基础部具有非正弧高的风力涡轮机叶片的制作方法

文档序号:5257541阅读:123来源:国知局
专利名称:基础部具有非正弧高的风力涡轮机叶片的制作方法
技术领域
本发明涉及一种用于具有基本上水平转子轴的风力涡轮机转子的叶片,所述转子包括轮毂,所述叶片在被安装到轮毂上时从所述轮毂基本上沿径向方向延伸,所述叶片包括型面轮廓(profiled contour),所述型面轮廓包括压力侧和吸力侧以及前缘和后缘,并且翼弦在所述前缘和所述后缘之间延伸,所述型面轮廓在受到入射空气流冲击时会产生升力,所述型面轮廓沿径向方向被分成最接近所述轮毂的根部区域、最远离所述轮毂的翼面区域和位于所述根部区域与所述翼面区域之间的优选的过渡区域,所述根部区域具有基本上呈圆形或椭圆形的型面(profile),所述翼面区域具有产生升力的型面,所述过渡区域具有沿径向方向从所述根部区域的圆形或椭圆形型面向所述翼面区域的产生升力的型面逐渐改变的型面,其中,所述翼面区域包括至少一个第一纵向节段,所述第一纵向节段沿所述翼面区域的纵向长度的至少20%延伸,所述第一纵向节段包括第一基础部,所述第一基础部具有前缘和后缘以及在该前缘和后缘之间延伸的翼弦。
背景技术
传统上,现代的风力涡轮机叶片是通过先设计叶片本身的外形和空气动力特性来设计的,以便使所述叶片的翼面区段的每个径向区段获得目标载荷和目标轴向诱导 (target axial induction)。然后,确定如何根据所述叶片的空气动力设计规格来制造所述叶片。这种叶片的空气动力形状通常较为复杂,各节段具有沿风力涡轮机叶片径向长度的双曲轮廓和多种不同的翼面形状。因此,叶片的制造过程以及用于该制造过程的模具部件的制造都变得相当复杂。总体上,从最初启动开发新型叶片的设计到新型叶片的产品发布所用的时间很长,并且生产和开发的总成本很高。此过程将在后文描述的第一节中更全面地介绍。WO 01/14740公开了多种改进风力涡轮机叶片型面的方式,以便防止失速 (stall)问题。EP 2 031 242公开了一种安装在风力涡轮机叶片上的叶片元件,以将型面从具有尖锐后缘的翼面形状改变为具有平头后缘的翼型(或称翼剖面)。DE 199 64 114 Al公开了一种翼型,所述翼型装配有格尼襟翼(Gurney flap)形式的分叉后缘,所述后缘产生周期性的流动扰动。WO 02/08600公开了一种风力涡轮机叶片,所述叶片设置有翼肋以及在所述叶片的连接部或根部上的涡流发生器。US 5 088 665公开了一种设置有锯齿形后缘板的风力涡轮机叶片。WO 2007/140771公开了一种设置有涡流发生条带的风力涡轮机叶片,以防止失速并降低噪声排放。EP 1 944 505公开了一种风力涡轮机叶片,所述叶片在相对厚度为30%_80%的翼面部分中设置有涡流发生器。DE 10 2006 017 897公开了一种风力涡轮机叶片,所述叶片在所述叶片的根部区域和过渡区域中设置有扰流器装置。WO 03/029644 公开了一种设计水下水流涡轮机(under water flow turbine)的涡轮机叶片的方法,所述设计方法利用例如轴向诱导因子作为设计参数。所述叶片型面未
设置导流装置。WO 03/098034公开了一种设置有轮毂延长件的风力涡轮机。所述叶片型面未设置
导流装置。US 2007/140858公开了一种模块化地构造的叶片,所述叶片包括远离所组装的叶片的前缘和后缘布置的结合。所述叶片型面未设置导流装置。US 2007/105431公开了一种模块化地构造的叶片,所述叶片包括多个堆叠的模块节段,其中,使用缆线将所述模块节段夹紧在一起。所述叶片型面未设置导流装置。EP 0 100 131公开了一种利用拉挤或挤压成型来制造风力涡轮机叶片的方法。所述叶片型面未设置导流装置。

发明内容
本发明的一个目的在于获得一种新型叶片,该叶片克服或改善了现有技术中的至少一个缺点或提供了有用的替代。根据本发明的一个方面,该目的是通过第一基础部实现的,所述第一基础部具有横截面型面,该横截面型面在受到0度攻角的入射空气流的冲击时具有为0或更小的升力系数。正升力被定义为具有从叶片的压力侧(或逆风/迎风侧)指向吸力侧(或顺风/下风侧)的升力分量的升力系数。负升力被定义为具有从叶片的吸力侧(或顺风/下风侧)指向压力侧(或逆风/迎风侧)的升力分量的升力系数。换言之,本发明提供了一种用于具有基本上水平转子轴的风力涡轮机转子的叶片,所述转子包括轮毂,所述叶片在被安装到轮毂上时从所述轮毂基本上沿径向方向延伸, 所述叶片在转子设计点处具有预定的目标轴向诱导因子,所述叶片包括型面轮廓,所述型面轮廓包括压力侧和吸力侧以及前缘和后缘,并且翼弦在所述前缘和所述后缘之间延伸, 所述型面轮廓在受到入射空气流冲击时产生升力,所述型面轮廓沿径向方向被分成最接近所述轮毂的根部区域、最远离所述轮毂的翼面区域和位于所述根部区域与所述翼面区域之间的优选的过渡区域,所述根部区域具有基本上呈圆形或椭圆形的型面,所述翼面区域具有产生升力的型面,所述过渡区域具有沿径向方向从所述根部区域的圆形或椭圆形型面向所述翼面区域的产生升力的型面逐渐改变的型面。所述翼面区域可以被分为多个基础区段,所述基础区段中的第一基础区段沿所述翼面区域的纵向长度的至少20%延伸,所述第一基础区段具有前缘和后缘,以及在所述前缘和后缘之间延伸的翼弦,而且所述第一基础区段被形成为具有横截面型面,该横截面型面在受到0度攻角的入射空气流的冲击时具有为0或更小的升力系数。因此,基础部或基础区段具有横截面型面,该横截面型面的升力系数和攻角之间具有空气动力学关系,当升力系数和攻角被绘制在坐标系中,并将升力系数作为攻角的函数时,该空气动力学关系将穿过坐标系的原点或在一负值处穿过升力系数轴。换言之,升力系数在正攻角或零度攻角处(即非负攻角处)变号。这种基础部本身中具有对于常规风力涡轮机叶片而言的固有非最佳空气动力特性,该常规风力涡轮机叶片具有沿叶片的径向方向扭转的型面。然而,使用具有这种特性的型面可以简化叶片的其它特性,例如叶片的扭转或翼弦形状。