燃气轮机燃料再循环系统和氮气清洗系统的方法和装置的制作方法

文档序号:5245919阅读:204来源:国知局
专利名称:燃气轮机燃料再循环系统和氮气清洗系统的方法和装置的制作方法
技术领域
本发明大体而言涉及旋转机械,更具体地说,涉及燃料再循环系统和氮气清洗系统。
背景技术
在一些已知的双燃料燃气轮机中,通过燃烧气体燃料或者液体燃料来驱动涡轮,其中后一种燃料通常是馏分油。这些燃气轮机带有可用于液体燃料和气体燃料两者的燃料供给系统。通常燃气轮机并不同时燃烧气体和液体燃料。相反地,当燃气轮机燃烧液体燃料时,停止供应气体燃料。或者,当燃气轮机燃烧气体燃料时,停止供应液体燃料。
在一些已知的工业用燃气轮机中,一个燃烧系统可以带有一系列的燃烧室,其中每个燃烧室都带有至少一个液体燃料喷嘴和至少一个气体燃料喷嘴。在这种燃烧室布局中,燃烧在燃烧室内处于喷嘴的略微下游处开始。来自压缩机(通常用于向燃烧系统输送压缩空气)的空气环绕着燃烧室并流经燃烧室以提供燃烧所需的氧气。
一些已知的具有双燃料功能(以气体燃料为主并且液体燃料作为备用)的现有燃气轮机容易受到积碳的影响,所述积碳以含碳沉淀微粒的形式在液体燃料系统中形成。通常当液体燃料在缺氧条件下被加热到177℃(350)的温度时,含碳微粒的沉淀以及随后的沉积开始。在有氧条件下,该过程加速并且含碳微粒的沉淀在大约93℃(200)时就开始。由于含碳微粒的淤积,液体燃料流过的通道的横截面被显著减小。如果含碳微粒的沉淀持续着没有减弱,这些微粒就可能阻塞所述液体燃料通道。通常,燃气轮机中温度较高的部分是与燃烧系统有关的部分,在许多已知的燃气轮机系统中所述燃烧系统位于涡轮舱中。因此,含碳微粒的形成很有可能会因涡轮舱热量的作用而被助长,而处于涡轮舱上游的液体燃料系统中却不会形成含碳微粒。
在燃烧气体燃料之前,通常会借助于与所述液体燃料系统流体连接的清洗空气系统来清洗液体燃料喷嘴的管道。但是,静态的液体燃料可能会保留在位于涡轮舱中的一部分系统中,以便快速地进行燃料切换。在液体燃料系统停止使用期间,所述清洗空气系统在与液体燃料系统的流体连通处具有较高的压力,因此空气很有可能会渗入到一部分液体燃料系统中。这种情形可能增加了燃料和空气之间发生相互作用的可能性,从而有可能助长含碳微粒的形成。
一般而言,当液体燃料系统处于停止使用状态超过一段预定时间限制后,涡轮舱内静态的液体燃料开始经历含碳微粒沉淀的可能性会增加。清洗空气渗入液体燃料系统促进空气与液体燃料的接触,并且,随着与维持燃料系统停止工作状态相关的时间的增加和渗入空气数量的增加,扩充的空气-燃料相互作用的可能性会增加。如前所述,在有氧情况下在相当低的温度下就会促进液体燃料含碳微粒的沉淀。考虑到一些已知涡轮舱的温度已经测量超过了157℃(315),如果渗入的清洗空气仍然同静态的液体燃料接触,就更有可能发生含碳微粒的沉淀。一旦含碳微粒形成,它们就有可能阻塞液体燃料的内部流动通道,包括那些位于燃烧燃料喷嘴中的通道。

发明内容
一方面,提供了一种运行燃料系统的方法。所述方法包括使用自重泄油过程来从至少一部分燃料系统中排出燃料。该方法还包括把氮气引入到至少一部分燃料系统中,以便从至少一部分燃料系统中去除空气和残留的燃料,从而减缓含碳沉淀微粒的形成。该方法进一步包括在燃料再充满过程中,使用排气过程从至少一部分燃料系统中除掉空气和氮气,使得至少一部分燃料系统基本上被燃料重新充满并且基本上除清了其中的空气和氮气。该方法还包括使用排气过程从至少一部分再充满的燃料系统中除掉空气。该方法进一步包括在一部分燃料系统中使燃料再循环,以便从所述一部分燃料系统中带走热量,并且有利于工作燃料模式的切换。
另一方面,提供了一种用于双燃料燃气轮机中的液体燃料系统的氮气清洗子系统。该氮气清洗子系统与所述液体燃料系统和燃料再循环子系统流体连通。所述燃料系统带有至少一个腔。该氮气清洗子系统包括连接到与所述腔流体连通的至少一条管道上的氮气源。氮气从所述氮气源流经该管道并流入到腔中,以便从该腔中去除液体燃料和空气,从而减缓了含碳沉淀微粒的形成。
另一方面,提供了一种用于双燃料燃气轮机中的液体燃料系统的燃料再循环子系统。该燃料再循环子系统与所述液体燃料系统和氮气清洗子系统流体连通。所述燃料系统带有至少一个腔、一个液体燃料源和一个空气源。所述液体燃料源和空气源都连接到与所述腔流体连通的管道上。该氮气清洗子系统带有连接到与所述腔流体连通的管道上的氮气源。该燃料再循环子系统包括至少一条与所述腔流体连通的管道和至少一个阀门,所述至少一个阀门控制通过所述至少一条管道分别在液体燃料源、氮气源和空气源到所述腔之间的液体燃料、氮气和空气的流量。所述至少一个阀门具有一个打开状态。来自所述液体燃料源、氮气源和空气源的液体燃料、氮气和空气通过所述至少一条管道分别流入到该腔中。这样便于从至少一部分燃料系统中带走热量。也便于从所述腔中去除液体燃料和空气,从而减缓含碳沉淀微粒的形成。


图1是包括了燃料再循环子系统和氮气清洗子系统的液体燃料系统的一个典型实施例的示意图。
具体实施例方式
