设置有轴间轴承的双主体气体涡轮引擎的制作方法

文档序号:5257134阅读:201来源:国知局
专利名称:设置有轴间轴承的双主体气体涡轮引擎的制作方法
技术领域
本发明涉及气体涡轮引擎,尤其是用于航空应用,包括低压卷轴和高压卷轴。轴承的设计的目的在于,在引擎壳体内支撑LP和HP轴,更具体为在下游轴承处支撑。
背景技术
双卷轴或双主体气体涡轮引擎包括第一旋转组件,已知为低压(BP)卷轴,由在上游端连接LP压缩机的轴和在下游端的LP涡轮形成,其中上游和下游相对于通过机器的空气流动而定义。每个压缩机和涡轮元件可由一个或多个级构成。两个LP元件沿轴向分开并留出空间用于已知为高压(HP)卷轴的第二旋转组件,HP卷轴其由位于LP压缩机下游的HP压缩机和位于LP涡轮上游的HP涡轮形成。HP压缩机和HP涡轮通过采用鼓的形式的连接构件而相互机械连接。引擎的燃烧室相对于两个卷轴静止,并为环形,且围绕所述鼓沿周向装容。其接纳来自LP级以及进而来自HP级的压缩机的压缩空气,并将高能燃烧气体传输到HP和LP涡轮级。引擎可包括由LP卷轴的轴驱动的在前部的风扇转子。其他设计是已知的。例如CFM56这样的已知引擎包括结构性壳体元件,尤其是通过轴承支撑旋转组件。在上游侧上,已知为中间壳体的壳体元件包括通过上游LP轴承支撑LP轴的毂。在下游侧上,已知为排放壳体的壳体元件也包括通过下游LP轴承支撑LP轴的毂。HP卷轴由在下游侧上的LP轴使用轴间轴承支撑。安装在飞机上的引擎在飞机承受变向操控时经历横向的动态负载。通过这样的轴承设计,对于引擎实施例(尤其是其长度相对于低压LP卷轴的轴的细度而言较大的实施例),本申请人分析当引擎承受这样的操控负载时HP和LP转子的行为。转子沿引擎轴线的横向移动是关键参数,由此,这种移动对叶片尖端与定子环之间的间隙如何取值具有直接影响。如果最优性能得以保持,则这些间隙取值的程度必须保持为低值。

发明内容
因此,申请人设定本发明的目标在于,减小压缩机和涡轮转子叶片尖端在操控负载下的径向间隙。更具体地,申请人设定本发明的目标在于,改进在双卷轴气体涡轮引擎中支撑转子的轴承的设计,其着眼于当安装在飞机上的引擎承受操控负载时减小沿引擎轴线的横向移动。这样的目标通过根据本发明的一种双卷轴气体涡轮引擎实现,其包括低压LP卷轴和高压HP卷轴,这些卷轴安装为使它们能够围绕引擎的固定壳体中的相同轴线旋转,所述低压卷轴具有通过低压LP轴连接的LP压缩机和LP涡轮,所述LP轴由上游LP轴承、结构性壳体元件中的第一下游LP轴承所支撑,所述HP卷轴由上游HP轴承和下游HP轴承支撑, 所述引擎的特征在于,所述LP轴通过附加下游LP轴承支撑在下游的结构性壳体元件中。附加下游LP轴承与下游LP轴承配合,使LP轴相对于下游壳体元件可更好地套接。根据另一特征,所述附加下游LP轴承位于所述下游LP轴承的上游。这样,所述附加下游LP轴承的直径大于所述下游LP轴承的直径。而且尤其是,由于具有大于下游HP轴承的直径,所述下游HP轴承是轴间轴承,其安装在LP轴与HP转子之间,HP卷轴由LP轴支撑。根据一个实施例,所述附加下游LP轴承在所述下游HP轴承与所述下游LP轴承之间沿轴向定位。根据另一实施例,所述下游HP轴承和所述附加下游LP轴承位于相互接近的相应横向平面中。有利地,所述下游LP轴承和所述附加下游LP轴承由相同的结构性壳体元件支撑, 所述结构性壳体具有径向强化机构。更具体说,所述结构性壳体元件形成所述结构性排放壳体


通过阅读以下参照附图仅以非限制性示例给出的本发明的一个实施例的描述,本发明的其他特征和优点将变得明显,其中图1是根据现有技术的具有前风扇的气体涡轮引擎的示意性的轴向半截面。图2更详细地图示出图1所示引擎的下游部分。图3是根据本发明的包括附加下游LP轴承的引擎的后部分的轴向半截面。图4图示出根据本发明的轴承室通风空气的循环。图5图示出根据本发明的轴承的可替代设计。