例如,可以提供无扭转或具有线性扭转的纵向节段和/或具有沿叶片径向方向线性变化的翼弦长度。然而,对叶片基础部的设计进行这种约束将固有地导致所述节段基本上偏离该节段的近似最佳目标轴向诱导。为了补偿这种偏离,需要改变该节段的总流入特性和升力系数。然而,由于新型面的升力系数和攻角之间具有关系,使得所述新型面与常规叶片型面明显不同,因此这可能足以平衡所述偏离或至少使轴向诱导朝目标轴向诱导改变,从而使得变流装置仅需轻微地改变轴向诱导。因此,叶片包括沿叶片翼面区域的实质部分(substantial part)延伸的至少一个纵向节段。根据第一实施例,翼面区域包括叶片的叶片梢端区域。根据第二实施例,叶片进一步包括与翼面区域邻接的叶片梢端区域。因此,叶片梢端区域可被看作翼面区域的一部分或可被看作一个分离部分。典型地,梢端区域覆盖翼面区域纵向长度的外侧5-10%。在一个示例中,第一纵向节段具有零扭转或具有小于近似最佳扭转的扭转,新型面(升力系数和攻角之间具有上述关系)补偿了扭转的“不足”,这是因为攻角必须高于常规型面,以便获得正确的目标特性(例如与必要的升力系数有关的),从而获得正确的轴向诱导。使用新型面使得可以获得模块化叶片设计,其中基础部可以被用于多种不同叶片类型和叶片长度。因此,可在更大/更长叶片的更外侧重复利用现有叶片的基础部,或者在更小/更短叶片的更内侧重复利用现有叶片的基础部。总之,可按如下方式设计叶片,即 使得翼面区域的叶片设计从预设计区段被组装到一起,且不同长度的叶片可以部分地由先前叶片已经存在的区段构成。总体上,基础部的形状可以保持为比具有大于40米长度的常规的现代风力涡轮机的形状更简单。例如可避免双曲叶片型面。这还使得用于制造叶片的模具部分的生产更加简单。总之,可以显著减少从开发新型叶片设计的最初启动到所述新型叶片的产品发布所用的时间,并可降低总生产成本。对于风力涡轮机和风力涡轮机叶片,叶片的压力侧也被定义和称为迎风侧或逆风侧,而吸力侧也被定义和称为下风侧或顺风侧。转子设计点被定义为这样的点,S卩,对于设计风速和设计转子速度,该点处风力涡轮机叶片的功率系数最大。因此,叶片的每个区段具有局部设计梢端速比,其被定义为设计转子速度乘以局部叶片区段半径除以设计风速。因此,可以看出设计点是这样的点,即, 在该点处,使用这种风力涡轮机叶片的风力涡轮机在风力涡轮机的设计风速处具有最大效率。在设计点处,局部叶片区段具有局部翼弦、扭转(twist)和翼面形状,其在局部流入处决定了设计升力系数。应该通过变流装置来选择或调节所有参数,以获得目标轴向诱导因子,所述目标轴向诱导因子决定了这一叶片区段产生的功率。在1.3节进一步解释了转子设计点。因此,根据一个有利实施例,第一基础部具有固有性非理想扭转和/或翼弦长度, 且其中,横截面型面适于通过朝目标轴向诱导改变轴向诱导来补偿非理想扭转和/或翼弦长度。然而,对叶片节段的设计参数进行这样的限制意味着叶片节段在空气动力学方面会偏离理想设计。因此,这样的叶片节段将在空气动力学方面,尤其是涉及该节段的最佳升力系数方面是固有地非理想的。通过使用变流装置来补偿此偏离,以将设计升力作为叶片半径的函数调节到适当的近似最佳轴向诱导因子。对另一叶片半径载荷的调节意味着需要使用变流装置。因此,根据另一有利实施例,第一纵向节段设置有多个第一变流装置,所述多个第一变流装置被布置为调节第一纵向节段的空气动力特性,以在转子设计点处基本满足目标轴向诱导因子。下文将描述多个有利实施例,所有实施例都提供了升力系数和攻角之间的期望关系。根据一个有利实施例,第一基础部具有横截面型面,该横截面型面具有弧线和翼弦线,该翼弦线具有翼弦长度,并且其中横截面型面的翼弦线和弧线之间在整个翼弦长度上的平均差值为负。也就是说,当从翼弦的整个长度上看时,弧线平均而言更靠近叶片的压力侧,而不是叶片的吸力侧。根据另一实施例,在翼弦的整个长度上,弧线更靠近压力侧而不是吸力侧。当然, 弧线和翼弦在前缘和后缘处重合。根据一个替代性实施例,第一基础部具有横截面型面,该横截面型面具有弧线和翼弦线,该翼弦线具有翼弦长度,其中弧线和翼弦线在翼弦的整个长度上重合。也就是说, 横截面型面关于翼弦对称。这种型面从制造角度看非常有利。下面将描述具有另外的有利实施例。根据一个有利实施例,第一基础部具有轴向诱导因子,该轴向诱导因子在没有变流装置的情况下在设计点处偏离目标轴向诱导因子至少5%,并且第一纵向节段设置有多个第一变流装置,所述第一变流装置被布置成用来调节第一纵向节段的空气动力特性,以在设计点处基本满足目标轴向诱导因子。根据一个有利实施例,第一基础部具有固有性非理想扭转和/或翼弦长度,并且其中,横截面型面适于通过朝目标轴向诱导改变所述轴向诱导来补偿非理想扭转和/或翼弦长度。这类叶片特别适合用于设计具有简化的翼弦分布和/或扭转的基础部的风力涡轮机叶片。根据一个有利实施例,第一基础部具有固有性非理想扭转和/或翼弦长度,并且其中,横截面型面适于通过朝目标轴向诱导改变所述轴向诱导来补偿非理想扭转和/或翼弦长度。然而,对叶片节段的设计参数进行这样的限制意味着叶片节段在空气动力学方面偏离了理想设计。因此,这样的叶片节段将在空气动力学方面,尤其是涉及该节段的最佳升力系数方面固有地是非理想的。通过使用变流装置来补偿此偏离,以将设计升力作为叶片半径的函数调节到适当的近似最佳的轴向诱导因子。对另一叶片半径载荷的调节意味着需要使用变流装置。根据另一有利实施例,具有变流装置的第一纵向节段的轴向诱导因子在设计点处偏离目标轴向诱导因子不大于2%。有利地,在设计点处与目标轴向诱导因子的偏离不大于1%。根据又一有利实施例,在没有变流装置的情况下第一基础部的诱导因子沿第一纵向节段的基本上整个纵向长度偏离目标轴向诱导因子。根据一个实施例,目标轴向诱导因子基本上等于空气动力最佳目标轴向诱导因子。由此,可基本上最大化从风中提取的能量,并且因此使利用这种叶片的风力涡轮机的功率产出最大化。