图1是带有燃料再循环子系统200和氮气清洗子系统300的液体燃料系统100的一个典型实施例的示意图。液体燃料系统100带有至少一个腔,所述腔包括管道系统、集管和容器,这些管道系统、集管和容器进一步包括液体燃料发送子系统102,燃料泵吸入集管104,至少一个液体燃料过滤器105,燃料泵106,燃料泵排出集管108,燃料泵排放减压阀集管110,燃料泵排放减压阀112,燃料泵排出单向阀114,燃料泵旁通集管116,旁通集管手动闭塞阀118,燃料泵旁通集管单向阀120,液体燃料流量控制阀122,控制阀再循环集管124,液体燃料截流阀126,截流阀再循环集管128,截流阀再循环管路单向阀130,公共再循环集管132,分流器吸入集管134,包括至少一个非驱动齿轮泵137的分流器136,至少一个分流器排出集管138(为清楚起见只示出一个),至少一个燃烧室供应集管140(为清楚起见只示出一个),至少一个燃烧室流量文氏管142(为清楚起见只示出一个),至少一个燃烧室液体燃料喷嘴供应歧管144(为清楚起见只示出一个),至少一个包括多个液体燃料喷嘴148的燃烧室146(为清楚起见只示出一个),以及液体燃料清洗空气子系统150。涡轮舱152用虚线表示。燃料系统100也包括故障起动排泄箱154,仪表空气子系统156,燃料发送再循环集管158,流量孔160,单向阀162和液体燃料储存箱164。
燃料再循环子系统200包括分流器吸入集管减压阀供应集管202,分流器吸入集管减压阀204,电磁阀208,流量孔210,单向阀212,多个压力传感器213、214、215,多个压力传感器手动闭塞阀216、217、218,公共压力传感器集管219,至少一个三通阀220(为清楚起见只示出一个),先导空气供应222(为清楚起见只示出一个),至少一个三通阀检测线224(为清楚起见只示出一个),至少一个三通阀偏置弹簧226(为清楚起见只示出一个),至少一个多用途液体燃料再循环/氮气清洗/空气排出集管228(为清楚起见只示出一个),单向阀230(为清楚起见只示出一个),公共液体燃料再循环和排气歧管232,公共液体燃料再循环和排气集管234,公共液体燃料再循环和排气关闭阀236,电磁阀238,排气立管240,排气阀242,电磁阀244,流量孔246,减压阀248,排气集管250,高液位开关252,低液位开关254,多个压力传感器256和258,多个压力传感器手动闭塞阀260和262,局部压力指示器264,局部压力指示器手动闭塞阀266,局部液位仪268,多个局部液位仪手动闭塞阀270和272,以及液体燃料再循环返回集管274。
氮气清洗子系统300包括至少一个液体燃料排出集管302(为清楚起见只示出一个),至少一个液体燃料手动排出阀304,氮气供应子系统306,氮气供应手动闭塞阀308,公共氮气清洗歧管310,至少一个氮气清洗集管手动闭塞阀312,以及氮气清洗集管314(为清楚起见只示出一个)。
液体燃料从液体燃料发送子系统102流入液体燃料系统100。液体燃料发送子系统102从液体燃料储存箱160中吸入燃料,并且该子系统可包括至少一个泵(图1未示出)。在使用液体燃料期间,至少一个液体燃料发送泵帮助使液体燃料流到燃料泵吸入集管104以及流过过滤器105来到燃料泵106的入口。燃料泵106把燃料排出到排出集管108,其中设置了减压阀112并使其偏置,以便当泵106没有达到其设计流量时,通过使足够的流体流经泵106来保护泵106,从而有助于保护泵106、泵用电动机(图1未示出)和泵106下游的相应管道。减压阀集管110与公共再循环集管132流体连接。通常液体燃料通过单向阀114从排出集管108流向控制阀122。单向阀114被定位并偏置为有助于减少液体燃料从排出集管108通过泵106的反向液体燃料流,从而有助于防止泵106反转。
泵旁通集管116包括手动闭塞阀118和单向阀120。集管116的作用是作为泵106的替换物帮助提供液体燃料给系统100,例如在下面将详细描述的排气过程中使系统100充满液体燃料。阀118通常是关闭的并且可以打开以促进流动。单向阀120被定位并偏置为有助于减少泵106运行时从泵排出集管108流回到泵吸入管路104的燃料流。
液体燃料流经控制阀122和截流阀126。图1示出了当处于液体燃料备用模式时阀122和126的布置,此时燃气轮机(图1未示出)依靠天然气燃烧着,即在气体燃料工作模式,同时燃料泵106停止使用,或者燃料系统100处于下面将进一步描述的液体燃料再循环模式。所示控制阀122和截流阀126的布置促使液体燃料分别流经再循环集管124和128来到公共再循环集管132。随后集管132促使流体流往泵吸入集管104。注意当燃料泵106停止使用时再循环流量可能是很小的。
当泵106在使用中,流入集管108中的液体燃料被泵106吸入,并且燃气轮机正依靠气体燃料运转时,阀122和126可以偏置使得基本上所有液体燃料都从泵106分别流往再循环集管124和128,即液体燃料系统100处于备用操作模式。经过集管124的流量可能要大于经过集管128的流量。因此,单向阀130设置在集管128中,并且被偏置以有助于减少通过集管128从集管132流向截流阀126的燃料流。