具体实施例方式图1的气体涡轮引擎1包括(在壳体内,从上游到下游)前风扇3,其压缩的一些空气流被喷出至大气中,并且一径向内部分被引导通过引擎。所述径向内部分顺次包括形成低压(LP)压缩机4的多个压缩机级,然后是高压(HP)压缩机5的各级。空气进入扩散器,由此导入燃烧室6中。在燃烧室的下游,燃烧气体被引导通过高压HP涡轮7,然后穿过低压LP涡轮8的各级,最后气体经由未图示的喷管喷嘴被喷出到大气中。在结构上,LP压缩机4的转子和LP涡轮8的转子通过LP轴9而机械连接,由此形成LP卷轴9C。HP压缩机5的转子和HP涡轮7的转子与将它们机械连接的鼓10 —起形成HP卷轴10C。壳体2 (其中安装有LP和HP两个卷轴9C和10C)包括多个元件,对于本发明所关注的,所述元件包括已知为中间壳体21的上游壳体元件,和已知为排放壳体2E的下游壳体元件。这两个壳体元件由于在引擎与飞机结构之间的力穿过它们而是结构性元件。 它们通过中心毂和径向臂形成,径向臂交叉于将毂连接到外壳环的气体导管。旋转组件通过一系列轴承被支撑在毂中;LP轴9在此连接到由轴承Pl支撑的风扇轴。LP轴9由轴承P2支撑在上游侧上。这两个轴承Pl和P2本身由中间壳体21支撑。 LP轴由以P5表示的轴承支撑在下游侧上,轴承P5本身安装在排放壳体2E上。HP卷轴IOC 由LP轴9通过轴间轴承P4支撑在下游侧上。其由安装在中间壳体中的轴承P3支撑在上游侧上。
图2更详细地显示出引擎的后部分。LP卷轴9C的轴9穿过HP涡轮7的盘。其由排放壳体2E的毂的截锥形的元件2E1中的轴承P5支撑。其包括具有滚动轴承的架,滚动轴承保持在紧固到LP轴9的端轴颈9C1的内道轨与紧固到截锥毂元件2E1的外道轨之间。 LP涡轮8的转子紧固到LP轴9。在更上游,轴间轴承P4包括具有滚动轴承的架,该架安装在紧固到LP轴9的内道轨与紧固到HP卷轴IOC的端的轴颈10C1,更具体为连接到HP涡轮盘7的法兰上的外道轨之间。现在将参照图3描述本发明的一个实施例,其源自图2中所示现有技术的轴承结构。在此图3中,HP和LP涡轮7和8分别相对于图2不变。LP轴以19表示。在其下游端侧上,LP轴19具有轴颈19C1,轴颈19C1在此为附接的轴颈但也可与LP轴形成单一件。 该轴颈包括从LP轴19延续并具有大致相同直径的部分19C1A。轴颈包括具有更大直径的另一部分19C1B,该另一部分19C1B通过一径向部分19C1C连接到轴颈的第一部分19C1A。排放壳体12E的毂包括两个截锥部分12E1和12E2,分别形成用于两个轴承P5' 和P6的支撑部。轴承P5'位于LP轴19的轴颈部分19C1A与截锥部分12E2之间。其包括滚动轴承架,其安装在紧固到轴颈部分19C1A的内道轨或环与紧固到排放壳体毂的截锥部分12E1的柱形延续部12E10的外道轨或环之间。轴承P6安装在轴颈19C1的较大直径柱形部分19C1B与排放壳体毂的截锥部分 12E2的柱形延续部12E20之间。在径向纵平面12E3中围绕引擎轴线分布的强化肋形成在两个截锥部分之间以提高这两个截锥部分对在它们上游端承受的径向力的抵抗力。毂还包括围绕引擎轴线分布的纵向和径向肋12E4。轴颈19C1包括柱形部分19C1D,其从柱形部分19C1A向上游延伸并滑过轴19的外轴承表面。轴间轴承P4装容在两个柱形部分19C1B和19C1D之间的环形空间中。这种轴承包括滚动轴承架,其安装在被紧固到位于HP转子IOC下游端的轴颈IOCl上的道轨或环与紧固到环19C1E (其本身安装在柱形部分19C1B内的轴颈19C1上)的外道轨或环之间。如图3中可见,轴颈IOCl固定到HP涡轮盘7的下游法兰上。LP轴19的轴颈19C1 通过在柱形部分19C1B之外的径向法兰被栓接到锥8C上,锥8C附接到LP涡轮转子8的一个盘上。在此的LP涡轮转子由被组装到单一涡轮单元中的四个涡轮盘构成。润滑在图4中显示。用于润滑油的室由在相对于彼此移动的部分之间定位的迷宫式区域形成。这样,在成套轴承P4、P5'、P6的上游侧上,存在在HP转子轴颈IOCl与HP轴10 之间迷宫式密封部Li,在轴颈IOCl与LP轴19的轴颈19C1之间的L2,在LP涡轮转子的锥 8C与排放壳体12E的毂之间的L3。在下游侧上,迷宫式密封部L4封闭在LP轴19与排放壳体12E的毂之间的室。箭头Fl、F2、F3、F4、F5例示出流离上游的加压空气流,由此使轴承室相对于在低压涡轮级中获得的压力保持加压。由适合的导管容纳的油以本身已知的方式喷溅在滚动轴承上,并经由LP轴19的内侧被移除,LP轴19包括未示出的油分离器。这种形式寻求保持现有技术引擎中已存在的部件,使得可能需要的改造量最小。 特别是,轴间轴承P4安装在未被修改的轴颈IOCl上。因而轴承P4在轴承P6的上游。