然而,目标轴向诱导因子可以处于以下区间内,S卩0.25至0.4之间,或0.28至 0. 38之间,或0. 3至0. 33之间。因此,可以看出,出于结构上和操作上的考虑,目标轴向诱导因子可偏离理论最佳值1/3。根据另一实施例,在没有变流装置的情况下第一基础部的诱导因子在设计点处偏离目标轴向诱导因子至少10%或20%或30%。换言之,通过对叶片的第一纵向节段使用变流装置,轴向诱导因子平均改变大于10%。根据又一实施例,在没有变流装置的情况下第一基础部在设计点处进一步偏离目标载荷,并且其中,第一变流装置进一步被布置为用来调节第一纵向节段的空气动力特性, 以在设计点处基本满足目标载荷。在这方面,目标载荷被认为是合成空气力,或更准确地, 是影响特定叶片区段的转子平面的合成法向力。目标载荷可被看作在第一纵向节段整个纵向长度上的平均,或者可被看作在第一纵向节段内多个较小半径节段的单独目标。再者,它可被看作对叶片第一纵向节段的每个横截面的单独目标。在没有变流装置的情况下第一基础部的载荷在设计点处偏离目标载荷至少5%、或 10%、或20%、或30%。换言之,通过对叶片的第一纵向节段使用变流装置,第一纵向节段的载荷在整个纵向长度上平均改变至少5%或10%。有利地,具有变流装置的第一纵向节段的载荷在设计点处偏离目标载荷不大于 2%。有利地,在设计点处与目标载荷的偏离不大于1%。根据一个有利实施例,所述第一基础部被设计为具有固有性非理想扭转(例如无扭转)或相比于目标叶片扭转减小的扭转。这种基础部相比于常规叶片形状被进一步简化。根据本发明的另一有利实施例,第一纵向节段沿径向方向被分为多个径向区段, 每个径向区段具有对于设计点的独立平均操作攻角,并且具有分段翼面形状,其在没有第一变流装置的情况下具有分段最佳攻角,其中,第一变流装置适于朝径向区段的平均操作攻角改变所述分段翼面形状的最佳攻角。根据又一有利实施例,第一基础部具有扭转,该扭转沿第一纵向节段的基本整个纵向长度是非理想的。因此,沿该节段的基本上整个纵向长度,固有扭转不同于理想扭转, 但是固有扭转可以在多种径向位置处等于最佳扭转。因此,代表理想扭转和固有扭转的曲线可以在某点互相交叉。本发明尤其适合优化基本上不具有扭转的叶片的特性,即没有被固有地设计用来补偿局部流入速度(由于叶片局部变化的速度)的叶片。因此,可以利用变流装置沿叶片纵向方向改变位差角(shift angle),从而使得位差角与叶片的虚拟扭转相对应,以便由于叶片局部变化速度来补偿局部流入速度。然而,本发明还可以使用其它类型的叶片,尤其是与最佳相比具有减小的总扭转角的叶片。因此,根据本发明一个实施例的叶片具有扭转小于 8度的翼面区域。换言之,翼弦平面的定向沿叶片径向方向的变化小于8度。然而,叶片沿叶片径向方向仍然预弯曲和/或成锥形。根据一个替代性实施例,扭转小于5度或3度或甚至2度。由此,可以为风力涡轮机提供与常规风力涡轮机叶片相比简单得多的型面,常规的风力涡轮机通常具有最大扭转在10至12度之间、有时甚至为15度的翼面区段,并且叶片设置有变流装置,以便补偿“缺少的”扭转或提供“剩余的”扭转。然而,根据一个具体的有利实施例,叶片的翼面区域基本上是平直的。换言之,翼弦平面的定向沿叶片的整个径向方向基本相同。因此,每个径向区段可设置有变流装置,以便优化基本平直的叶片的升力。这为叶片的设计提供了许多可能性,这是因为叶片可被设计为无扭转的并且在正常使用时(即在设计点处)仍可优化叶片的局部径向速度。这意味着可以通过独立的区段叶片部分(例如之后互相连接的各个独立的区段部分)来制造叶片,或者通过例如DE 198 33 869所示的区段模具部件来制造叶片。或者,给定叶片可以装配有轮毂延长件,而不改变叶片给定径向位置的翼弦方向。这还使得可以设计这样的叶片,其没有理想的双曲压力侧,即在叶片压力侧上不需要同时具有凸和凹的表面型面。在这种情况下,可以使用变流装置来补偿非理想型面。因此,模具组件可以被制造为具有简单得多的形状。此外,这种叶片可以实现通过更简单的制造方法(例如挤压等)来制造叶片。扭转的一阶导数随着与轮毂的距离增加而减小。因此,叶片外侧部分(即梢端附近)的扭转小于叶片内侧部分的扭转。因此,不是所有叶片都需要在叶片梢端附近设置变流装置。然而,优选地,至少翼面区的内侧40%、50%、60%、70%或75%设置有具有变流装置的径向叶片区段。通过改变叶片节距角(Pitch angle)和/或叶片转速可补偿梢端区域中的流入气流。根据一个具体的有利实施例,第一基础部具有基本恒定的扭转,例如基本无扭转, 这意味着第一基础部的翼弦基本布置在相同的方向。因此,第一基础部可以是基本平直的。根据另一有利实施例,第一基础部可以具有与径向位置线性相关的扭转。也就是说,扭转角或翼弦角沿翼展方向或第一纵向节段的纵向方向线性变化。这种叶片节段可被配置成尽可能逼近地跟随理想扭转,且在获得可行的模块设计方面具有多个优点,其中第一基础部被重复用于另一类叶片,或者其中,它被“连接”到第二纵向节段的第二基础部,并且具有与轴向位置的另一相关性,任选地可经由中间的过渡叶片节段。换言之,这种叶片节段在获得叶片的模块设计方面具有多个优点。根据第一实施例,第一基础部具有固有性扭转角,从而使得在没有变流装置的情况下第一基础部在转子设计点处的流入角小于沿第一纵向节段整个纵向长度的最佳流入角。在这种情况下,单一种类的变流装置足够调整第一基础部的非理想空气动力结构。根据第二实施例,第一纵向节段具有固有性扭转角,从而使得在没有变流装置的情况下第一基础部在转子设计点处包括流入角小于最佳流入角的第一节段和流入角大于最佳流入角的第二节段。在这种情况下,可能有必要利用不同类型的变流装置来调整第一基础部的非理想空气动力结构。如果第一基础部的固有扭转和与轮毂的径向距离线性相关,则叶片会发生固有扭转“穿过”理想扭转(或称固有扭转与理想扭转“相交”),其中所述理想扭转与径向位置非线性相关。