在该典型实施例中,在燃气轮机起动操作期间,当涡轮依靠气体燃烧且达到额定速度的95%的时刻,阀122和126自动将它们的偏置设置从引导液体燃料流向与燃料系统100备用模式有关的公共再循环集管132切换为引导基本上大多数液体燃料流向分流器吸入集管134。可选择地,阀122和126可以通过手动操作来切换。当流向集管134的流量增加时,流向集管132的流量减少。
如下面将进一步讨论的,在燃料系统100的液体燃料注入工作模式期间,阀122和126也可以偏置以引导基本上大部分液体燃料流向集管134。
当泵106在使用中并且燃气轮机依靠液体燃料运转时,即液体燃料工作模式,阀122和126偏置以促进向分流器吸入集管134的流动,并引导液体燃料流向分流器136。分流器136包括多个非驱动齿轮泵137,所述齿轮泵促使基本上相同而稳定的流分配进入各自相应的燃烧室146中。
每个齿轮泵137具有足够的流动阻力,使得在整个集管134中具有基本相同的燃料压力,从而使每个齿轮泵137的吸入压力基本上相同。同样,每个齿轮泵137通过从集管134经过各自相应齿轮泵137的液体燃料流来旋转驱动,并且在预定的排出压力下以预定的速率排出燃料到各自相应的分流器排出集管138中。下面将讨论随后的液流通路之一,其包括一个齿轮泵137、一条集管138和一个三通阀220。
液体燃料从分流器136中排出后,紧接着从集管138流向相应的三通阀220。图1示出三通阀220布置为使得清洗气流通过阀220从清洗空气子系统150流往燃烧室146。这种布置可以称为阀220的空气清洗工作模式。阀220的所示布置也表明燃料集管138与多用途液体燃料再循环/氮气清洗/空气排气集管228流体连通。在燃气轮机的液体燃料流动工作模式中,阀220通常偏置使得液体燃料从集管138流向燃烧室146。阀220的这种布置可以称为阀220的液体燃料燃烧工作模式。在这种模式下,阀220也基本上阻塞了来自清洗空气子系统150的清洗空气,并且可以允许一部分燃料流向集管228。阀220包括了接收来自清洗空气子系统150的空气的先导空气供应222。阀220还包括一个梭形滑阀(图1未示出),所述梭形滑阀包括多个有助于使清洗空气和液体燃料适于所选择的燃气轮机工作模式而流动的流动口(图1未示出)。先导空气供应222引起阀220的梭形滑阀的偏置,该偏置趋向于使梭形滑阀移动从而使得液体燃料运送到燃烧室146。检测线224引起阀220的梭形滑阀的偏置,该偏置趋向于使梭形滑阀移动从而使得液体燃料运送到燃烧室146。阀220还包括弹簧226,该弹簧使阀220的梭形滑阀产生偏置,以便清洗空气流向燃烧室146。因此,当系统100运转时,通过泵106引起的液体燃料的压力要大于基本静止的清洗空气子系统150的压力和弹簧226的偏置以定位梭形滑阀,使得液体燃料从集管138通过三通阀220流往燃烧室供应集管140。可选择地,先导空气子系统222的压力可以大于基本静止的清洗空气子系统150的压力和弹簧226的偏置以定位阀220的梭形滑阀,使得液体燃料从集管138通过三通阀220流往燃烧室供应集管140。
比起泵106停止运转时基本静态的液体燃料系统100的压力,来自清洗空气子系统150的清洗空气通常被偏置到较高的、基本静态的压力。在泵106停止运转的气体燃料工作模式中,清洗空气子系统150的压力和弹簧226一起使同各自的燃烧室146相应的三通阀220偏置,使得液体燃料被阻塞而不能进入相应的燃烧室146,同时清洗空气可以被送到燃烧室146中。在相应燃烧室146中的液体燃料燃烧停上后,清洗空气可以通过喷嘴148来帮助从集管140和歧管144中除掉液体燃料。在气体燃料工作模式中通过向喷嘴148喷入冷空气,清洗空气也有助于喷嘴148的冷却。同样是这些清洗气体被送入燃烧室146中并帮助驱动三通阀220,清洗气体也可能从三通阀220中的密封(图1未示出)渗出,同液体燃料相互作用并促使含碳微粒的沉淀。
在燃气轮机的工作模式由气体燃料模式切换到液体燃料模式期间,泵106置于运转状态,阀122和126切换它们的布置使得液体燃料流经集管134和分流器136,并且集管138中液体燃料的压力上升。当集管138中液体燃料的压力超过了清洗空气的压力时,三通阀220的滑阀开始梭动,并将最后基本上终止了清洗空气流往燃烧室146,同时促使液体燃料流往燃烧室146。在一个典型的燃料系统100中,液体燃料压力将开始偏置滑阀使其梭动到这样的位置,即使得形成高于清洗空气压力大约552千帕(kPad)压差(80磅每平方英寸压差(psid))的燃料流。
在子系统200的典型实施例中,在燃气轮机的气体燃料工作模式期间,如果三通阀220存在着任何潜在的泄露,由于清洗空气子系统150的压力通常要大于静态集管138中的压力,清洗空气将趋向于泄露到液体燃料系统100中,而不是液体燃料泄露到集管140中。因此,减少了燃料通过阀220泄露的可能性,但是空气和燃料相互作用的可能性却增加了。这种情形将在下面更详细讨论。
如前面所讨论的,作为燃气轮机预定工作模式的功能,液体燃料或清洗空气会被送到集管140。随后来自集管140的流通过燃烧室空气流量文氏管/燃料流集管142和歧管144被送到位于燃烧室146中的燃料喷嘴148。当清洗空气通过在流路中放置限流部件(即文氏管)流入集管140时,空气流量文氏管142可以被偏置以使流入燃烧室146的清洗空气减到最少。图1示出了偏置到空气文氏管的位置的空气流量文氏管/燃料流集管142。当燃料被送到集管140期间,燃料流集管142可以被偏置以使燃料基本上不受限制地流到歧管144。歧管144有助于均衡流入喷嘴148的燃料和清洗空气流。燃烧室146促进燃料燃烧,并释放能量给燃气轮机。