根据图5中所示实施例的可替代的形式,轴承P4进一步向下游移动,使其与轴承 P6处于大致相同的横向平面中。为此,在HP转子端处的轴颈被伸长。此轴颈在图5中以 110C1表示。LP轴的轴颈还通过与图3的解决方案对比而进行修改。本发明的解决方案对于HP涡轮轴颈位于轴间轴承之外的现有技术而言是有利的。在后一种情况下,由于HP涡轮的运行速度大于被安装在内侧上的LP涡轮轴的运行速度,因而导致此部件膨胀。为了确保轴间滚动轴承的正常操作间隙,此轴承不得不被安装为受限于LP涡轮轴与HP涡轮轴颈之间。在组装时,由于LP涡轮与其在HP卷轴模块上的轴啮合,因而与滚动轴承外环装配的HP涡轮轴颈不得不被加热而使其膨胀并使LP涡轮轴可与内环装配和与此相同滚动轴承的滚动主体装配。组装是麻烦的。通过本发明的解决方案,HP涡轮轴颈比轴间轴承进一步朝向内侧定位,LP涡轮轴进一步朝向此相同滚动轴承的外侧定位。这样,不同于现有技术中所用类型的组件,通过其轴装配的LP涡轮(轴本身与轴间滚动轴承的外环装配)与以间隙与内环并与轴承滚动主体装配的HP涡轮轴颈相啮合。因此,不需要加热HP涡轮轴颈。由此使组装更容易。根据整体机械和热应力并通过HP涡轮轴颈运行速度事实上大于LP涡轮轴运行速度的适当考虑,计算在冷状态下的间隙,以确保滚动轴承的正确操作。
权利要求
1.一种双卷轴气体涡轮引擎(1),包括低压LP卷轴(9C)和高压HP卷轴(10C),这些卷轴安装为使它们能够围绕固定壳体(2)中相同轴线旋转,所述低压LP卷轴(9C)具有由低压LP轴(9)连接的压缩机和涡轮,所述低压LP轴(9)由所述固定壳体( 的上游LP轴承(P》、第一下游LP轴承(P5')和附加下游LP轴承(P6)支撑,所述高压HP卷轴(IOC) 由上游HP轴承(P; )和下游HP轴承(P4)支撑,其特征在于,所述下游HP轴承(P4)是轴间轴承,其包括紧固到所述HP涡轮转子(IOC)上的内道轨和紧固到所述LP轴(9)的外道轨。
2.如权利要求1所述的引擎,其中,所述附加下游LP轴承(P6)位于所述下游LP轴承 (P5')的上游。
3.如权利要求1或2所述的引擎,其中,所述附加下游LP轴承(P6)的直径大于所述下游LP轴承(P5')的直径。
4.如权利要求3所述的引擎,其中,所述附加下游LP轴承(P6)的直径大于所述下游 HP轴承(P4)的直径。
5.如权利要求4所述的引擎,其中,所述附加下游LP轴承(P4)(P6)在所述下游HP轴承(P4)与所述下游LP轴承(P5')之间沿轴向定位。
6.如权利要求4或5所述的引擎,其中,所述下游HP轴承(P4)和所述附加下游LP轴承(P6)位于相对于所述引擎的轴线横向并且相互接近的相应平面中。
7.如前述权利要求中任何一项所述的引擎,其中,在所述下游LP轴承(P5')和所述附加下游LP轴承(P6)由相同的结构性壳体元件OE)支撑的情况下,所述结构性壳体具有径向强化机构OE2,2E3)。
8.如权利要求7所述的引擎,其中,所述结构性壳体元件形成所述结构性排放壳体 (2Ε)。
全文摘要
本发明涉及一种双卷轴气体涡轮引擎(1),包括低压LP卷轴(9C)和高压HP卷轴(10C),这些卷轴围绕固定壳体(2)中的单一轴被可旋转地安装,所述低压LP卷轴(9C)具有通过低压LP轴(9)连接的压缩机和涡轮,所述低压LP轴由所述固定壳体的上游LP轴承(P2)、第一下游LP轴承(P5′)和附加下游LP轴承(P6)支撑,所述高压HP主体(10C)由上游HP轴承(P3)和下游HP轴承(P4)支撑,所述下游HP轴承(P4)是轴间轴承,其包括刚性连接到所述HP涡轮转子(10C)的内轨道和刚性连接到所述LP轴(9)的外轨道。
文档编号F02C7/06GK102395772SQ201080017118
公开日2012年3月28日 申请日期2010年4月15日 优先权日2009年4月17日
发明者奥内拉·加斯蒂诺, 杰克斯·雷内·巴特, 迪迪尔·雷内·安德烈·艾斯克尔 申请人:斯奈克玛
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1