由于理想扭转和与轮毂的径向距离成反比地相关,因此包括具有固有线性扭转相关性的第一基础部的叶片包括(从轮毂朝叶片梢端看)第一节段、并列第二节段、以及并列第三节段,其中所述第一节段具有小于理想扭转的固有扭转, 所述并列第二节段具有大于理想扭转的固有扭转,所述并列第三节段具有小于理想扭转的固有扭转。有利地,对于没有变流装置的第一纵向节段,在设计点处平均流入角和最佳流入攻之间第一纵向区段纵向长度上的均方根差大于1度、或大于2度、或大于2. 5度。因此, 均方根差被计算为沿叶片纵向方向的绝对空间偏离(absolute spatial deviation)。在给定的时间间隔(例如风力涡轮机转子的一个全循环)内进一步观察该偏离。有利地,对于具有变流装置的第一纵向节段,设计点处平均流入角和最佳流入角之间的第一纵向区段纵向长度上的均方根差小于1度或小于0. 5度。根据一个有利实施例,第一基础部具有按如下方式沿叶片的径向方向线性变化的内部尺寸,即使得在转子设计点处没有变流装置的情况下所述第一基础部的诱导因子偏离目标诱导因子。这种基础部甚至进一步与常规叶片设计相比也简化了设计。下面将描述具有线性变化内部尺寸的多个有利实施例,其与常规的现代风力涡轮机叶片相比被简化。根据第一有利实施例,第一基础部的翼弦长度沿叶片的径向方向线性变化。根据另一有利实施例,第一基础部具有沿叶片的径向方向线性变化的厚度。在这方面,叶片厚度被定义为叶片的最大厚度,即,对于每个横截面型面而言是叶片吸力侧和压力侧之间的最大距离(沿垂直于横截面翼弦的方向)。根据又一有利实施例,第一基础部具有恒定的相对厚度。也就是说,厚度与翼弦之比沿叶片第一纵向延伸区段的整个纵向长度是恒定的。原则上,相对型面可以沿叶片的纵向方向变化;然而,根据一个有利实施例,第一基础部包括恒定的相对型面。在一个实施例中,第一基础部包括沿第一纵向延伸区段整个长度的恒定相对型面。也就是说,第一基础部的每一横截面具有相同的相对翼型或整体形状。在另一实施例中,第一基础部具有恒定的翼弦长度。这意味着翼弦长度沿第一纵向延伸区段整个长度是恒定的,或者换言之,第一基础部的前缘和后缘是平行的。这种约束需要在设计点处显著偏离目标轴向诱导因子,但是可以显著简化叶片的生产以及用于制造所述叶片的模具的设计和制造。在又一实施例中,第一基础部具有恒定的厚度。在一个具体的有利实施例中,第一基础部包括多个纵向节段,每个纵向节段具有沿叶片轴向方向的独立的线性变化相关性。因此,这例如可以设计具有分段线性变化翼弦长度的叶片。每个纵向节段应沿翼面区域纵向长度的至少20%延伸。根据一个有利实施例,第一基础部被提供有线性预弯曲。由此,相对于节距轴线 (pitch axis)的基础部角定向可与局部叶片半径线性相关。或者,距节距轴线的横向偏离可与局部叶片半径线性相关。由此,可以配置各个叶片区段的预弯曲,以便获得预弯曲叶片。根据另一有利实施例,第一基础部被预弯曲,并且翼面区域包括纵向节段,所述纵向节段包括没有预弯曲的基础部。因此,预弯曲可以仅位于叶片的一个节段或两节段中,例如,翼面区域的翼外部分和/或根部区域中。根据一个有利实施例,第一基础部是拉挤或挤压成型的型面。由于线性变化的内部尺寸,使得这种基础部便于制造,并且显著简化了制造过程。总之,第一基础部包括线性翼弦、线性厚度以及沿叶片的径向方向线性变化或恒定的扭转,当设计模块化组装叶片时以及在制造这种叶片方面,具有多个优点。优选地,风力涡轮机叶片的长度为至少40米,或至少50米,或至少60米。叶片甚至可以为至少70米,或至少80米。具有至少90米或至少100米长度的叶片也是可能的。根据一个有利实施例,叶片尤其是第一基础部包括由复合材料制成的壳结构。所述复合材料可以是用纤维强化的树脂基质。在多数情形中,所用聚合物是热固性树脂,例如聚酯、乙烯基酯或环氧树脂。所述树脂还可以是热塑性物质,例如尼龙、PVC、ABS、聚丙烯或聚乙烯。再者,该树脂可以是另一种热固性的热塑性物质,例如环构PBT或PET。所述纤维强化通常是基于玻璃纤维或碳纤维的,但也可以是塑性纤维、织物纤维或金属纤维。所述复合材料常包括夹层结构,该夹层结构包括芯材,例如发泡聚合物或巴沙轻木。根据另一有利实施例,叶片包括纵向延伸强化区段,该区段包括多个纤维层。该强化区段(也被称为主叠层)通常延伸通过第一纵向节段的第一基础部。根据一个有利实施例,第一纵向节段沿翼面区域的至少25%,或30%,或40%,或50% 延伸。第一纵向节段甚至可以沿翼面区域的60%、70%或75%延伸。当梢端区域被认为是翼面区域的一部分时,第一纵向节段的长度甚至可以达到100%。然而,第一纵向节段本身被限制为翼面区域的一部分,其中可以实现在设计点处的近似最佳理论空气动力特性。这不包括梢端部、根部区段和过渡区段,这是因为载荷和结构上的考虑通常与近似最佳理论空气动力特性显著不同。有利地,翼面区域可进一步包括纵向延伸的过渡节段。该过渡节段(不要与叶片的过渡区域混淆)可以沿翼面区域的5-10%径向地延伸,并且被使用在翼面区域中,以获得根据本发明的两个纵向延伸节段之间的逐渐过渡。要认识到,叶片可包括沿翼面区域的约40% 延伸的第一纵向延伸叶片节段、沿翼面区域的约10%延伸的过渡节段、沿翼面区域的约40% 延伸的第二纵向延伸叶片节段以及最后沿翼面区域的约10%延伸的叶片梢端区段。根据一个有利实施例,第一纵向节段被设置在翼面区域的翼内位置(inboard position),即设置在最靠近过渡区域或根部区域的部分中,优选设置在根部区域的过渡区域的两米内,更优选地设置成邻接可选的过渡区域或所述根部区域。叶片可以设置有与第一纵向节段并列的额外纵向节段。所有这些都应沿翼面区域纵向长度的至少25%延伸。有利地,导流装置包括多元件区段,例如缝翼或襟翼,即导流装置优选包括多元件部,用于改变不同叶片节段的型面特性。所述多元件区段适于改变叶片第一纵向节段的流入特性和载荷。优选地,多元件区段至少改变第一纵向节段的实质部分,例如沿第一纵向节段的至少50%。由此,可以根据(第一基础部的)基本设计来改变多个设计参数,例如该段的设计升力、弧高和攻角,从这些参数有关的空气动力学角度来看,这些参数具有固有的非最佳设计,但是从制造角度来看却是最优化的。