在该典型实施例中,减压阀204被设置通过集管202在液体燃料系统100的高位与集管134流体连通,这样有助于从系统100的至少一部分中除掉空气并送入故障起动排泄箱154。在液体燃料可能由除掉的空气带走时候,箱154也设计用来接收液体燃料。阀204通常偏置于关闭设置。孔210设置在减压阀204的下游,使得当泵106运转中或阀118打开,并且阀122和126设置为便于液体燃料流入集管134时,打开的阀204不会导致过多的燃料流进入箱154中。在某些下面将进一步详细讨论的预定工作模式时,电磁阀208致动使仪表空气子系统156与阀204的操作机构流体连通。来自子系统156的仪表空气使阀204偏置到打开设置。单向阀212定位并偏置以使从箱154流往集管134的燃料和空气减到最少。
三个压力传感器213、214和215通过公共压力传感器集管219也与集管134流体连通,它们可以分别通过手动闭塞阀216、217和218来停止工作。传感器213、214和215在分流器吸入集管134处监测液体燃料系统100的压力。多个传感器有助于重复测量从而提高可靠性。
减压阀204,三通阀220和传感器213、214和215协作来进行燃料系统100的压力控制。在该典型实施例中,电磁阀208可以根据来自一个自动控制子系统(图1未示出)的电信号偏置到打开或关闭设置,该子系统随后使阀204相应地偏置到打开或关闭设置。如前所述,三通阀220可以偏置以便从空气清洗模式切换到液体燃料燃烧模式。同样如前所述,当液体燃料压力达到高于清洗空气子系统150的压力大约552kPad(80psid)时,阀220可以开始从空气清洗模式切换到液体燃料流动模式。停止到液体燃料喷嘴148的清洗空气可能会导致出现喷嘴148超过预定温度参数的情况。在燃气轮机气体流工作模式期间,为了帮助把阀220上游处的液体燃料压力高于清洗空气子系统150的压力维持在小于552kPad(80psid),当液体燃料压力高于清洗空气子系统150的压力等于或超过大约34.5kPad(5psid)时,减压阀204将自动偏置到打开设置。当液体燃料压力降到大约34.5kPad(5psid)以下时,阀204将自动偏置到关闭设置。所述给定值34.5kPad(5psid)给液体燃料压力的减少提供并限制了低于552kPad(80psid)的足够余地,并且如前所述使得通过阀220的密封泄露到系统100中的清洗空气减到最少。
在一个可选实施例中,阀204可以根据操作者发出的控制信号来工作。例如,在泵106停止运转的预定操作期间,为了便于从系统100的至少一部分中除掉空气,阀204可以根据操作者引起的电信号来偏置到打开设置,该电信号使电磁阀208偏置到打开设置并使仪表空气子系统156与阀204的操作机构流体连通。来自子系统156的仪表空气使阀204偏置到打开设置。阀204也可以用相似的方式偏置到关闭设置,即,操作者引入信号的取消使电磁阀208偏置到关闭设置,仪表空气从阀204的操作机构中去除,并且阀204被偏置到关闭设置。在一个可选实施例中,可以设置一个自动定时机构(图1未示出),以在没有操作者的动作时以预定的时间间隔来周期性地打开阀204,以便从系统100的至少一部分中除掉空气。同样,在液体燃料的注入过程中,阀204的手动操作使系统100的至少一部分排气,可以有助于下面将进一步讨论的注入过程。
同样,阀204可以通过被偏置到打开设置来减缓在燃料系统100中快速的压力瞬态效应,所述偏置操作可以通过操作者的手动动作(如前所述)或者根据传感器213、214和215检测到的控制子系统(图1未示出)的处理系统压力提供给电磁阀208的自动电子开启信号来控制。
有助于系统100的操作的子系统200的其他实施例包括控制子系统(图1未示出)的操作者警告和/或警报部件,所述部件与阀204以及如前所述的压力控制策略相关。例如,与液体燃料和清洗空气之间的压差有关的预定参数可以引发一种操作者警告或警报。一个更具体的例子是,如果液体燃料压力超过清洗空气压力一个预定的给定值并持续一段预定时间时,会引起一种警告或警报来通知操作者压力控制策略中的潜在故障。另一个例子是,如果液体燃料压力低于一个预定的给定值并持续一段预定时间时,会引起一种警告或警报来通知操作者压力控制策略中的潜在故障。另一个例子还可能包括以下情况中的警告或警报,即如果阀204处于打开状态超过一段预定时间或在打开和关闭设置之间循环使得在一段预定时间中的循环数大于一个预定阈值,这两种情况都有可能表明压力控制策略出现故障。
可以有助于操作系统100的子系统200的其他实施例包括那些在特定条件下可能引起包括涡轮自停在内的自动动作的自动保护部件。例如,当燃气轮机处于气体燃料模式时,如果液体燃料压力超过一个预定的给定值并持续一段预定时间时,阀220的清洗工作模式可能改变,使得流到喷嘴148的清洗空气不足,从而可能导致喷嘴148中不希望的温度偏移。因此,可以促使涡轮自停以保护喷嘴148。
