来自各传感器的信号控制燃料喷射器4的燃料喷射定时、燃料喷射器4的燃料喷射量、节流阀的开度、EGR量和可变喷嘴的开度。控制器22还装有一个沉积量计算装置,该沉积量计算装置采取计算过滤器13的颗粒物质沉积量的一组指令代码的形式,和一个再生控制装置,该再生控制装置采取通过控制发动机来提高废气温度的一组指令代码的形式。
图2示出了由控制器22执行的过滤器再生控制例程。该控制例程作为由该控制器22执行的程序来完成。该控制例程被反复执行。
在步骤S1中,根据发动机负载Q和发动机速度Ne计算颗粒物质沉积量PM1。控制器22可以从发动机负载传感器读取发动机负载Q。否则,响应来自加速器踏板行程传感器25的信号,由控制器22确定的燃料喷射量命令值可以被读取为发动机负载Q。发动机速度Ne从曲柄角传感器21读出。
计算颗粒物质沉积量PM1的各种方法是公知的。例如,当前的颗粒物质沉积量PM1通过求颗粒物质排出速度f(Q,Ne)的读取值随时间的积分得出,如下PM1=PM1(i)=PM(i-1)+f(Q,Ne)。
此处,PM(i-1)是在步骤S1的执行的刚刚在前的定时计算和存储的颗粒物质沉积量。PM1(i)是当前颗粒物质量。颗粒物质排出率f(Q,Ne)是在一预定的时间间隔Δt1内从发动机排出的PM量,步骤S1以该时间间隔Δt1重复。通过查看图3的曲线图,以发动机负载Q和发动机速度Ne为基础确定颗粒物质排出率f(Q,Ne)。该曲线图确定了与发动机负载Q和发动机速度Ne相关的颗粒物质排出率f(Q,Ne),并由试验方法产生。例如,该曲线图存储在ROM中。当控制例程启动时,把PM(i-1)设置作一个初始值PM0。当过滤器被完全再生后控制例程启动时(步骤S11后),初始值PM0为零。当过滤器被不完全再生后控制例程启动时(步骤S10后),初始值PM0不为零。例如步骤S10后初始值PM0可被设为与此后描述的PMe接近的一个值。
在步骤S2中,确定颗粒沉积量PM1是否高于第一参考量PMn。当颗粒物质沉积量PM1低于第一参考量PMn时(PM1<PMn),不必执行过滤器再生,因此例程返回到步骤S1。当颗粒物质沉积量PM1高于第一参考量PMn时(当PM1≥PMn时),程序进入步骤S3。
在步骤S3中,确定发动机的平均运行点是否处于低负载区域。为了确保控制的稳定性,计算在一预定时间(例如过去的5分钟)内的运行点的平均值。在过去的5分钟内探测的运行点(Q,Ne)可存储在RAM中用于平均值的计算。确定平均运行点(aveQ,aveNe)处于图4曲线图中的哪一点。存储在ROM中的图4的曲线图确定发动机运行的低负载区域(图4的区域“A”)和高负载区域。低负载区域包括一个或多个用于空载运行的运行点。低负载区域的所有发动机运行点可以是空载运行期间的发动机运行点。在步骤S3的运行范围确定中,当发动机运行点处于低负载运行区域时,程序进入步骤S4。
在步骤S4中,通过类似于步骤S1的方法,在低负载区域中的颗粒沉积量PM2通过求颗粒物质排出率f(Q,Ne)随时间的积分计算出来。
随后,在步骤S5中,将PM2加到PM1的结果重新设置为作PM1。也就是说,PM1被更新了。
然后,在步骤S6中,再确定发动机运行点是否处于低负载区域(图4的区域“A”)。发动机运行点是当前瞬时运行点,而不是平均值。当步骤S6的确定是肯定时,例程进入步骤S7。当步骤S6的确定是否定时,用于高负载的再生被执行(步骤S11)。因此,基于发动机的瞬时运行状态,如果需要的话,可迅速选择用于高负载的再生。
在步骤S7中,当前的颗粒物质沉积量PM1与第二参考量PMe比较。如图5所示,第二参考量PMe大于第一参考量PMn,并被设置为小于过滤器13所允许的最大沉积量Pmax的一个值。例如,第一参考量PMn为Pmax的70%,第二参考量PMe为Pmax的90%。所允许的最大沉积量Pmax可以是这样一个值,高于该值则由于过滤器13的堵塞导致发动机故障出现,也可以是这样一个值,高于该值颗粒物质通过过滤器13被排出到外部。当PM1<PMe时,例程返回到步骤S4,并且只要发动机运行点处于低负载区域,PM2的计算和PM1的更新被重复进行。