因此,可以将多元件部改装到第一基础部,以便优化空气动力特性。因此,一个或多个第一变流装置可被布置为在第一基础部的前缘附近和/或沿第一基础部的前缘布置。进一步地,所述多个第一变流装置中的一个或多个可被布置在第一基础部的后缘附近和/或沿第一基础部的后缘布置。因此,总型面可以变为具有至少两个独立元件的多元件型面。因此,第一基础部可被构造为叶片的载荷承载部,而导流装置可以用于优化空气动力特性,以使局部区段空气动力特性与转子设计点相匹配。多元件区段可被布置在相对于第一基础部的固定位置。由此,可以永久地或半永久地调节叶片,以补偿第一基础部的非理想型面。或者,可以相对于第一基础部灵活地调节多元件区段。因此,可以灵活地(例如根据风力涡轮机的操作条件)调节设计参数。第一导流装置或多元件区段可以是相对于第一基础部可平移的和/或是可被转动操作的或是可调节。根据一个有利实施例,所述多个第一变流装置包括具有翼型的多元件区段,所述翼型具有在前缘和后缘之间延伸的翼弦。此多元件区段可以形成为翼面,该翼面具有的翼弦长度处于第一基础部局部翼弦长度的5%至30%的区间中。或者,上述型面元件具有最大内侧横截面尺寸,该尺寸相当于第一基础部翼弦长度的5%至30%。根据第一实施例,所述多个第一导流装置或结构型面元件被布置为与第一基础部相距一定距离。或者,结构型面元件可与第一基础部的表面连接,因此改变基础部本身的表面包络线(surface envelope)。根据又一实施例,第一基础部具有比多个变流装置的总表面大至少5或5倍的表面积。再者,可以调节导流装置,以便被动消除流入变化。变流装置还可以包括表面安装元件,其改变叶片的第一纵向节段的总包络线 (overall envelope).有利地,表面安装元件被布置在第一基础部的前缘和/或后缘附近。变流装置还可以包括边界层控制装置,例如通风孔或通风槽、涡流发生器和格尼襟翼。优选地,边界层控制装置与多元件区段或表面安装元件结合使用。通常需要多元件区段或表面安装元件来实现轴向诱导因子的较大改变,即,向目标进行粗调。然而,可用边界层控制装置来向目标精调轴向诱导因子。有利地,叶片包括多个模块叶片区段。第一纵向节段可例如是这种叶片区段。叶片还可以是可分开或分离的叶片,在这种情形中,叶片可以在第一纵向节段的一端被分开。 根据第一有利实施例,模块叶片区段包括根部区段、第一纵向节段和梢端区段。根据第二有利实施例,根部区段包括根部区域和过度区域。根据第三有利实施例,叶片进一步包括用于延长叶片长度的延长件区段,优选增加到叶片的根部区段,例如轮毂延长件。根据一个进一步的方面,本发明提供了一种系统,该系统包括一组根部区域,或者是一组延长件区段、一组包括第一基础部的翼面区段和一组梢端区段。根据一个有利实施例,可以结合和组装该组根部区段中的一个模块叶片区段,或者是该组延长件区段中的至少一个模块叶片区段、该组翼面区段中的至少一个模块叶片区段、以及该组梢端区段中的至少一个模块叶片区段,从而形成不同长度的叶片。根据又一方面,本发明提供了一种风力涡轮机,所述风力涡轮机包括转子,所述转子包括根据前述实施例之一的多个叶片,优选为两个或三个叶片。有利地,风力涡轮机包括基本上水平轴线的转子轴。优选地,所述风力涡轮机在例如符合“丹麦概念”的逆风配置中操作。


下面参照附图所示实施例来详细描述本发明,附图中图1示出了一种风力涡轮机,
图2示出了根据本发明的风力涡轮机叶片的示意图, 图3示出了翼型示意图, 图4示出了一翼型处的流速和气动力, 图5示出了由不同叶片区段构成的叶片的示意图, 图6a示出了风力涡轮机关于风速的功率曲线, 图6b示出了风力涡轮机关于风速的转子速度曲线, 图6c示出了风力涡轮机关于风速的叶片梢端节距曲线,图7示出了风力涡轮机叶片上一个区段的速度矢量三角形, 图8a和8b分别示出了流入量和叶片载荷作为局部叶片半径函数的曲线图, 图9示出了根据本发明的叶片的第一实施例, 图10示出了根据本发明的叶片的第二实施例, 图11示出了根据本发明的叶片的第三实施例, 图12a_c和图13a_c图示了用于修正非最佳扭转的补偿措施, 图14a_c和图15a_c图示了用于修正非最佳翼弦长度的补偿措施, 图16示出了与翼面区段设计点相比、风力涡轮机叶片的实际叶片区段的操作点, 图17a_17e示出了设置有通风孔的叶片的横截面以及进行通风的作用, 图18a-18c示出了设置有表面安装元件的叶片的横截面和使用表面安装元件的作用, 图19a示出了设置有多元件型面的叶片的横截面和使用这种型面的作用, 图19b-d示出了相对于叶片横截面放置多元件型面的方式, 图20a和20b示出了设置有格尼襟翼的叶片的横截面和使用格尼襟翼的作用, 图21a-21c示出了设置有涡流发生器的叶片的横截面和使用涡流发生器的作用, 图22a和22b示出了设置有扰流器元件的叶片的横截面和使用扰流器元件的作用, 图23a示出了攻角的平均值和最佳值作为与轮毂径向距离的函数的曲线图, 图23b示出了位差角作为与轮毂径向距离的函数的曲线图,
图23c示出了根据本发明的叶片的外侧部分的阻力系数和升力系数之间的关系以及攻角和升力系数之间的关系,以及
图23d示出了根据本发明的叶片的内侧部分的阻力系数和升力系数之间的关系以及攻角和升力系数之间的关系,
图24a-g示出了图示具有线性相关的扭转和/或翼弦的叶片的不同实施例的曲线图,
图25示出了根据本发明的叶片的第四实施例,
图26示出了具有线性预弯曲的叶片的一个实施例的曲线图,
图27示出了具有双曲压力侧的叶片型面,
图28示出了没有双曲率的叶片型面,
图29示出了具有零弧高的叶片的一个实施例的曲线图,
图30示出了对称的叶片型面,
图31示出了具有负弯度的叶片的一个实施例的曲线图, 图32示出了具有负弯度的第一叶片型面, 图33示出了具有负弯度的第二叶片型面,