图1示出了燃料再循环子系统200的其他实施例。在燃气轮机依靠气体燃料工作且系统100处于液体燃料再循环模式期间,阀220通常将被设置在空气清洗模式,并且多用途液体燃料再循环/氮气清洗/空气排气集管228都各自与相应的三通阀220流体连通。燃料将从各自的集管228被吸入到公共液体燃料再循环和排气歧管232中,所述集管带有相应的偏置到空气清洗模式的阀220。单向阀230被定位和偏置使得流入到集管228的燃料减到最少,所述集管228可能不接收来自相应阀220的燃料流。
公共液体燃料再循环和排气关闭阀236设置在子系统200中,以便当它偏置到关闭设置时终止液体燃料再循环流动和空气的排气流动。在下面将进一步讨论的某些预定操作模式中,电磁阀238被驱动使得仪表空气子系统156与阀236的操作机构流体连通。来自子系统156的仪表空气使阀236偏置到打开设置。在该典型实施例中,电磁阀238可以根据来自一个自动控制子系统(图1中未示出)的电信号偏置到打开或关闭设置,该子系统随后使阀236相应地偏置到打开或关闭设置。例如,在起动过程中当系统100处于液体燃料再循环模式并且当燃气轮机(图1未示出)达到95%的额定转速时,阀236可以朝着打开设置偏置。在燃气轮机停机期间,当燃料系统100处于液体燃料再循环模式,并且涡轮速度降低到低于额定速度的95%时,阀236可以朝着关闭设置偏置。
在一个可选实施例中,阀236可以根据操作者发出的控制信号来工作。例如,在泵106处于运转中的预定操作期间,为了促使液体燃料通过系统100的至少一部分再循环,阀236可以通过操作者发出的电信号被偏置到打开设置,该电信号使阀238偏置到打开设置,并且使仪表空气子系统156与阀236的操作机构流体连通。来自子系统156的仪表空气使阀236偏置到打开设置。阀236也可以用类似的方式偏置到关闭设置,即,操作者引入电信号的取消使电磁阀238偏置到关闭设置,仪表空气从阀236的操作机构中去除并且阀236被偏置到关闭设置。
集管234与排气收集立管240流体连通。排气立管240有两种用途,即,便于去除燃料再循环时夹带的空气,以及便于在非再循环操作模式期间,例如系统100的液体燃料注入操作期间,去除系统100中的空气。排气立管240通过排气集管250与误起动排出箱154流体连通,所述排气集管250包括排气阀242、孔246和减压阀248。如下面将更详细讨论的,排气阀242可以通过来自仪表空气子系统156的仪表空气和通过电磁阀244来偏置。孔246控制从排气立管240到箱154的排气速率。当排气阀242或减压阀248偏置打开时,箱154接收来自立管240的空气和/或燃料。
减压阀248通常被偏置到关闭设置,在排气阀242不工作且排气立管240中的压力达到第一预定参数时,便于对排气立管240的压力进行控制,从而有助于保护排气立管240以及如此处讨论的相应的管道系统和部件。当压力达到所述第一预定参数时,减压阀248偏置到打开设置,直到排气立管240中的压力降低到第二预定参数,所述第二压力参数低于所述第一压力参数,然后阀248自动返回到所述偏置的关闭设置。
排气立管240分别通过手动闭塞阀260和262也与压力传感器256和258流体连通。压力传感器256和258检测排出立管240中的压力,然后把相应的电信号送到控制子系统(图1未示出)中进行处理。局部压力指示器264通过手动闭塞阀266与排气立管240流体连通,便于局部地监测排气立管240中的压力。
在该典型实施例中,排气阀242定位为当其偏置到打开设置时,其促使燃料流和空气排出流从排气立管240流往箱154。阀242通常偏置于关闭设置。下面将进一步讨论的预定操作条件使电磁阀244启动以驱使仪表空气子系统156与阀242的操作机构流体连通。来自子系统156的仪表空气使阀242偏置到打开设置。在该典型实施例中,电磁阀244可以根据来自一个自动控制子系统(图1未示出)的电信号偏置到打开或关闭设置,该子系统随后使阀242分别偏置到打开和关闭设置。例如,当在起动过程中系统100处于液体燃料再循环模式并且当燃气轮机(图1未示出)达到95%的额定转速时,阀242可以朝着打开设置偏置。在燃气轮机停机期间,当燃料系统100处于液体燃料再循环模式,并且涡轮速度降低到低于额定速度的95%时,阀242可以朝着关闭设置偏置。
在液体燃料再循环操作期间,当两个压力传感器256和258中任一个检测到排气立管240中的压力已经达到等于或超过第一预定参数的第一压力时,排气阀242将偏置打开以促使空气和/或燃料流向箱154。当两个压力传感器256和258中任一个检测到排气立管240中的压力已经达到基本等于第二预定参数的第二压力时(第一压力大于第二压力),排气阀242将偏置关闭。该特征的作用是促使流体从排气立管240流往箱154,并且有助于使从箱154流往排气立管240的空气、氮气和液体燃料减到最少。
高液位开关252和低液位开关254也与立管240流体连通,它们也可以集成到一个同排气阀242有关的总控制策略中。例如,当立管240中的液体燃料的液位促动高液位开关252时,排气阀242偏置关闭。该特征的作用是使从系统100中去除的空气达到最大值,并使流经集管250的液体燃料减到最少。当立管240中的液体燃料的液位到达低与液位开关254相关的液位时,阀242可以偏置打开。