当PM1≥PMe时,过滤器13的一个平衡点(BPT)再生在步骤S8-S10中进行(第二过滤器再生控制)。此处,通过燃烧从过滤器13移除的颗粒物质量和新流入过滤器13的颗粒物质量是通过与升高废气温度的控制平行地执行减少来自发动机1的颗粒物质的产生量的控制来平衡的。因此,再生是这样完成的,即在过滤器13中的颗粒物质沉积量保持在一个几乎等于第二参考量PMe的常值。应当指出,在低负载区域中很难完全燃烧过滤器13中的颗粒物质。因此,由于过滤器再生导致的燃料消耗的损害被抑制,因为过滤器13中的颗粒物质没有被完全燃烧。步骤S8-S10的第二过滤器再生控制可以通过把发动机空载运行区域设置到低负载区域而仅仅在发动机空载运行的发动机运行点执行。
在步骤S8中,废气温度控制被实施,从而升高废气温度到一个约400℃的目标废气温度。升高废气温度的各种技术是公知的。例如,图1所示的发动机系统中,废气温度可以通过控制由节流阀11决定的进入空气的量、延迟主燃料喷射定时、提高燃料后喷射的量或延迟后喷射定时来提高。燃料的后喷射指的是主燃料喷射后进行的附加的燃料喷射。由此,为过滤器的再生(为颗粒物质的燃烧)而达到约400℃的目标废气温度。另外,通过增加辅助装置例如空调压缩机或交流发电机的负载,发动机速度可以通过一个怠速提升(idle-up)装置被提高,因此废气温度可以被升高。控制器22完成燃料喷射定时控制、燃料喷射量控制、进入空气量控制和辅助装置负载控制中的至少一种,从而升高废气温度。更进一步地,在步骤S8中,控制器22存储压差ΔP,该压差ΔP通过RAM中的压力传感器16探测。
在步骤S9中,执行发动机控制,以抑制从发动机1排出的颗粒物质的产生量。为了使过滤器13中的颗粒物质沉积量不会由于废气温度的升高而增加,控制器22除了控制废气温度外还控制流入过滤器13中的颗粒物质的量。流入过滤器13中的颗粒物质的量可以通过降低从发动机1排出的颗粒物质的产生量来减少。
作为抑制颗粒物质产生量的方法,现有技术中已知的任意一种方法都可以应用,例如通过减小EGR阀18的开度来降低EGR量、减少燃料喷射器4的先导喷射量、扩大先导喷射时间间隔和通过一个涡流控制阀加强涡流。
在下面的步骤S10中,确定压差ΔP是否增加。控制器22通过将压力传感器16探测的压差ΔP与在步骤S8中存储的压差比较,从而确定压差ΔP是否增加。当压差ΔP增加时,控制器22重复步骤S9和S10的操作,直到压差ΔP的增加停止。压差ΔP的增加表明从过滤器13移除的颗粒物质量低于流入过滤器13的颗粒物质量。当压差ΔP不增加时,例程终止。
另一方面,在步骤S3或步骤S6的确定中,当确定发动机运行点不处于低负载区域时,处于高负载区域的再生子例程在步骤S11中执行(第一过滤器再生控制)。在这个子例程中,当发动机运行点处于图4的图中相对较低负载区域“B”时,上面提及的BPT再生被执行,以便抑制燃料消耗性能的损害。当发动机运行点处于区域“C”时(该区域“C”负载高且废气热量也高),完全再生被执行直到再也没有沉积的颗粒物质,因为为了完全再生过滤器所需的额外燃料量是小的。当发动机运行点处于一个自然再生区域“D”时,不必升高废气温度,并且不需要过滤器再生控制即可为再生获得足够高的废气温度。
根据本发明,通过设置参考值(其中用于过滤器再生的发动机控制根据发动机运行状态在两个步骤中于所述参考值处启动),在降低废气温度升高次数的同时,废气颗粒物质的沉积可以得到抑制,而废气温度升高趋向于在低负载运行过程中削弱燃料消耗性能。
日本专利申请P2003-55658(2003年3月3日提交)的全部内容引入本文作为参考。
尽管本发明通过参考本发明的一个特定实施方式进行了描述,但本发明不限于上面描述的实施方式。
本领域技术人员根据上述教导可想到对上面描述的实施方式的改进和变化。本发明的范围参考下面的权利要求确定。
权利要求
1.一种用于过滤器(13)的再生装置,该过滤器捕集发动机(1)的废气中的颗粒物质,该装置包括传感器(25),该传感器探测包含发动机负载的发动机运行点,控制器(22),该控制器包括一张曲线图,该曲线图限定与发动机运行点相关的低负载区域(A),该控制器被编程为用于基于探测的发动机运行点计算过滤器(13)中颗粒物质的沉积量,当颗粒物质的沉积量高于第一参考量(PMn)时,参照曲线图确定探测的发动机运行点是否处于低负载区域,当探测的发动机运行点不处于低负载区域时,通过升高废气温度立即启动第一过滤器再生控制,和当探测的发动机运行点处于低负载区域时,在颗粒物质的沉积量超过第二参考量(PMe)后,通过升高废气温度启动第二过滤器再生控制,其中,第二参考量大于第一参考量。