图34图示出了为两种不同类型的风力涡轮机叶片使用公共叶片区段的原理, 图35示出了使用轮毂延长件的原理, 图36图示出了将叶片特性调节到目标值的原理, 图37示出了翼弦长度分布的例子,
图38示出了可变换叶片的扭转和现有叶片的扭转之间的对比, 图39示出了不同叶片和风速情况下流入角的曲线图, 图40示出了不同叶片和风速情况下升力系数的曲线图, 图41示出了不同叶片和风速情况下轴向诱导因子的曲线图,图42示出了不同叶片的相对厚度分布的曲线图, 图43示出了具有共享翼外基础部的可变换叶片, 图44示出了可变换叶片的翼弦长度分布的例子, 图45示出了可变换叶片的流入角的曲线图, 图46示出了可变换叶片的升力系数的曲线图, 图47示出了其它可变换叶片的流入角的曲线图, 图48示出了其它可变换叶片的升力系数的曲线图, 图49示出了交错的可变换叶片的例子, 图50示出了可变换叶片的翼弦长度分布的另一例子, 图51示出了可变换叶片的流入角的曲线图,以及图52示出了可变换叶片的升力系数的曲线图。
具体实施例方式图1例示出了根据所谓“丹麦概念(Danish concept)"的常规现代逆风式风力涡轮机,该风力涡轮机具有塔架4、机舱6和具有基本上水平的转子轴的转子。转子包括轮毂 8和从轮毂8沿径向延伸的三个叶片10,每个叶片具有最接近轮毂的叶片根部16和最远离轮毂8的叶片梢端14。所述转子具有由R表示的半径。图2示出了根据本发明的风力涡轮机叶片10的第一实施例的示意图。风力涡轮机叶片10具有常规风力涡轮机叶片的形状并且包括最接近轮毂的根部区域30、最远离轮毂的型面或翼面区域34,以及根部区域30和翼面区域34之间的过渡区域32。叶片10包括当叶片被安装在轮毂上时面向叶片10的转动方向的前缘18,以及面向前缘18相反方向的后缘20。翼面区域34 (也被称作型面区域)在产生升力方面具有理想或几乎理想的叶片形状,然而鉴于结构上的考虑,根部区域30具有基本上呈圆形或椭圆形的横截面,这例如使得将叶片10安装到轮毂上更容易且更安全。根部区域30的直径(或翼弦)沿整个根部区域30通常是恒定的。过渡区域32具有从根部区域的圆形或椭圆形形状40逐渐变为翼面区域34的翼型50的过渡型面42。过渡区域32的翼弦长度通常随着与轮毂的距离r的增加而基本上线性地增加。翼面区域34具有翼型50,所述翼型50具有在叶片10的前缘18和后缘20之间延伸的翼弦。翼弦的宽度随着与轮毂的距离r的增加而减小。应该注意叶片不同区段的翼弦一般不在一个共同平面上,这是由于叶片可以扭转和/或弯曲(即预弯曲),因此使翼弦平面具有相应的扭转和/或弯曲的路线,这是最常见的情形,以便弥补叶片的局部速度,该速度取决于距轮毂的半径。图3示出了风力涡轮机的典型叶片的翼型50的示意图,所述翼型50是用多个参数描述的,所述参数通常用于限定翼面的几何形状。翼型50具有压力侧52和吸力侧54,所述压力侧52和吸力侧54在使用过程中(即在转子的转动过程中)一般分别面向迎风(或逆风)侧和下风(或顺风)侧。翼面50具有翼弦60,所述翼弦60的翼弦长度c在叶片的前缘 56和后缘58之间延伸。翼型50具有厚度t,所述厚度t被定义为压力侧52和吸力侧54 之间的距离。翼型50的厚度t沿翼弦60变化。弧线62给出了与对称型面的偏离,所述弧线是穿过翼型50的中线。所述中线可通过从前缘56到后缘58绘制内接圆而找到。所述中线经过这些内接圆的中心,与翼弦60的偏离或距离被称作弧高f。也可利用称作上弧高和下弧高的参数来定义这种不对称性,这两个参数分别被定义为与翼弦60的距离和与吸力侧54及压力侧52的距离。翼型通常由以下参数限定翼弦长度C、最大弧高f、最大弧高f的位置df、最大翼面厚度t (其是沿中弧线62上内接圆的最大直径)、最大厚度t的位置dt和顶冠半径(nose radius)(未示出)。这些参数通常被定义为与翼弦长度c之比。图4示出了翼型50处的流速和气动力的示意图。该翼型位于转子的径向位置或半径r处,所述叶片是所述转子的一部分,并且所述型面被设置成给定扭转或节距角θ。轴向自由流速度Va (根据理论,其最佳地被给定为风速Vw的2/3)和切向速度r · ω (其方向沿转子的转动方向64)结合形成合成速度\。合成速度\与弧线60—起限定了流入角Φ, 可从所述流入角Φ中减去攻角α。当翼型50受到入射气流冲击时,垂直于合成速度、产生升力66。同时,翼面受到朝合成速度\方向的阻力68的作用。知道每个径向位置的升力和阻力后,可计算沿叶片整个长度的合成气动力70的分布。这些气动力70通常被分为两个分量,即切向力分布(在转子的转动平面中)和朝向与切向力成直角的方向的推力72。进一步地,翼面会受力矩系数75影响。转子的驱动转矩可以通过在叶片的整个径向长度上对切向力74进行积分来计算。驱动转矩和转子转动速度一起为风力涡轮机提供全部转子功率。在叶片的整个径向长度上对局部推力72进行积分得到例如相对于塔架的总转子推力。下面(第1节)将描述根据常规设计方法进行的叶片设计。1风力涡轮机叶片设计的现有技术状况
现今,风力涡轮机的转子设计是空气动力特性和整体风力涡轮机设计负荷之间的折衷。最常见的是,叶片被设计为用于最小化能量消耗(C0E)、找到能量产出和涡轮机负荷的最佳权衡。这意味着空气动力设计不能被看作孤立问题,因为在最大能量产出可能导致过载的情况下,孤立看待最大能量产出是没有意义的。因此,经典的解析或半解析法并不能完全胜任叶片设计任务。1. 1叶片设计参数
转子新型叶片的空气动力设计涉及以下总转子半径R和叶片数量B。总体叶片平面图,其由图3和图4中的下列参数描述翼弦长度C、扭转角θ和相对于翼弦c的厚度t。这些参数都应作为局部叶片半径r的函数来确定。节距轴线相对叶片半径的位置可被定义为x/c(r)和y/c(r),即后掠和预弯曲。当叶片被安装在转子上时,预弯曲是叶片在垂直于转子平面的方向上的叶片预偏转。预弯曲的目的在于当叶片在操作过程中偏转时,防止叶片撞击塔架。规定的后掠使得可以沿叶片的长度轴布置翼面区段,这影响整个叶片的区段负荷。在现有空气动力转子设计方法的技术状况中一个重要的关键要素是使用预设计的翼面。沿叶片半径为各个叶片部位选择翼面。描述每个翼面区段的参数在图4中示出 升力系数66 (Cl)、阻力系数68 (cd)、力矩系数75 (Cffl)0对于各个独立的叶片部位,这些翼面特性都通过攻角α进行描述,然后由每个区段的总叶片流入角确定攻角a。