在一个可选实施例中,阀242可以根据操作者发出的控制信号来工作。例如,为了在预定操作期间从系统100的至少一部分中去除空气,阀242可以根据操作者引起的电信号偏置到打开设置,该电信号使电磁阀244偏置到打开设置并使仪表空气子系统156与阀242的操作机构流体连通。来自子系统156的仪表空气使阀242偏置到打开设置。阀242也可以用类似的方式偏置到关闭设置,即,操作者引入电信号的取消使电磁阀244偏置到关闭设置,仪表空气从阀242的操作机构中去除并且阀242被偏置到关闭设置。
可以有助于操作系统100的子系统200的其他实施例包括与阀242有关的控制子系统(图1未示出)操作者警告和/或警报部件。例如,当阀242处于打开状态超过一段预定时间或在打开和关闭设置之间循环使得在一段预定时间中的循环次数超过一个预定阈值时,引发一种警告或警报,这两种情况都可能表明出现了故障。
在另一个可选实施例中,至少一个液位传感器(图1未示出)可以与立管240流体连通。可以使用的液位传感器的示例是差压式传感器。在该可选实施例中,所述液位传感器以基本连续的方式检测立管240中的液位,然后将液位信号送到控制子系统(图1未示出)中。来自液位传感器的信号可以集成到与排气阀242相关的总控制策略中,与液位开关252和254协同工作或者代替液位开关252和254。
在该典型实施例中,局部液位仪268可以用来确定立管240的液位。液位仪268通过手动闭塞阀270和272与立管240流体连通,在立管240处于使用中的工作模式期间,所述闭塞阀可以偏置到关闭设置以使液位仪268同立管240隔离。
排气立管240通过液体燃料再循环返回集管274与液体燃料发送子系统102流体连通。在液体燃料再循环工作模式期间,液体燃料通过燃料发送再循环集管158返回到液体燃料储存箱164,随后储存起来。这种布置可称为开环的布置,其利用了储存箱164作为散热装置。液体燃料流经涡轮舱152时获得的热量在储存箱164所储存的液体燃料容积以及储存箱164本身中消散,其中储存燃料的容积大于再循环子系统200的容积。集管158便于来自燃料发送泵(图1未示出)的再循环液体燃料的运输,并且该集管还包括用于控制流量的孔160和单向阀162,所述单向阀162被定位和偏置以使从集管274流到子系统102中的流量减到最少,否则子系统102可为储存箱164旁路。
在一个可选实施例中,可以和子系统200一起采用一个闭环布置(图1未示出)。该布置可以利用一个串联式热交换器(图1未示出)与集管274流体连接。所述热交换器可以除去液体燃料流经涡轮舱152时获得的热量。冷却了的燃料可以送回到储存箱164中或者送到系统100中位于泵106吸入部分上游的某处,例如集管104中。
氮气供应子系统306通过手动闭塞阀308与公共氮气清洗歧管310流体连通,歧管310通过氮气清洗手动闭塞阀312和氮气清洗集管314与集管228流体连通。集管228通过三通阀220、集管138、液体燃料排出集管302和液体燃料手动排出阀304与箱154流体连通。
在预定的操作过程中,例如,在从液体燃料模式切换到气体燃料模式之后,液体燃料手动排出阀304可以打开,以通过排出集管302排出来自系统100中位于截流阀126下游的一部分的液体燃料。在确定液体燃料已经从系统100的一部分中充分排出时,氮气供给阀308可以向氮气清洗歧管310打开。当歧管310中的压力平衡的时候,相应的阀312可以打开以把氮气通过集管314送往清洗集管228。随着阀220偏置便于清洗空气流入集管140,并且燃料集管138与集管228流体连通,氮气可以通过三通阀220流经阀220进入集管138。所述氮气的压力趋向于使剩余的液体燃料流往排出集管302,并且从系统100的一部分中通过排出阀304排出到误起动排出箱154。在氮气清洗过程完成后,紧接着阀304可关闭,并且保持着集管228和138中的氮气压力以防止空气渗入集管138。此外,如前所述排气阀204可以偏置到打开设置达一段预定的时间,以便通过氮气清洗过程引起的偏置,使得空气和/或液体燃料从系统100中位于阀220和一互连点之间的一部分排出到箱154,其中所述互连点为集管134和202之间的互连点。
在该典型实施例中,多用途液体燃料再循环/氮气清洗/空气排出集管228相对于分流器排出集管138具有一个基本向上的斜度。所述向上的斜度便于传送在燃气轮机处于气体燃料模式期间可能通过三通阀220泄露的清洗空气。排气立管240定位成为系统100的一部分的高点,以便空气流通过集管228从阀220流向立管240。