2.根据权利要求1的再生装置,其中,低负载区域(A)包括一个或多个空载运行期间的发动机运行点。
3.根据权利要求1的再生装置,其中,低负载区域的所有发动机运行点是空载运行期间的发动机运行点。
4.根据权利要求1的再生装置,其中,控制器被编程为基于探测的发动机运行点计算过滤器中颗粒物质的沉积量。
5.根据权利要求1的再生装置,其中,第二过滤器再生控制是这样一种控制,该控制平衡通过燃烧从过滤器(13)除去的颗粒物质的量和新流入过滤器(13)中的颗粒物质的量。
6.根据权利要求1至5中任意一个的再生装置,其中,第一过滤器再生控制是这样一种控制,该控制平衡通过燃烧从过滤器(13)除去的颗粒物质的量和新流入过滤器(13)中的颗粒物质的量。
7.根据权利要求1至5中任意一个的再生装置,其中,第一过滤器再生控制是一种完全燃烧颗粒物质的控制。
8.根据权利要求1至5中任意一个的再生装置,其中,控制器(22)被编程为参照曲线图确定在一预定时间周期内的平均运行点是否处于低负载区域(A)。
9.根据权利要求1至5中任意一个的再生装置,其中,控制器进一步被编程为通过参照曲线图,确定在第二过滤器再生控制期间发动机运行点是否处于低负载区域(A),并且当第二过滤器再生控制期间的发动机运行点不处于低负载区域时,立即启动第一过滤器再生控制。
10.根据权利要求1至5中任意一个的再生装置,其中,控制器(22)被编程为执行燃料喷射定时控制、燃料喷射量控制、进入空气量控制和辅助装置负载控制中的至少一种控制,以便升高废气温度。
11.根据权利要求1至5中任意一个的再生装置,还包括探测发动机(1)转速的传感器(21),其中,发动机运行点是一组发动机负载和发动机转速。
12.根据权利要求1至5中任意一个的再生装置,还包括该探测发动机转速的传感器(21),其中,控制器(22)包括一张给出了基于发动机负载和发动机(1)转速的颗粒物质排出率的曲线图,以及该控制器被编程为通过求该排出率随时间的积分来计算过滤器(13)中颗粒物质的沉积量。
13.一种用于过滤器(13)的再生装置,该过滤器捕集发动机(1)的废气中的颗粒物质,该装置包括用于存储一张曲线图的装置,该曲线图限定与发动机运行点相关的低负载区域(A),用于探测包含发动机负载的发动机运行点的装置,用于基于探测的发动机运行点计算过滤器(13)中颗粒物质沉积量的装置,用于当颗粒物质的沉积量高于第一参考量(PMn)时,参照曲线图确定探测的发动机运行点是否处于低负载区域的装置,用于当探测的发动机运行点不处于低负载区域时立即升高废气温度的装置,和用于当探测的发动机运行点处于低负载区域时,在颗粒物质沉积量超过第二参考量(PMe)后升高废气温度的装置,其中,第二参考量大于第一参考量。
14.一种用于过滤器(13)的再生方法,该过滤器捕集发动机(1)的废气中的颗粒物质,该方法包括存储一张曲线图,该曲线图限定与发动机运行点相关的低负载区域(A),探测包含发动机负载的发动机运行点,基于探测的发动机运行点计算过滤器(13)中颗粒物质沉积量,当颗粒物质的沉积量高于第一参考量(PMn)时,参照曲线图确定探测的发动机运行点是否处于低负载区域,当探测的发动机运行点不处于低负载区域时立即升高废气温度,和当探测的发动机运行点处于低负载区域时,在颗粒物质沉积量超过第二参考量(PMe)后升高废气温度,其中,第二参考量大于第一参考量。
全文摘要
本发明公开了一种过滤器(13)的再生装置,该过滤器捕集发动机(1)的废气中的颗粒物质。该装置包括传感器(25),该传感器探测包含发动机负载的发动机运行点,和控制器(22),该控制器存储一张限定与发动机运行点相关的低负载区域(A)的曲线图。当颗粒物质的沉积量高于第一参考量(PMn)时,控制器(22)参照曲线图确定探测的发动机运行点是否处于低负载区域。更进一步地,当探测的发动机运行点不处于低负载区域时,控制器(22)通过升高废气温度立即启动第一过滤器再生控制,当探测的发动机运行点处于低负载区域时,在颗粒物质沉积量超过第二参考量(PMe)后升高废气温度。
文档编号F02M25/07GK1570358SQ200410064088
公开日2005年1月26日 申请日期2004年3月3日 优先权日2003年3月3日
发明者大竹真, 川岛纯一, 井上尊雄, 近藤光德, 古贺俊雅, 筒本直哉 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1