风力涡轮机转子的巨大操作范围以及对全地形条件下强壮和可靠的空气动力特性的需求使得风力涡轮机翼面与传统飞机和滑翔器翼面不同。1.2控制策略
作为功率和大多数负荷的受体,风力涡轮机转子上的叶片在风力涡轮机系统设计中是很重要的组件。因此,用风力涡轮机控制策略的密切知识来设计风力涡轮机叶片。所述控制策略限定了如何针对不同风速来优化和控制转子功率。存在三种根本上不同的控制方案
1.可变转子速率,这里,在转子速率可变情况下,可为各种风速获得转子的设计目标点。通常,叶片节距(pitch)保持恒定。2.恒定的转子速率和可变的叶片节距。这里,通过调节叶片节距尽可能地接近转子的设计目标点。3.恒定转子速率和恒定叶片节距。这里,只能在一个风速下满足转子的设计目标
点ο图6a_6c示出了对于典型的可变风速和受控节距风力涡轮机的功率特性。图6a示出了对于风速的典型功率曲线。在低风速处,功率随风速增加直到达到额定功率。存在两个重要的风速区域,即功率优化区域和功率控制区域。在风速低于图6中虚线所示阈值的区域中功率被优化,在较高风速处功率保持恒定的区域是功率控制区域。在功率优化区域,通过改变叶片梢端节距或转子速率来追踪转子设计目标点。这样做的目的是为了使功率以及能量产出最大化。图6b和6c示出了主导风力涡轮机叶片设计的控制参数图6b示出了转子速率Ω 与风速,图6c示出了叶片梢端节距角Θ。转子速率在低风速处具有最小值,并且当追踪最佳功率直到达到额定功率时,这对应于转子速率随风速线性增加。当达到转子速率的给定最大值时,转子速率在功率控制过程中保持恒定。在功率优化过程中叶片节距通常保持恒定,然后在功率控制过程中随风速而增加以防止功率超出额定值。在功率控制区域,对于大多数涡轮机而言,通过调节叶片节距,功率被保持为接近驱动机构的额定功率,从而使得叶片失速或相反地朝很小的负荷运行。一些涡轮机具有失速控制装置,此时叶片节距保持恒定。这里,通过设计使叶片的一些部分被动失速,达到额定功率值。1.3转子设计目标点
无论进行何种类型的功率优化,风力涡轮机叶片都被设计为在一个设计目标点操作。 对于可变转子速率和/或可变叶片节距,在风速范围内可实现在设计目标点处进行操作, 而对于失速控制的转子,仅在一个风速处表现出在设计目标点处进行操作。转子设计目标点由相应的设计梢端速比表征,该速比被定义为梢端速度和风速之比,X=r· Ω/V,其中Ω是转子的转速。在设计目标点处,与远离转子设计目标点的操作点相比,转子功率系数最大。转子设计点可被看作第一纵向节段整个纵向长度上的平均,或者可被看作用于第一纵向节段内多个较小半径节段的个体目标。再者,转子设计点可被看作用于叶片第一纵向节段的每个横截面的个体目标。当确定了转子设计目标点并且确定了涡轮机控制策略时,选择翼面,并且决定转子半径和叶片数量。剩下的参数是局部翼弦、扭转和相对于叶片半径的厚度以及局部区段设计目标点。这些参数通过在考虑到负荷和能量消耗的情况下优化转子设计目标点特性来找到。因此,在设计目标点处的转子功率系数不一定是最佳可达到值,但是对于给定的转子,总是存在一个设计目标点。1.4局部区段设计目标点
局部区段设计目标点可根据图7所示的给定区段的速度三角形定义。这里,合成速度 W由轴向流速ν (Ι-a)和切向流速r· Ω (1+a’)构成。总流入角Φ的正切等于轴向分量和切向分量之比。轴向诱导因子表示在转子平面处自由流速的百分比减少。切向诱导因子表示由转子在转子平面中引起的转子尾流的转动百分比。如图4所示,总流入角Φ仍由局部扭转角 和局部攻角α构成。当知道局部翼弦c和局部扭转角θ以及对于局部攻角α的翼面区段力系数时, 可使用所谓的叶素动量法(BEM)来解决通过叶片节段覆盖的转子环的总流量与每个叶片上的局部力之间的平衡问题。可以计算合成的法向力和切向力,所述法向力垂直于转子平面, 而所述切向力平行于转子平面。通过这种计算过程,确定出诱导因子,并且当在转子设计目标点处操作时,诱导因子继而表示目标诱导因子。反之亦然,如果确定了目标诱导因子,则当知道翼面区段时,可推导出局部翼弦和扭转。在为了优化空气动力特性而设计局部区段的情况中,可以看出对于梢端速比的高值而言,最佳轴向诱导因子接近1/3,而切向诱导因子接近零。有一种确定精确的最佳诱导因子并据此确定局部翼弦和扭转以便优化空气动力特性的简单方法。这种方法的一个例子是Glauert的与BEM法一起公布的方法 (Glauert, H. Airplane propellers in Aerodynamic Theory ed. Durand, W. F. Dower Publications, Inc. New York)。1.5经典空气动力叶片设计
Glauert的经典叶素动量(BEM)理论通过将转子盘分成环形流管,在穿过转子盘的总流量和叶片上翼面周围的局部流量之间建立平衡,使得可以通过简单手段解决转子流量。 如果忽略阻力,则可找到用于最佳转子的简单表达式
权利要求
1.一种用于风力涡轮机转子的叶片,所述转子具有基本上水平的转子轴且包括轮毂, 所述叶片在被安装到所述轮毂上时从所述轮毂基本上沿径向方向延伸,所述叶片包括 型面轮廓,所述型面轮廓包括压力侧和吸力侧以及前缘和后缘,并且翼弦在所述前缘和所述后缘之间延伸,所述型面轮廓在受到入射空气流冲击时产生升力, 所述型面轮廓沿径向方向被分成最接近所述轮毂的根部区域、最远离所述轮毂的翼面区域以及位于所述根部区域与所述翼面区域之间的优选的过渡区域,所述根部区域具有基本上呈圆形或椭圆形的型面,所述翼面区域具有产生升力的型面,所述过渡区域具有沿径向方向从所述根部区域的圆形或椭圆形型面向所述翼面区域的产生升力的型面逐渐改变的型面,其中 所述翼面区域包括至少第一纵向节段,所述第一纵向节段沿所述翼面区域的纵向长度的至少20%延伸,所述第一纵向节段包括第一基础部,所述第一基础部具有前缘和后缘以及在该前缘和后缘之间延伸的翼弦,其特征在于 所述第一基础部具有横截面型面,该横截面型面在受到0度攻角的入射空气流的冲击时具有为0或更小的升力系数,正升力被定义为具有从叶片的压力侧指向吸力侧的升力分量的升力系数,负升力系数被定义为具有从叶片的吸力侧指向压力侧的升力分量的升力系数。