再循环子系统200同样便于使液体燃料重新充满集管138和228、歧管232和集管234,从而使得空气残留在系统100的相应部分中的可能性基本降到最低。一旦燃料发送子系统102的液体燃料发送泵(图1未示出)可以开始运转,阀118打开并且阀122和126偏置以输送液体燃料到集管134。液体燃料将通过分流器136基本上充满集管138。当液体燃料进入集管138时,空气和氮气将被偏压向集管228,并通过歧管232、阀236、立管240、阀242和集管250被送往误起动排出箱154。此外,如前所述排出阀204可以偏置到打开设置一段预定的时间,以便通过液体燃料填充过程引起的偏置,使得空气和/或氮气从系统100中位于阀126和一互连点之间的一部分排出到箱154,其中所述互连点为集管134和202之间的互连点。另外,如前所述排气阀244可以偏置到打开设置一段预定的时间,以便通过液体燃料填充过程引起的偏置,使得空气和/或氮气从系统100中位于阀126和立管240之间的一部分排出到箱154。
一些已知燃气轮机的维护过程包括,当燃气轮机处于停机状态时,促使空气进入到系统100的各种腔,例如进入位于分流器136和三通阀220之间的集管138中。这些空气可以在整个燃气轮机调试过程中留在集管138中,以便形成气囊,其有助于在燃气轮机再起动期间形成基本稳定的液体燃料流方面引起延迟。子系统200利用前述系统100的液体燃料再充满方法来从集管138中去除空气。该方法可以增加调试时从气体燃料向液体燃料工作模式切换的可靠性。
子系统200通过允许液体燃料一直保持到阀220,同时伴随着在燃料系统100中出现气囊的可能性降低,来提高燃气轮机的可靠性,从而有利于气体燃料模式到液体燃料模式的切换。利用当通过子系统200排出空气时使系统100充满液体燃料的方法有利于使液体燃料一直保持到阀220。此外,通过使子系统200保持流经系统100的液体燃料的液流,也有助于使液体燃料一直保持到阀220。子系统200还可以通过经由向上倾斜的集管228使清洗空气从液体燃料中去除的方法,来使液体燃料一直保持到阀220。通过减缓含碳微粒的形成也可以提高系统100的可靠性,其中所述含碳微粒的形成过程已经在前面描述过。
当液体燃料被输送经过涡轮舱152中的管道系统和部件时,热量传递到液体燃料中,子系统200通过采用一种去除所述热量使得燃料温度保持在低于93℃(200)的方法,可以减缓燃料系统100中含碳微粒的形成。通过对温度可能高于93℃(200)的区域进行燃料排出过程和氮气清洗过程,子系统300可以进一步减缓燃料系统100中含碳微粒的形成。所述氮气清洗过程还有助于通过子系统200从系统100的一部分中去除空气,从而基本上减少了空气和燃料发生相互作用的可能性。
通过提供一种用于从系统100的至少一部分中去除液体燃料的方法,子系统300也可以提高可靠性,该方法使用前述的自重泄油和氮气清洗过程以便使液体燃料流往误起动排出箱154,这些过程还减小了液体燃料在气体燃料工作模式期间被燃烧室146接收并随后点燃的可能性。
燃气轮机还可以通过子系统200进一步提高其工作可靠性。空气和水可能侵入到系统100中分流器136的上游处,这样增加了水和腐蚀产物被引入到齿轮泵137中的可能性,相应地增加了齿轮泵137发生机械粘合的可能性。持续不断地使液体燃料经过分流器齿轮泵137再循环,可以促使齿轮泵137充分运动来减少发生粘合的可能性。作为选择,可使用氮气清洗子系统300来从分流器136中基本上去除可能带有水、空气和微粒污染物的液体燃料,这样进一步提高了分流器136的可靠性。
在燃气轮机停机期间,因为涡轮舱152的温度很有可能大大低于93℃(200),系统100和子系统200可以不必运行在液体燃料再循环模式。
在此描述的用于燃料再循环子系统和氮气清洗子系统的所述方法和装置有助于燃气轮机燃料系统的运行。更具体地,通过使由于液体燃料馏份和空气之间的化学相互作用而产生含碳沉淀微粒的形成减到最少,前面所述的燃料再循环子系统和氮气清洗子系统的设计、安装和运行有助于燃气轮机燃料系统在多种工作模式下的运行。此外,通过所述燃料再循环子系统和氮气清洗子系统,使得燃料系统的管道系统和燃烧室的期望有效使用寿命得到延长。因此,减少或消除了燃料系统在运行时效率和效能的劣化、维护费用的增加以及相应系统的运转中断。
尽管这里描述和/或展示的所述方法和装置是针对用于燃气轮机燃料系统的方法和装置来描述和/或展示的,更具体地说,是针对燃料再循环子系统和氮气清洗子系统,但是这里描述和/或展示的所述方法的实施并不仅限于燃料再循环子系统和氮气清洗子系统,也不限于通常的燃气轮机燃料系统。相反地,这里描述和/或展示的所述方法可适用于设计、安装和运行任何系统。
前面详细描述了与燃气轮机燃料系统有关的燃料再循环子系统和氮气清洗子系统的典型实施例。所述方法、装置和系统并不仅限于这里所描述的特定实施例,也不限于所述设计、安装和运行的特定燃料再循环子系统和氮气清洗子系统,而是相反地,所述燃料再循环子系统和氮气清洗子系统的设计、安装和运行方法是可以与这里描述的其他方法、装置和系统分开并独立使用的,或者用来设计、安装和运行这里未描述的部件。例如,也可以利用这里描述的方法来设计、安装和运行其他部件。
虽然依照多个特定实施例对本发明进行了描述,但是本领域的技术人员会意识到可以通过在权利要求的精神和范围内的变型来实施本发明。
部件列表



权利要求
1.一种用于双燃料燃气轮机液体燃料系统(100)的氮气清洗子系统(200),所述氮气清洗子系统与所述液体燃料系统和燃料再循环子系统(102)流体连通,所述燃料系统带有至少一个腔(152),所述氮气清洗子系统包括连接到与所述腔流体连通的至少一条管道上的氮气源,其中氮气从所述氮气源流经该管道并流入到所述腔中,以便从该腔中去除液体燃料和空气,从而减少含碳沉淀微粒的形成。
2.如权利要求1所述的氮气清洗子系统(200),其中所述至少一条管道进一步包括至少一条氮气清洗管道;和氮气清洗歧管(232),其中所述歧管通过所述至少一条氮气清洗管道把氮气供应给至少一条燃料管道。
3.如权利要求2所述的氮气清洗子系统(200),其中所述至少一条氮气清洗管道包括与所述燃料再循环子系统(102)流体连通的至少一条通道,从而通过利用重力引起的原动力把燃料从所述燃料系统(100)的至少一部分中转移到所述腔中,以便从所述燃料系统的至少一部分中去除燃料。
4.如权利要求2所述的氮气清洗子系统(200),其中所述至少一条氮气清洗管道进一步包括与所述燃料再循环子系统(102)和所述氮气源流体连通的至少一条通道,从而通过引起原动力来使所述燃料系统的至少一部分中的燃料向着所述腔(152)偏置,以便从所述燃料系统(100)的至少一部分中去除燃料,所述腔包括第一压力,所述氮气源包括第二压力,所述第二压力大于所述第一压力,此外,通过引起原动力来使所述燃料系统的至少一部分中的空气向着所述腔偏置,以便从所述燃料系统的至少一部分中去除空气,所述腔包括第三压力,其中所述燃料系统的至少一部分中的空气包括第四压力,并且所述氮气源包括第五压力,所述第五压力大于所述第四压力,并且所述第四压力大于所述第三压力。
5.一种用于双燃料燃气轮机液体燃料系统(100)的燃料再循环子系统(102),所述燃料再循环子系统与所述液体燃料系统和氮气清洗子系统(200)流体连通,所述燃料系统带有至少一个腔(152)、液体燃料源和空气源,所述液体燃料源和空气源都连接到与所述腔流体连通的管道上,所述氮气清洗子系统带有连接到与所述腔流体连通的管道上的氮气源,所述燃料再循环子系统包括与所述腔流体连通的至少一条管道和至少一个阀门,所述至少一个阀门控制通过所述至少一条管道分别在液体燃料源、氮气源和空气源到所述腔之间的液体燃料、氮气和空气的流量,所述至少一个阀门具有打开状态,在此打开状态中液体燃料、氮气和空气从所述液体燃料源、氮气源和空气源通过所述至少一条管道分别流入到该腔中,便于从燃料系统的至少一部分中带走热量,也便于从所述腔中除掉液体燃料和空气,从而减少了含碳沉淀微粒的形成。
6.如权利要求5所述的燃料再循环子系统(102),其中所述至少一个阀门(204)包括至少一个三通阀(220),所述三通阀包括至少一条检测线(224)、至少一个弹簧(226)、至少一个先导空气供应(222)、至少一个梭形滑阀以及至少一个流端口,使得所述至少一条检测线、所述至少一个弹簧、所述至少一个先导空气供应、所述至少一个梭形滑阀以及所述至少一个流端口引起一个偏置,所述偏置使得便于所述燃料系统(100)的至少一部分中的燃料、空气和氮气的输送。
7.如权利要求6所述的燃料再循环子系统(102),其中所述至少一个三通阀(220)进一步包括与所述管道流体连通的至少一条通道,从而便于所述燃料系统(100)的至少一部分中的燃料、空气和氮气的输送。
8.如权利要求5所述的燃料再循环子系统(102),其中所述至少一条管道和至少一个阀门(204)进一步包括与所述燃料系统(100)流体连通的至少一条燃料再循环管道;与所述至少一条燃料再循环管道流体连通的至少一个液体燃料再循环和排气关闭阀(242);与所述至少一个液体燃料再循环和排气关闭阀流体连通的至少一个排气立管(240);和与所述燃料系统流体连通的至少一个减压阀(248)。
9.如权利要求8所述的燃料再循环子系统(102),其中所述至少一条燃料再循环管道包括所述燃料再循环子系统中这样的至少一部分,该部分相对于一个基本水平面被偏置成带有一个向上的斜度,从而有助于从所述燃料系统的至少一部分中去除空气,和把空气运送到所述排气立管(240)中。
10.如权利要求8所述的燃料再循环子系统(102),其中所述至少一个减压阀(248)包括一个通常关闭的偏置,和一个便于从所述燃料系统(100)的至少一部分中去除空气的打开偏置。
全文摘要
提供了一种运行燃料系统(100)的方法。所述方法包括使用自重泄油过程来从至少一部分燃料系统中排出燃料。该方法还包括把氮气引入到至少一部分燃料系统中,以便从至少一部分燃料系统中去除空气和残留的燃料,从而减缓含碳沉淀微粒的形成。该方法进一步包括在燃料再充满过程中,使用排气过程从至少一部分燃料系统中除掉空气和氮气,使得至少一部分燃料系统基本上被燃料再充满并且基本上除清了其中的空气和氮气。该方法还包括使用排气过程从至少一部分再充满的燃料系统中除掉空气。该方法进一步包括在至少一部分燃料系统中再循环燃料,以便从至少一部分燃料系统中带走热量,并且有利于燃料工作模式的切换。
文档编号F02C7/22GK1971012SQ200610171978
公开日2007年5月30日 申请日期2006年11月7日 优先权日2005年11月7日
发明者K·L·昆克尔, S·W·贝克曼, D·J·克里斯菲尔德, D·W·史密斯 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1