2.根据权利要求1所述的叶片,其中,所述第一基础部在转子设计点处具有固有性非理想扭转和/或翼弦长度,且其中,所述横截面型面适于通过在所述转子设计点处朝目标轴向诱导改变轴向诱导来补偿所述非理想扭转和/或翼弦长度。
3.根据权利要求1或2所述的叶片,其中,所述第一纵向节段设置有多个第一变流装置,所述第一变流装置被布置为调节所述第一纵向节段的空气动力特性,以在转子设计点处基本上满足目标轴向诱导因子。
4.根据前述权利要求之一所述的叶片,其中,所述变流装置包括从下列装置构成的组中选择的装置 多元件区段,例如缝翼或襟翼,和/或 表面安装元件,例如前缘元件或表面安装襟翼,其改变了所述叶片的第一纵向节段的总包络线。
5.根据权利要求4所述的叶片,其中,所述变流装置额外包括边界层控制装置,例如通风孔或通风槽、涡流发生器和格尼襟翼。
6.根据前述权利要求之一所述的叶片,其中,所述第一基础部具有横截面型面,该横截面型面具有弧线和翼弦线,该翼弦线具有翼弦长度,并且其中横截面型面的翼弦线和弧线之间在整个翼弦长度上的平均差值为负,从而使得,当从翼弦的整个长度上看时,弧线平均而言更靠近叶片的压力侧,而不是叶片的吸力侧。
7.根据权利要求6所述的叶片,其中,在翼弦的整个长度上,弧线更靠近压力侧而不是吸力侧。
8.根据权利要求1-6之一所述的叶片,其中,所述第一基础部具有横截面型面,该横截面型面具有弧线和翼弦线,该翼弦线具有翼弦长度,且其中所述弧线和翼弦线在翼弦的整个长度上重合。
9.根据前述权利要求之一所述的叶片,其中,所述第一基础部具有与径向位置线性相关的扭转。
10.根据前述权利要求之一所述的叶片,其中,所述第一基础部的翼弦长度沿所述叶片的径向方向线性变化。
11.根据前述权利要求之一所述的叶片,其中,所述第一基础部具有厚度,且其中所述基础部的厚度沿所述叶片的径向方向线性变化。
12.根据前述权利要求之一所述的叶片,其中,所述目标轴向诱导因子接近所述空气动力最佳目标轴向诱导因子。
13.根据前述权利要求之一所述的叶片,其中,所述目标轴向诱导因子处于0.25至0.4 的区间内,或0. 28至0. 38的区间内,或0.3至0. 33的区间内。
14.根据前述权利要求之一所述的叶片,其中,在没有变流装置的情况下所述第一基础部的诱导因子在设计点处偏离所述目标轴向诱导因子至少5%、或10%、或20%、或30%。
15.根据前述权利要求之一所述的叶片,其中,在没有变流装置的情况下第一基础部在设计点处进一步偏离目标载荷,并且其中,第一变流装置进一步被布置为用来调节第一纵向节段的空气动力特性,以在设计点处基本满足所述目标载荷。
16.根据权利要求15所述的叶片,其中,在没有变流装置的情况下所述第一基础部的载荷在设计点处偏离所述目标载荷至少5%、或10%、或20%、或30%。
17.一种用于风力涡轮机转子的叶片,所述转子具有基本上水平的转子轴且包括轮毂, 所述叶片在被安装到所述轮毂上时从所述轮毂基本上沿径向方向延伸,所述叶片在转子设计点处具有预定的目标轴向诱导因子,所述叶片包括 型面轮廓,所述型面轮廓包括压力侧和吸力侧以及前缘和后缘,并且翼弦在所述前缘和所述后缘之间延伸,所述型面轮廓在受到入射空气流冲击时产生升力, 所述型面轮廓沿径向方向被分成最接近所述轮毂的根部区域、最远离所述轮毂的翼面区域和位于所述根部区域与所述翼面区域之间的优选的过渡区域,所述根部区域具有基本上呈圆形或椭圆形的型面,所述翼面区域具有产生升力的型面,所述过渡区域具有沿径向方向从所述根部区域的圆形或椭圆形型面向所述翼面区域的产生升力的型面逐渐改变的型面,其特征在于 所述翼面区域被分成多个基础区段,所述基础区段中的第一基础区段沿所述翼面区域的纵向长度的至少20%延伸,所述第一基础区段具有前缘和后缘以及在该前缘和后缘之间延伸的翼弦, 所述第一基础部具有横截面型面,该横截面型面在受到0度攻角的入射空气流的冲击时具有为0或更小的升力系数,正升力被定义为具有从叶片的压力侧指向吸力侧的升力分量的升力系数,负升力系数被定义为具有从叶片的吸力侧指向压力侧的升力分量的升力系数。
全文摘要
本发明描述了一种用于风力涡轮机转子的叶片,该风力涡轮机转子具有基本上水平的转子轴。转子包括轮毂,叶片在被安装到轮毂上时从轮毂基本上沿径向方向延伸。叶片包括型面轮廓,其包括压力侧和吸力侧以及前缘和后缘,并且翼弦在前缘和后缘之间延伸,型面轮廓在受到入射空气流冲击时会产生升力,型面轮廓沿径向方向被分成最接近轮毂的根部区域、最远离轮毂的翼面区域和位于根部区域与翼面区域之间的优选的过渡区域,根部区域具有基本上呈圆形或椭圆形的型面,翼面区域具有产生升力的型面,过渡区域具有沿径向方向从根部区域的圆形或椭圆形型面向翼面区域的产生升力的型面逐渐改变的型面,其中,翼面区域包括至少第一纵向节段,第一纵向节段沿翼面区域的纵向长度的至少20%延伸,第一纵向节段包括第一基础部,其具有前缘和后缘以及在前缘和后缘之间延伸的翼弦。第一基础部具有横截面型面,该横截面型面在受到0度攻角的入射空气流的冲击时具有为0或更小的升力系数。
文档编号F03D1/06GK102459880SQ201080032430
公开日2012年5月16日 申请日期2010年5月18日 优先权日2009年5月18日
发明者富格尔桑格 L., 富格尔桑格 P., 博夫 S. 申请人:Lm 玻璃纤维制品有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1